organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

A monoclinic modification of (4Z)-1-benzyl-4-(2-oxo­propyl­­idene)-2,3,4,5-tetra­hydro-1H-1,5-benzodiazepin-2-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des médicaments, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bUnité de Chimie Moleculaire et Environnement, Faculté des Sciences et, Techniques, Université de Sciences, de Technologie et de Médecine, Nouakchott, Mauritania, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: sam.mmohamed18@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 23 January 2018; accepted 25 February 2018; online 28 February 2018)

In the title mol­ecule, C19H18N2O2, the orientation of the oxo­propyl­idene substituent is largely determined by an intra­molecular N—H⋯O hydrogen bond. In the crystal, C—H⋯O hydrogen bonds form zigzag chains, which are elaborated into sheets lying parallel to (101) by complementary C—H⋯π inter­actions. Comparisons to the structure of the triclinic modification are made.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzodiazepine derivatives are widely used as anti­convulsants, anti­depressives, sedatives and analgesics (Schultz et al., 1982[Schultz, H. (1982). Benzodiazepines. Heidelberg: Springer.]; Olkkola et al., 2008[Olkkola, K. T. & Ahonen, J. (2008). Handbook Exp. Pharmacol. 182, 335-360.]). In addition, they are used as medicinal agents in the treatment of central nervous system (CNS) disturbances (Stefancich et al., 1992[Stefancich, G., Artico, M. & Silvestri, R. (1992). J. Heterocycl. Chem. 29, 1005-1007.]). They also exhibit anti­tumor and anti­neoplastic activities (Werner et al., 1990[Werner, W., Baumgart, J., Burckhardt, G., Fleck, W. F., Geller, K., Gutsche, W., Hanschmann, H., Messerschmidt, A., Römer, W., Tresselt, D., et al. (1990). Biophys. Chem. 35, 271-285.]). As part of our ongoing studies in this area (Sebhaoui et al., 2016[Sebhaoui, J., El Bakri, Y., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x161696.], 2017[Sebhaoui, J., El Bakri, Y., Rayni, I., El Bourakadi, K., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170493.]) we now describe the synthesis and crystal structure of a monoclinic modification of the title compound to complement the known triclinic polymorph (Samba et al., 2016[Samba, M., Minnih, M. S., Ramli, Y., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2016). IUCRData, 1, x161448.]).

The dihedral angle between the mean planes of the C1–C6 and C11–C16 rings is 79.02 (5)°. A puckering analysis of the seven-membered ring gave the parameters Q(2) = 0.866 (1) Å, Q(3) = 0.230 (1) Å, φ(2) = 210.27 (7)° and φ(3) = 311.2 (2)°. The orientation of the oxo­propyl­idene substituent is largely determined by the intra­molecular N2—H2A⋯O2 hydrogen bond (Table 1[link] and Fig. 1[link]). In the crystal, C5—H5⋯O1i and C10—H10A⋯O1i hydrogen bonds form zigzag chains aligned with the a/2 + c/2 diagonal of the ac face (Table 1[link] and Fig. 2[link]). The chains have the benzyl substituents all protruding from the same side and are joined into sheets lying parallel to (10[\overline{1}]) by complementary C2—H2⋯π(Cg2)iii inter­actions (Table 1[link] and Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C11–C16 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2 0.927 (16) 1.921 (15) 2.6613 (11) 135.4 (12)
C5—H5⋯O1i 0.943 (15) 2.350 (15) 3.2823 (12) 170.0 (13)
C10—H10A⋯O1i 1.005 (14) 2.571 (14) 3.5518 (12) 165.2 (11)
C2—H2⋯Cg2ii 0.973 (14) 2.81 (2) 3.625 (1) 142 (1)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The title mol­ecule with the labelling scheme and 50% probability ellipsoids. The intra­molecular N—H⋯O hydrogen bond is shown as a dashed line.
[Figure 2]
Figure 2
Details of the inter­molecular C—H⋯O hydrogen bonding (black dashed lines) and the C—H⋯π(ring) inter­actions (green dashed lines). [Symmetry codes: (i) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (ii) −x + 1, −y + 1, −z + 1; (iii) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}].]
[Figure 3]
Figure 3
Packing viewed along the a-axis direction with inter­molecular inter­actions depicted as in Fig. 2[link].

