inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Caesium neodymium sulfate, CsNd(SO4)2

CROSSMARK_Color_square_no_text.svg

aGeosciences, Museums Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia, bSchool of Chemistry, University of Melbourne 3010, Victoria, Australia, and cInstitute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Na, Slovance 2, 182 21 Praha, Czech Republic
*Correspondence e-mail: omissen@museum.vic.gov.au

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 January 2018; accepted 29 January 2018; online 2 February 2018)

The crystal structure of caesium neodymium(III) sulfate, CsNd(SO4)2, was determined from intensity data collected on a Rigaku tabletop XtaLAB mini II diffractometer at the Inter­national Union of Crystallography Congress 2017, in Hyderabad, India. CsNd(SO4)2 is the fourth crystal structure to be reported in the CsPr(SO4)2 family: the Cs and Nd atoms have site symmetries of 2.. and ..2, respectively. In the extended structure, NdO8 square anti­prisms and SO4 tetra­hedra are connected into layers, which propagate in the (101) plane and CsO14 polyhedra connect the layers into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]

Structure description

Double salts of the form M+REE3+(SO4)2·nH2O (where M+ is an alkali metal cation, usually Rb+ or Cs+) were first reported by Bukovec and coworkers in a series of articles in the 1970s (e.g. Bukovec & Golič, 1975[Bukovec, P. & Golič, L. (1975). Vest. Sloven. Kemi. Drustva, 22, 19-25.]; Bukovec et al., 1977[Bukovec, N., Bukovec, P., Golič, L. & Šiftar, J. (1977). Monatsh. Chem. 108, 997-1003.], 1978[Bukovec, N., Golič, L., Bukovec, P. & Šiftar, J. (1978). Monatsh. Chem. 109, 1305-1310.]). It was not possible to determine the crystal structures for all of these compounds (e.g. Bukovec et al., 1980[Bukovec, N., Bukovec, P. & Šiftar, J. (1980). Thermochim. Acta, 36, 217-224.]). Double salts have often been studied for the properties that result from two different cations in combination (e.g. Meyn et al., 1993[Meyn, M., Beneke, K. & Lagaly, G. (1993). Inorg. Chem. 32, 1209-1215.]). CsNd(SO4)2·4H2O was studied for its dehydration kinetics, resulting in the decomposition products of CsNd(SO4)2·H2O and then CsNd(SO4)2; however, no crystal structure has been reported for the latter two compounds (Bukovec et al., 1980[Bukovec, N., Bukovec, P. & Šiftar, J. (1980). Thermochim. Acta, 36, 217-224.]). CsNd(SO4)2 is isostructural with three other compounds with reported crystal structures, namely CsPr(SO4)2 (Bukovec et al., 1978[Bukovec, N., Golič, L., Bukovec, P. & Šiftar, J. (1978). Monatsh. Chem. 109, 1305-1310.]), RbDy(SO4)2 (Sarukhanyan et al., 1984[Sarukhanyan, N. L., Iskhakova, L. D., Trunov, V. K. & Ganeev, G. (1984). Kristallografiya, 29, 440-444.]) and a bis­muth-chromate analogue, RbBi(CrO4)2 (Riou et al., 1984[Riou, A., Roult, G., Gerault, Y. & Cudennec, Y. (1984). Rev. Chim. Miner. 21, 732-739.]).

The crystal structure of CsNd(SO4)2 is an infinite, three dimensional framework. The structure may be considered as a layered structure, incorporating layers of edge- and corner-linked SO4 and NdO8 polyhedra in the ac plane, with fourteen-coordinate Cs+ cations bridging the layers with seven Cs—O bonds to each layer (Table 1[link]; Figs. 1[link] and 2[link]). Isostructural networks have been reported (three with crystal structures) as discussed above.

