organic compounds
(4-Methylphenyl)methanaminium bromide hemihydrate
aDepartment of Physics, Government Arts College (Autonomous), Kumbakonam 612 002, Tamilnadu, India, and bKunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamilnadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com
In the title hydrated salt, C8H12N+·Br−·0.5H2O, which is isostructural with its chloride congener, the water O atom lies on a crystallographic twofold axis. In the crystal, the components are linked via C—H⋯Br, O—H⋯Br, N—H⋯Br and N—H⋯O hydrogen bonds to generate (100) sheets. The sheets are linked by two weak C—H⋯π interactions, generating a three-dimensional network.
Keywords: crystal structure; hydrated salt; hydrogen bonds; C—H⋯π interactions.
CCDC reference: 1824161
Structure description
Some noncentrosymmetric organic crystals exhibit high nonlinear efficiency and can be functionalized very easily but it is difficult to grow bulk crystals and their physical and mechanical properties are poor (Dolbecq et al., 2010). As part of our ongoing studies in this area (Aarthi et al., 2017), we now describe the synthesis and structure of (4-methylphenyl)methanaminium bromide hemihydrate, (I) (Fig. 1), which crystallized in a centrosymmetric space group.
The water O atom lies on a crystallographic twofold axis. In the crystal, the components are linked via C8—H8B⋯Br1i, O1—H1⋯Br1i, N1—H1D⋯Br1, N1—H1E⋯O1ii, N1—H1F⋯Br1i and N1—H1F⋯Br1ii hydrogen bonds (see Fig. 2 and Table 1), generating layers lying parallel to the bc plane. Furthermore, the features weak C1—H1A⋯πiii and C8—H8A⋯πi interactions, forming a three-dimensional network (see Fig. 3 and Table 1).
Souissi et al. (2010) have reported the related of (4-chlorophenyl)methanaminium chloride hemihydrate.
Synthesis and crystallization
An aqueous solution containing 2 mmol of HBr in 20 ml of water was added to 2 mmol of 4-methylbenzylamine in 20 ml of water. The resultant solution was well stirred using a magnetic stirrer for 3 h and left to stand at room temperature. After 15 d, colourless blocks of (I) were harvested.
Refinement
Crystal data, data collection and structure . The O– and N-bonded H atoms were refined with restraints and the C-bound H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.97 (–CH2–) and 0.96 Å (–CH3), and with Uiso(H) = 1.2–1.5Ueq(C).
details are summarized in Table 2
|
Structural data
CCDC reference: 1824161
https://doi.org/10.1107/S2414314618002705/hb4211sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618002705/hb4211Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618002705/hb4211Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314618002705/hb4211Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C8H12N+·Br−·0.5(H2O) | F(000) = 856 |
Mr = 211.10 | Dx = 1.521 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 30.7456 (18) Å | Cell parameters from 7215 reflections |
b = 5.0266 (3) Å | θ = 3.4–29.2° |
c = 12.0636 (7) Å | µ = 4.40 mm−1 |
β = 98.430 (2)° | T = 293 K |
V = 1844.24 (19) Å3 | Block, colourless |