While the various conformational parameters of the title compound are quite similar to those of the two independent mol­ecules in the triclinic modification (Samba et al., 2016[Samba, M., Minnih, M. S., Ramli, Y., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2016). IUCRData, 1, x161448.]; CSD refcode AWUXUN) [e.g. Q(2) = 0.872 (1) Å, Q(3) = 0.208 (1) Å, φ(2) = 206.93 (3)° and φ(3) = 303.3 (4)° for mol­ecule 1, while for mol­ecule 2, the corresponding values are 0.814 (1) Å, 0.199 (1) Å, 207.66 (9)° and 313.3 (4)°, respectively), the crystal packing is distinctly different. In the triclinic form, complementary C—H⋯O hydrogen bonds between centrosymmetrically related pairs of mol­ecule 2 form weak dimers with each member of the pair making a weak C—H⋯O hydrogen bond to a mol­ecule 1. These entities then pack in rows extending parallel to the c-axis direction.

Synthesis and crystallization

(4Z)-4-(2-Oxo­propyl­idene)-1,5-benzodiazepin-2-one (0.01 mol) and potassium carbonate K2CO3 (0.02 mol) were dissolved in DMF, then benzyl­bromide (0.02 mol) and tetra­butyl­ammonium bromide as a phase-transfer catalyst (0.001 mol) were added. The reaction mixture was stirred at room temperature for 48 h. The residue obtained, after evaporation of solvent, was chromatographed on a silica gel column using a hexa­ne/ethyl acetate 9:1 mixture as eluent. The solid obtained was crystallized from di­chloro­methane solution to afford as colourless blocks. The triclinic modification was crystallized from ethanol solution (Samba et al., 2016[Samba, M., Minnih, M. S., Ramli, Y., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2016). IUCRData, 1, x161448.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H18N2O2
Mr 306.35
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 8.9229 (5), 18.8922 (10), 9.7147 (5)
β (°) 104.879 (1)
V3) 1582.73 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.43 × 0.34 × 0.33
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.90, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 30264, 4290, 3840
Rint 0.027
(sin θ/λ)max−1) 0.687
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.120, 1.03
No. of reflections 4290
No. of parameters 269
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.28
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(4Z)-1-Benzyl-4-(2-oxopropylidene)-2,3,4,5-tetrahydro-1H-1,5-benzodiazepin-2-one top
Crystal data top
C19H18N2O2F(000) = 648
Mr = 306.35Dx = 1.286 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.9229 (5) ÅCell parameters from 9497 reflections
b = 18.8922 (10) Åθ = 2.8–29.2°
c = 9.7147 (5) ŵ = 0.08 mm1
β = 104.879 (1)°T = 100 K
V = 1582.73 (15) Å3Block, colourless
Z = 40.43 × 0.34 × 0.33 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4290 independent reflections
Radiation source: fine-focus sealed tube3840 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.3333 pixels mm-1θmax = 29.2°, θmin = 2.2°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 2525
Tmin = 0.90, Tmax = 0.97l = 1313
30264 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: mixed
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0723P)2 + 0.4643P]
where P = (Fo2 + 2Fc2)/3
4290 reflections(Δ/σ)max = 0.001
269 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Independent refinement of the hydrogens attached to C19 led to an unsatisfacory geometry so they were placed in calculated positions and included as riding contributions.