Table 1
Selected bond lengths (Å)

Cs1—O3 3.161 (8) Nd1—O2ii 2.464 (8)
Cs1—O2i 3.223 (9) Nd1—O3 2.522 (8)
Cs1—O3ii 3.254 (8) Nd1—O4iii 2.566 (9)
Cs1—O4iii 3.305 (8) S1—O3 1.472 (8)
Cs1—O1i 3.316 (8) S1—O1 1.480 (8)
Cs1—O2iv 3.444 (9) S1—O4 1.487 (9)
Cs1—O1 3.570 (9) S1—O2 1.491 (7)
Nd1—O1v 2.456 (8)    
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+1]; (iii) [-x+{\script{3\over 2}}, -y+1, z]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) x, y, z+1.
[Figure 1]
Figure 1
Displacement elliposid (90% probability level) representation of two unit cells of CsNd(SO4)2: O atoms are red, S atoms yellow, Cs magenta and Nd pale-lavender.
[Figure 2]
Figure 2
Polyhedral representation of CsNd(SO4)2. Sulfate tetra­hedra are yellow, NdO8 polyhedra are pale-lavender and Cs+ cations in magenta. Outlines of the unit cell are shown as dotted black lines.

The bond-valence sums for all cationic elements are slightly low, especially the metallic elements Cs and Nd. Bond-valence sums for Cs (0.851 to 0.892) and Nd (2.749 to 2.756) especially are poor, whether using the values of Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) or the revised values of Gagné & Hawthorne (2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]). It would be of inter­est to study the bond-valence behaviour of each element in more detail, in a fashion similar to the studies on Pb (Krivovichev & Brown, 2001[Krivovichev, S. V. & Brown, I. (2001). Z. Kristallogr. 216, 245-247.]), Tl (Locock & Burns, 2004[Locock, A. J. & Burns, P. C. (2004). Z. Kristallogr. 219, 259-266.]) and Te (Mills & Christy, 2013[Mills, S. J. & Christy, A. G. (2013). Acta Cryst. B69, 145-149.]), among others. Specific studies on Cs and Nd should generate bond-valence sums closer to the expected values of 1 and 3 valence units.

Synthesis and crystallization

CsNd(SO4)2 was synthesized from a complex mixture of several inorganic compounds dissolved in diluted sulfuric acid (Sigma Aldrich, initial purity 99.999%, pH = −1 after dilution), including caesium nitrate (Sigma Aldrich, 99%) and neodymium(III) oxide (Sigma Aldrich, 99.9%). Initial hydro­thermal synthesis at 200°C did not yield any crystals. Subsequently, the vessel was left at room temperature over a period of months. During this time, pale-purple plate-like crystals were observed growing on the bottom of the Teflon vessel. Single crystal X-ray diffraction showed these to be crystals of the title compound.

Refinement

Considering the relatively simple nature of the crystal structure of CsNd(SO4)2, the structure determination was complicated due to complex twinning observed in some crystals. This twinning was observed on crystals run on the micro-focus MX1 and MX2 macromolecular beamlines of the Australian Synchrotron. The extraneous diffraction spots led to the pseudo-hexa­gonal unit cell a = 10.902 (2), b = 13.934 (3), c = 10.957 (2) Å, α = β = 90°, γ = 119.73 (3) and V = 1445.4 (5) Å3. This cell was shown to be a transposition of the Pnna cell due to twinning of CsNd(SO4)2 crystals by using the JANA2006 crystallographic program (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]). Firstly, the program searched for higher symmetry supercells, which may induce reticular twinning, but no such cells were found. An averaging procedure was then performed, which takes into account twinning by sygonic and also metric merohedry. This procedure showed that Rint values were significantly lower for the ortho­rhom­bic mmm Laue symmetry group (0.07) rather than any hexa­gonal Laue group (0.4). Finally, the space-group test, which took twinning matrices into account, showed that the space group Pnna had the best figure of merit, consistent with the space group determined from a non-twinned crystal fragment (see below). Using JANA2006, the crystal was found to be comprised of three twin components. A CIF of the structure model refined from the twinned crystal using synchrotron diffraction data on the MX1 beamline (Cowieson et al., 2015[Cowieson, N. P., Aragao, D., Clift, M., Ericsson, D. J., Gee, C., Harrop, S. J., Mudie, N., Panjikar, S., Price, J. R., Riboldi-Tunnicliffe, A., Williamson, R. & Caradoc-Davies, T. (2015). J. Synchrotron Rad. 22, 187-190.]) may be found in the supporting information. The first component was found to have a twin volume fraction of 0.271 (3) and matrix of [1 0 0 / 0 1 0 / 0 0 1], the second 0.00048 (10) and [[1\over2] 0 [1\over2] / 0 1 0 / −[3\over2] 0 [1\over2]] and the third 0.729 (3) and [−[1\over2] 0 [1\over2] / 0 1 0 / −[3\over2] 0 −[1\over2]]. Practically, the second twin component has a negligible effect on the twinning, and the crystal is best considered to be a two-component twin with the two components in a 27:73 ratio.