Z = 8 | 0.10 × 0.10 × 0.05 mm |
Bruker KappaCCD diffractometer | 2479 independent reflections |
Radiation source: fine-focus sealed tube | 2129 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω and φ scan | θmax = 29.2°, θmin = 3.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −40→42 |
Tmin = 0.534, Tmax = 0.746 | k = −6→6 |
11261 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.028 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.067 | w = 1/[σ2(Fo2) + (0.0267P)2 + 2.3541P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2479 reflections | Δρmax = 0.35 e Å−3 |
113 parameters | Δρmin = −0.51 e Å−3 |
7 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.27703 (8) | 1.1301 (4) | 0.6636 (2) | 0.0494 (6) | |
H1A | 0.286021 | 1.299079 | 0.637653 | 0.074* | |
H1B | 0.275755 | 1.140043 | 0.742564 | 0.074* | |
H1C | 0.248504 | 1.085224 | 0.624468 | 0.074* | |
C2 | 0.30965 (6) | 0.9198 (4) | 0.64201 (18) | 0.0340 (4) | |
C3 | 0.31078 (7) | 0.8211 (4) | 0.53533 (18) | 0.0406 (4) | |
H3 | 0.291045 | 0.886455 | 0.475733 | 0.049* | |
C4 | 0.34066 (7) | 0.6273 (4) | 0.51557 (17) | 0.0399 (4) | |
H4 | 0.340822 | 0.565059 | 0.443038 | 0.048* | |
C5 | 0.37039 (6) | 0.5248 (4) | 0.60273 (17) | 0.0321 (4) | |
C6 | 0.36998 (7) | 0.6264 (4) | 0.70908 (17) | 0.0385 (4) | |
H6 | 0.390104 | 0.563229 | 0.768332 | 0.046* | |
C7 | 0.34002 (7) | 0.8212 (4) | 0.72890 (18) | 0.0402 (4) | |
H7 | 0.340289 | 0.886252 | 0.801160 | 0.048* | |
C8 | 0.40117 (7) | 0.3025 (4) | 0.5831 (2) | 0.0427 (5) | |
H8A | 0.400833 | 0.169245 | 0.641177 | 0.051* | |
H8B | 0.390675 | 0.219026 | 0.511705 | 0.051* | |
N1 | 0.44665 (6) | 0.3933 (4) | 0.58300 (18) | 0.0420 (4) | |
Br1 | 0.44849 (2) | 0.86079 (4) | 0.38999 (2) | 0.04217 (8) | |
O1 | 0.500000 | 0.2903 (5) | 0.250000 | 0.0548 (6) | |
H1 | 0.4840 (11) | 0.196 (6) | 0.286 (3) | 0.096 (13)* | |
H1D | 0.4466 (9) | 0.520 (4) | 0.5282 (17) | 0.065 (8)* | |
H1E | 0.4585 (9) | 0.465 (5) | 0.6483 (14) | 0.063 (8)* | |
H1F | 0.4636 (9) | 0.255 (4) | 0.566 (2) | 0.072 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0401 (11) | 0.0394 (11) | 0.0728 (16) | 0.0092 (9) | 0.0221 (11) | 0.0048 (11) |
C2 | 0.0284 (9) | 0.0293 (8) | 0.0465 (11) | 0.0002 (7) | 0.0126 (8) | 0.0030 (8) |
C3 | 0.0335 (10) | 0.0479 (11) | 0.0391 (10) | 0.0058 (9) | 0.0005 (8) | 0.0056 (9) |
C4 | 0.0382 (10) | 0.0492 (11) | 0.0330 (9) | 0.0004 (9) | 0.0073 (8) | −0.0061 (9) |
C5 | 0.0274 (9) | 0.0287 (8) | 0.0416 (10) | −0.0015 (7) | 0.0096 (7) | −0.0021 (7) |
C6 | 0.0379 (10) | 0.0410 (10) | 0.0359 (9) | 0.0089 (9) | 0.0027 (8) | 0.0029 (8) |
C7 | 0.0459 (11) | 0.0410 (10) | 0.0348 (10) | 0.0063 (9) | 0.0096 (8) | −0.0016 (8) |
C8 | 0.0373 (11) | 0.0319 (9) | 0.0615 (14) | 0.0011 (8) | 0.0165 (10) | −0.0053 (9) |
N1 | 0.0315 (8) | 0.0403 (9) | 0.0550 (11) | 0.0086 (8) | 0.0094 (8) | 0.0002 (9) |
Br1 | 0.03836 (12) | 0.03826 (12) | 0.05064 (14) | 0.00097 (9) | 0.00907 (8) | −0.00115 (9) |
O1 | 0.0631 (16) | 0.0452 (13) | 0.0609 (16) | 0.000 | 0.0250 (13) | 0.000 |