Independent refinement of the H atoms attached to C19 led to an unsatisfacory geometry so they were placed in calculated positions and included as riding contributions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32106 (9)0.28428 (4)0.06813 (8)0.02234 (17)
O20.18336 (10)0.57963 (4)0.09910 (9)0.02928 (19)
N10.47383 (10)0.33296 (4)0.27077 (8)0.01491 (17)
N20.40185 (10)0.48362 (4)0.20128 (9)0.01720 (17)
H2A0.3522 (18)0.5254 (8)0.2131 (15)0.029 (4)*
C10.53064 (11)0.46141 (5)0.30978 (9)0.01433 (18)
C20.62092 (12)0.51468 (5)0.39148 (10)0.01812 (19)
H20.5929 (16)0.5639 (8)0.3687 (15)0.024 (3)*
C30.74494 (12)0.49803 (5)0.50523 (11)0.0212 (2)
H30.8050 (17)0.5351 (8)0.5616 (15)0.028 (4)*
C40.78186 (12)0.42744 (6)0.53783 (11)0.0220 (2)
H40.8681 (18)0.4154 (8)0.6179 (16)0.031 (4)*
C50.69518 (12)0.37418 (5)0.45648 (11)0.0189 (2)
H50.7218 (17)0.3265 (8)0.4788 (16)0.027 (3)*
C60.56769 (10)0.38998 (5)0.34242 (9)0.01408 (18)
C70.40872 (11)0.33147 (5)0.12711 (10)0.01607 (19)
C80.44886 (12)0.39302 (5)0.04263 (10)0.0187 (2)
H8A0.5607 (16)0.4023 (7)0.0738 (15)0.025 (3)*
H8B0.4211 (16)0.3796 (7)0.0595 (15)0.023 (3)*
C90.36035 (11)0.45702 (5)0.06729 (10)0.0178 (2)
C100.45330 (12)0.27023 (5)0.35546 (10)0.01635 (19)
H10A0.5572 (16)0.2486 (8)0.4007 (14)0.021 (3)*
H10B0.3908 (17)0.2358 (8)0.2861 (15)0.025 (3)*
C110.37144 (11)0.28643 (5)0.46926 (10)0.01497 (18)
C120.44441 (14)0.27264 (5)0.61138 (11)0.0233 (2)
H120.5538 (18)0.2535 (8)0.6382 (16)0.034 (4)*
C130.36628 (18)0.28330 (6)0.71659 (12)0.0318 (3)
H130.417 (2)0.2742 (10)0.8183 (19)0.048 (5)*
C140.21624 (17)0.30856 (6)0.68034 (14)0.0338 (3)
H140.163 (2)0.3172 (10)0.752 (2)0.058 (6)*
C150.14262 (14)0.32281 (7)0.53895 (15)0.0318 (3)
H150.041 (2)0.3410 (10)0.513 (2)0.053 (5)*
C160.22028 (12)0.31183 (6)0.43331 (12)0.0224 (2)
H160.1684 (18)0.3224 (8)0.3322 (17)0.033 (4)*
C170.24371 (13)0.48605 (6)0.03786 (11)0.0229 (2)
H170.2218 (18)0.4641 (8)0.1292 (17)0.031 (4)*
C180.15993 (13)0.54845 (6)0.01710 (12)0.0257 (2)
C190.04049 (15)0.57702 (7)0.14480 (14)0.0367 (3)
H19A0.0215330.6135730.1136900.055*
H19B0.0274670.5384490.1910220.055*
H19C0.0930600.5975420.2124310.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0274 (4)0.0206 (3)0.0178 (4)0.0092 (3)0.0035 (3)0.0039 (3)
O20.0279 (4)0.0269 (4)0.0280 (4)0.0030 (3)0.0019 (3)0.0056 (3)
N10.0192 (4)0.0135 (3)0.0120 (4)0.0021 (3)0.0041 (3)0.0009 (3)
N20.0186 (4)0.0168 (4)0.0135 (4)0.0007 (3)0.0009 (3)0.0003 (3)
C10.0148 (4)0.0155 (4)0.0119 (4)0.0002 (3)0.0019 (3)0.0002 (3)
C20.0204 (4)0.0155 (4)0.0169 (4)0.0010 (3)0.0018 (4)0.0021 (3)
C30.0202 (5)0.0211 (5)0.0190 (5)0.0016 (4)0.0011 (4)0.0056 (4)
C40.0185 (4)0.0242 (5)0.0191 (5)0.0042 (4)0.0026 (4)0.0027 (4)
C50.0193 (4)0.0172 (4)0.0185 (4)0.0040 (3)0.0017 (4)0.0006 (3)