Whilst it was possible to solve the structure after the treatment of twinning, the final values of R1 and wR2 at convergence were higher than those obtained from a non-twinned fragment. The crystal structure reported here was solved on a Rigaku XtaLAB mini II diffractometer at the Inter­national Union of Crystallography Congress 2017, Hyderabad, India, using a single, non-twinned crystal fragment. This crystal was obtained by crushing a large, highly twinned, pale-purple crystalline mass in oil, and mounting a smaller, single fragment (dimensions 0.024 ×0.024 ×0.053 µm) that floated away after crushing.

Structure solution was carried out by direct methods using SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and structure refinement by full-matrix least-squares was implemented by SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) in the OLEX2 environment (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]). Full collection and refinement details are shown in Table 2[link]. The residual Fourier peaks are relatively large (3.61 e Å−3 maximum, −3.20 e Å−3 minimum), but not unreasonably so for small inorganic crystals with heavy scattering elements. A bond-valence summary is shown in Table 2[link], using the parameters of Gagné & Hawthorne (2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]) for S—O, Cs—O and Nd—O bonds.

Table 2
Bond-valence sums (in valence units) for atoms in CsNd(SO4)2

  Cs1 Nd1 S1 Σ
O1 0.084 (×2↓), 0.045 (×2↓) 0.386 (×2↓) 1.471 1.986
O2 0.105 (×2↓), 0.061 (×2↓) 0.378 (×2↓) 1.431 1.975
O3 0.122 (×2↓), 0.097 (×2↓) 0.323 (×2↓) 1.501 2.043
O4 0.086 (×2↓) 0.287 (×2↓) 1.445 1.818
Σ 0.851 2.749 5.848  

Full crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula CsNd(SO4)2
Mr 469.27
Crystal system, space group Orthorhombic, Pnna
Temperature (K) 293
a, b, c (Å) 9.574 (2), 14.115 (3), 5.4666 (11)
V3) 738.7 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 12.46
Crystal size (mm) 0.05 × 0.02 × 0.02
 
Data collection
Diffractometer Rigaku XtaLAB Mini II
Absorption correction Gaussian (ABSPACK in CrysAlis PRO; Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.554, 0.759
No. of measured, independent and observed [I > 2σ(I)] reflections 3915, 1092, 771
Rint 0.102
(sin θ/λ)max−1) 0.712
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.170, 1.04
No. of reflections 1092
No. of parameters 56
Δρmax, Δρmin (e Å−3) 3.61, −3.20
Computer programs: CrysAlis PRO (Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), CrystalMaker (Palmer, 2009[Palmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2017); cell refinement: CrysAlis PRO (Rigaku OD, 2017); data reduction: CrysAlis PRO (Rigaku OD, 2017); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