C1—C2 | 1.506 (3) | C6—C7 | 1.389 (3) |
C1—H1A | 0.9600 | C6—H6 | 0.9300 |
C1—H1B | 0.9600 | C7—H7 | 0.9300 |
C1—H1C | 0.9600 | C8—N1 | 1.471 (3) |
C2—C3 | 1.384 (3) | C8—H8A | 0.9700 |
C2—C7 | 1.389 (3) | C8—H8B | 0.9700 |
C3—C4 | 1.384 (3) | N1—H1D | 0.919 (15) |
C3—H3 | 0.9300 | N1—H1E | 0.895 (15) |
C4—C5 | 1.387 (3) | N1—H1F | 0.909 (15) |
C4—H4 | 0.9300 | O1—H1 | 0.848 (17) |
C5—C6 | 1.383 (3) | O1—H1i | 0.848 (17) |
C5—C8 | 1.505 (3) | ||
C2—C1—H1A | 109.5 | C5—C6—H6 | 119.4 |
C2—C1—H1B | 109.5 | C7—C6—H6 | 119.4 |
H1A—C1—H1B | 109.5 | C6—C7—C2 | 120.74 (19) |
C2—C1—H1C | 109.5 | C6—C7—H7 | 119.6 |
H1A—C1—H1C | 109.5 | C2—C7—H7 | 119.6 |
H1B—C1—H1C | 109.5 | N1—C8—C5 | 112.91 (17) |
C3—C2—C7 | 117.90 (18) | N1—C8—H8A | 109.0 |
C3—C2—C1 | 121.4 (2) | C5—C8—H8A | 109.0 |
C7—C2—C1 | 120.7 (2) | N1—C8—H8B | 109.0 |
C4—C3—C2 | 121.34 (19) | C5—C8—H8B | 109.0 |
C4—C3—H3 | 119.3 | H8A—C8—H8B | 107.8 |
C2—C3—H3 | 119.3 | C8—N1—H1D | 108.4 (18) |
C3—C4—C5 | 120.75 (18) | C8—N1—H1E | 113.0 (18) |
C3—C4—H4 | 119.6 | H1D—N1—H1E | 108.0 (19) |
C5—C4—H4 | 119.6 | C8—N1—H1F | 109.8 (19) |
C6—C5—C4 | 118.12 (18) | H1D—N1—H1F | 107.9 (19) |
C6—C5—C8 | 120.76 (19) | H1E—N1—H1F | 110 (2) |
C4—C5—C8 | 121.08 (19) | H1—O1—H1i | 112 (5) |
C5—C6—C7 | 121.11 (19) | ||
C7—C2—C3—C4 | 1.0 (3) | C8—C5—C6—C7 | −176.38 (19) |
C1—C2—C3—C4 | −179.8 (2) | C5—C6—C7—C2 | −0.2 (3) |
C2—C3—C4—C5 | 0.3 (3) | C3—C2—C7—C6 | −1.1 (3) |
C3—C4—C5—C6 | −1.6 (3) | C1—C2—C7—C6 | 179.71 (19) |
C3—C4—C5—C8 | 176.30 (19) | C6—C5—C8—N1 | −77.2 (3) |
C4—C5—C6—C7 | 1.5 (3) | C4—C5—C8—N1 | 105.0 (2) |
Symmetry code: (i) −x+1, y, −z+1/2. |
Cg1 is the centroid of the (C2-C7) benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Br1ii | 0.85 (2) | 2.45 (2) | 3.2870 (17) | 169 (3) |
N1—H1D···Br1 | 0.92 (2) | 2.40 (2) | 3.314 (2) | 178 (2) |
N1—H1E···O1iii | 0.90 (2) | 2.05 (2) | 2.883 (3) | 155 (2) |
N1—H1F···Br1ii | 0.91 (2) | 2.89 (2) | 3.554 (2) | 131 (2) |
N1—H1F···Br1iii | 0.91 (2) | 2.74 (3) | 3.4383 (17) | 134 (2) |
C8—H8B···Br1ii | 0.97 | 3.05 | 3.670 (2) | 123 |
C1—H1A···Cg1iv | 0.96 | 2.73 | 3.634 (2) | 157 |
C8—H8A···Cg1ii | 0.97 | 2.90 | 3.530 (2) | 123 |
Symmetry codes: (ii) x, y−1, z; (iii) −x+1, −y+1, −z+1; (iv) x, y+1, z. |
Acknowledgements
The authors thank the Sophisticated Analytical Instrument Facility (SAIF), IITM, Chennai, Tamilnadu, India, for the single-crystal X-ray diffraction data.
Funding information
Funding for this research was provided by: Council of Scientific and Industrial Research (CSIR), New Delhi, India (grant No. 03(1301)13/EMR II to CRR).
References
Aarthi, R., Thiruvalluvar, A. & Ramachandra Raja, C. (2017). IUCrData, 2, x171213. Google Scholar
Bruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolbecq, A., Dumas, E., Mayer, C. R. & Mialane, P. (2010). Chem. Rev. 110, 6009–6048. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Souissi, S., Smirani Sta, W., Al-Deyab, S. S. & Rzaigui, M. (2010). Acta Cryst. E66, o1627. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.