C60.0154 (4)0.0142 (4)0.0126 (4)0.0005 (3)0.0036 (3)0.0019 (3)
C70.0184 (4)0.0170 (4)0.0136 (4)0.0026 (3)0.0056 (3)0.0022 (3)
C80.0250 (5)0.0197 (4)0.0122 (4)0.0071 (4)0.0061 (3)0.0011 (3)
C90.0203 (4)0.0187 (4)0.0133 (4)0.0072 (3)0.0026 (3)0.0021 (3)
C100.0228 (5)0.0120 (4)0.0153 (4)0.0012 (3)0.0069 (3)0.0004 (3)
C110.0195 (4)0.0114 (4)0.0147 (4)0.0012 (3)0.0058 (3)0.0001 (3)
C120.0347 (6)0.0191 (4)0.0160 (5)0.0062 (4)0.0063 (4)0.0025 (3)
C130.0605 (8)0.0210 (5)0.0184 (5)0.0015 (5)0.0183 (5)0.0023 (4)
C140.0510 (7)0.0248 (5)0.0378 (7)0.0117 (5)0.0338 (6)0.0077 (5)
C150.0218 (5)0.0322 (6)0.0462 (7)0.0062 (4)0.0172 (5)0.0133 (5)
C160.0184 (5)0.0241 (5)0.0237 (5)0.0015 (4)0.0035 (4)0.0055 (4)
C170.0247 (5)0.0254 (5)0.0150 (5)0.0083 (4)0.0016 (4)0.0052 (4)
C180.0217 (5)0.0256 (5)0.0245 (5)0.0069 (4)0.0038 (4)0.0113 (4)
C190.0321 (6)0.0351 (6)0.0327 (6)0.0030 (5)0.0102 (5)0.0163 (5)
Geometric parameters (Å, º) top
O1—C71.2267 (12)C9—C171.3716 (14)
O2—C181.2425 (15)C10—C111.5047 (13)
N1—C71.3674 (12)C10—H10A1.005 (14)
N1—C61.4309 (11)C10—H10B0.997 (14)
N1—C101.4806 (12)C11—C161.3891 (14)
N2—C91.3552 (12)C11—C121.3915 (14)
N2—C11.4091 (12)C12—C131.3918 (16)
N2—H2A0.927 (16)C12—H121.010 (16)
C1—C21.4012 (13)C13—C141.379 (2)
C1—C61.4061 (12)C13—H130.990 (18)
C2—C31.3844 (14)C14—C151.388 (2)
C2—H20.973 (14)C14—H140.95 (2)
C3—C41.3907 (14)C15—C161.3934 (16)
C3—H30.963 (15)C15—H150.941 (19)
C4—C51.3861 (14)C16—H160.993 (16)
C4—H40.971 (15)C17—C181.4376 (17)
C5—C61.4013 (13)C17—H170.954 (16)
C5—H50.943 (15)C18—C191.5123 (15)
C7—C81.5182 (13)C19—H19A0.9800
C8—C91.4968 (14)C19—H19B0.9800
C8—H8A0.981 (14)C19—H19C0.9800
C8—H8B0.992 (14)
C7—N1—C6123.66 (8)N1—C10—C11113.46 (7)
C7—N1—C10118.03 (8)N1—C10—H10A109.7 (8)
C6—N1—C10118.22 (7)C11—C10—H10A109.2 (8)
C9—N2—C1125.27 (9)N1—C10—H10B105.9 (8)
C9—N2—H2A114.4 (9)C11—C10—H10B109.7 (8)
C1—N2—H2A119.0 (9)H10A—C10—H10B108.8 (11)
C2—C1—C6119.60 (8)C16—C11—C12119.40 (9)
C2—C1—N2116.73 (8)C16—C11—C10120.58 (9)
C6—C1—N2123.63 (8)C12—C11—C10119.94 (9)
C3—C2—C1120.96 (9)C11—C12—C13120.43 (11)
C3—C2—H2120.3 (8)C11—C12—H12119.8 (9)
C1—C2—H2118.7 (8)C13—C12—H12119.7 (8)
C2—C3—C4119.59 (9)C14—C13—C12119.94 (11)
C2—C3—H3120.2 (9)C14—C13—H13118.5 (11)
C4—C3—H3120.2 (9)C12—C13—H13121.5 (11)
C5—C4—C3120.10 (9)C13—C14—C15120.09 (11)
C5—C4—H4119.8 (9)C13—C14—H14120.5 (12)
C3—C4—H4120.1 (9)C15—C14—H14119.4 (12)
C4—C5—C6121.13 (9)C14—C15—C16120.09 (11)
C4—C5—H5119.5 (9)C14—C15—H15120.8 (12)
C6—C5—H5119.4 (9)C16—C15—H15119.1 (12)
C5—C6—C1118.62 (8)C11—C16—C15120.04 (11)
C5—C6—N1118.63 (8)C11—C16—H16119.6 (9)
C1—C6—N1122.59 (8)C15—C16—H16120.3 (9)
O1—C7—N1122.99 (9)C9—C17—C18123.08 (10)
O1—C7—C8120.99 (9)C9—C17—H17117.0 (9)