caesium neodymium(III) sulfate top
Crystal data top
CsNd(SO4)2Dx = 4.219 Mg m3
Mr = 469.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnnaCell parameters from 968 reflections
a = 9.574 (2) Åθ = 2.9–29.9°
b = 14.115 (3) ŵ = 12.46 mm1
c = 5.4666 (11) ÅT = 293 K
V = 738.7 (3) Å3Fragment, pale purple
Z = 40.05 × 0.02 × 0.02 mm
F(000) = 844
Data collection top
Rigaku XtaLAB Mini II
diffractometer
771 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.102
CCD plate scansθmax = 30.4°, θmin = 2.9°
Absorption correction: gaussian
(ABSPACK in Crys Alis PRO; Rigaku OD, 2017)
h = 1313
Tmin = 0.554, Tmax = 0.759k = 2018
3915 measured reflectionsl = 57
1092 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.064 w = 1/[σ2(Fo2) + (0.0907P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.170(Δ/σ)max < 0.001
S = 1.04Δρmax = 3.61 e Å3
1092 reflectionsΔρmin = 3.20 e Å3
56 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.92197 (10)0.7500000.2500000.0213 (3)
Nd10.7500000.5000000.68152 (16)0.0165 (3)
S10.5851 (3)0.58533 (19)0.2371 (6)0.0149 (6)
O10.6532 (9)0.6041 (6)0.0010 (13)0.0190 (17)
O20.4359 (7)0.6153 (7)0.2254 (16)0.0226 (19)
O30.6571 (8)0.6370 (5)0.4342 (14)0.0169 (17)
O40.5960 (9)0.4831 (6)0.2998 (16)0.0201 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0134 (5)0.0257 (5)0.0248 (6)0.0000.0000.0007 (5)
Nd10.0119 (4)0.0224 (5)0.0152 (5)0.0009 (4)0.0000.000
S10.0066 (11)0.0228 (14)0.0153 (14)0.0009 (9)0.0005 (11)0.0001 (12)
O10.010 (4)0.035 (4)0.012 (4)0.000 (4)0.002 (3)0.002 (4)
O20.006 (3)0.043 (5)0.018 (5)0.003 (4)0.001 (3)0.005 (4)
O30.007 (4)0.028 (4)0.015 (4)0.003 (3)0.002 (3)0.006 (3)
O40.018 (4)0.020 (4)0.022 (5)0.003 (3)0.004 (4)0.003 (3)
Geometric parameters (Å, º) top
Cs1—O33.161 (8)Cs1—O1i3.570 (9)
Cs1—O3i3.161 (8)Nd1—O1viii2.456 (8)
Cs1—O2ii3.223 (9)Nd1—O1ix2.456 (8)
Cs1—O2iii3.223 (9)Nd1—O2iv2.464 (8)
Cs1—O3iv3.254 (8)Nd1—O2x2.464 (8)
Cs1—O3v3.254 (8)Nd1—O32.522 (8)
Cs1—O4vi3.305 (8)Nd1—O3vi2.522 (8)
Cs1—O4vii3.305 (8)Nd1—O4vi2.566 (9)
Cs1—O1ii3.316 (8)Nd1—O42.566 (9)
Cs1—O1iii3.316 (8)S1—O31.472 (8)
Cs1—O2v3.444 (9)S1—O11.480 (8)
Cs1—O2iv3.444 (9)S1—O41.487 (9)
Cs1—O13.570 (9)S1—O21.491 (7)
O3—Cs1—O3i73.3 (3)O3—S1—O1110.4 (5)
O3—Cs1—O2ii94.3 (2)O3—S1—O4106.2 (5)
O3i—Cs1—O2ii89.56 (19)O1—S1—O4110.2 (5)