N1—C7—C8116.02 (8)C18—C17—H17119.8 (9)
C9—C8—C7108.95 (8)O2—C18—C17122.95 (10)
C9—C8—H8A110.0 (8)O2—C18—C19119.66 (11)
C7—C8—H8A109.4 (8)C17—C18—C19117.38 (11)
C9—C8—H8B111.1 (8)C18—C19—H19A109.5
C7—C8—H8B108.2 (8)C18—C19—H19B109.5
H8A—C8—H8B109.1 (12)H19A—C19—H19B109.5
N2—C9—C17122.35 (10)C18—C19—H19C109.5
N2—C9—C8115.34 (8)H19A—C19—H19C109.5
C17—C9—C8122.31 (9)H19B—C19—H19C109.5
C9—N2—C1—C2136.19 (10)N1—C7—C8—C975.07 (11)
C9—N2—C1—C646.44 (14)C1—N2—C9—C17172.77 (9)
C6—C1—C2—C30.89 (15)C1—N2—C9—C88.21 (13)
N2—C1—C2—C3176.59 (9)C7—C8—C9—N267.29 (11)
C1—C2—C3—C40.87 (16)C7—C8—C9—C17111.73 (10)
C2—C3—C4—C50.22 (16)C7—N1—C10—C11120.24 (9)
C3—C4—C5—C61.29 (16)C6—N1—C10—C1163.16 (11)
C4—C5—C6—C11.25 (15)N1—C10—C11—C1662.23 (12)
C4—C5—C6—N1174.18 (9)N1—C10—C11—C12121.00 (10)
C2—C1—C6—C50.16 (14)C16—C11—C12—C130.79 (15)
N2—C1—C6—C5177.46 (9)C10—C11—C12—C13176.02 (9)
C2—C1—C6—N1175.07 (8)C11—C12—C13—C140.83 (17)
N2—C1—C6—N12.22 (14)C12—C13—C14—C150.53 (18)
C7—N1—C6—C5142.94 (10)C13—C14—C15—C160.19 (18)
C10—N1—C6—C533.45 (12)C12—C11—C16—C150.45 (15)
C7—N1—C6—C141.82 (13)C10—C11—C16—C15176.34 (9)
C10—N1—C6—C1141.79 (9)C14—C15—C16—C110.15 (17)
C6—N1—C7—O1175.57 (9)N2—C9—C17—C182.56 (16)
C10—N1—C7—O18.03 (14)C8—C9—C17—C18178.49 (9)
C6—N1—C7—C83.42 (13)C9—C17—C18—O22.38 (17)
C10—N1—C7—C8172.98 (8)C9—C17—C18—C19176.56 (10)
O1—C7—C8—C9103.94 (10)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C11–C16 benzene ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.927 (16)1.921 (15)2.6613 (11)135.4 (12)
C5—H5···O1i0.943 (15)2.350 (15)3.2823 (12)170.0 (13)
C10—H10A···O1i1.005 (14)2.571 (14)3.5518 (12)165.2 (11)
C2—H2···Cg2ii0.973 (14)2.81 (2)3.625 (1)142 (1)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationOlkkola, K. T. & Ahonen, J. (2008). Handbook Exp. Pharmacol. 182, 335–360.  CrossRef CAS Google Scholar
First citationSamba, M., Minnih, M. S., Ramli, Y., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2016). IUCRData, 1, x161448.  Google Scholar
First citationSchultz, H. (1982). Benzodiazepines. Heidelberg: Springer.  Google Scholar
First citationSebhaoui, J., El Bakri, Y., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x161696.  Google Scholar
First citationSebhaoui, J., El Bakri, Y., Rayni, I., El Bourakadi, K., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170493.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStefancich, G., Artico, M. & Silvestri, R. (1992). J. Heterocycl. Chem. 29, 1005–1007.  CrossRef CAS Google Scholar
First citationWerner, W., Baumgart, J., Burckhardt, G., Fleck, W. F., Geller, K., Gutsche, W., Hanschmann, H., Messerschmidt, A., Römer, W., Tresselt, D., et al. (1990). Biophys. Chem. 35, 271–285.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]