O3—Cs1—O2iii89.56 (19)O3—S1—O2109.8 (5)
O3i—Cs1—O2iii94.3 (2)O1—S1—O2109.5 (5)
O2ii—Cs1—O2iii175.3 (3)O4—S1—O2110.6 (5)
O3—Cs1—O3iv97.97 (16)O3—S1—Nd152.3 (3)
O3i—Cs1—O3iv166.2 (3)O1—S1—Nd1121.9 (3)
O2ii—Cs1—O3iv80.4 (2)O4—S1—Nd154.1 (4)
O2iii—Cs1—O3iv96.3 (2)O2—S1—Nd1128.6 (4)
O3—Cs1—O3v166.2 (3)O3—S1—Nd1x120.9 (3)
O3i—Cs1—O3v97.97 (16)O1—S1—Nd1x125.8 (4)
O2ii—Cs1—O3v96.3 (2)O4—S1—Nd1x72.4 (4)
O2iii—Cs1—O3v80.4 (2)O2—S1—Nd1x38.3 (4)
O3iv—Cs1—O3v92.5 (3)Nd1—S1—Nd1x103.51 (8)
O3—Cs1—O4vi55.2 (2)O3—S1—Nd1xi125.0 (3)
O3i—Cs1—O4vi119.1 (2)O1—S1—Nd1xi29.7 (3)
O2ii—Cs1—O4vi121.5 (2)O4—S1—Nd1xi80.8 (4)
O2iii—Cs1—O4vi58.8 (2)O2—S1—Nd1xi118.4 (4)
O3iv—Cs1—O4vi60.3 (2)Nd1—S1—Nd1xi107.56 (7)
O3v—Cs1—O4vi124.6 (2)Nd1x—S1—Nd1xi113.33 (8)
O3—Cs1—O4vii119.1 (2)O3—S1—Cs1xii113.3 (3)
O3i—Cs1—O4vii55.2 (2)O1—S1—Cs1xii57.6 (3)
O2ii—Cs1—O4vii58.8 (2)O4—S1—Cs1xii140.4 (4)
O2iii—Cs1—O4vii121.5 (2)O2—S1—Cs1xii54.0 (4)
O3iv—Cs1—O4vii124.6 (2)Nd1—S1—Cs1xii165.42 (9)
O3v—Cs1—O4vii60.3 (2)Nd1x—S1—Cs1xii85.59 (6)
O4vi—Cs1—O4vii174.0 (3)Nd1xi—S1—Cs1xii78.39 (6)
O3—Cs1—O1ii135.92 (19)O3—S1—Cs1xiii51.4 (3)
O3i—Cs1—O1ii110.7 (2)O1—S1—Cs1xiii133.7 (4)
O2ii—Cs1—O1ii43.53 (19)O4—S1—Cs1xiii115.7 (4)
O2iii—Cs1—O1ii132.05 (19)O2—S1—Cs1xiii59.1 (4)
O3iv—Cs1—O1ii68.0 (2)Nd1—S1—Cs1xiii82.85 (7)
O3v—Cs1—O1ii56.75 (19)Nd1x—S1—Cs1xiii75.37 (6)
O4vi—Cs1—O1ii128.2 (2)Nd1xi—S1—Cs1xiii163.41 (8)
O4vii—Cs1—O1ii56.7 (2)Cs1xii—S1—Cs1xiii88.59 (6)
O3—Cs1—O1iii110.7 (2)O3—S1—Cs147.0 (3)
O3i—Cs1—O1iii135.92 (19)O1—S1—Cs163.5 (3)
O2ii—Cs1—O1iii132.05 (19)O4—S1—Cs1120.4 (4)
O2iii—Cs1—O1iii43.53 (19)O2—S1—Cs1127.8 (4)
O3iv—Cs1—O1iii56.75 (19)Nd1—S1—Cs178.61 (6)
O3v—Cs1—O1iii68.0 (2)Nd1x—S1—Cs1162.66 (9)
O4vi—Cs1—O1iii56.7 (2)Nd1xi—S1—Cs181.72 (6)
O4vii—Cs1—O1iii128.2 (2)Cs1xii—S1—Cs189.34 (6)
O1ii—Cs1—O1iii96.2 (3)Cs1xiii—S1—Cs187.95 (6)
O3—Cs1—O2v125.10 (19)O3—S1—Cs1vi119.4 (3)
O3i—Cs1—O2v59.14 (19)O1—S1—Cs1vi101.5 (3)
O2ii—Cs1—O2v110.1 (3)O4—S1—Cs1vi13.4 (4)
O2iii—Cs1—O2v69.7 (3)O2—S1—Cs1vi105.7 (4)
O3iv—Cs1—O2v133.29 (18)Nd1—S1—Cs1vi67.16 (5)
O3v—Cs1—O2v42.33 (18)Nd1x—S1—Cs1vi68.67 (5)
O4vi—Cs1—O2v128.3 (2)Nd1xi—S1—Cs1vi71.75 (5)
O4vii—Cs1—O2v52.0 (2)Cs1xii—S1—Cs1vi127.29 (7)
O1ii—Cs1—O2v88.46 (19)Cs1xiii—S1—Cs1vi124.77 (7)
O1iii—Cs1—O2v88.6 (2)Cs1—S1—Cs1vi126.57 (6)
O3—Cs1—O2iv59.14 (19)S1—O1—Nd1xi132.9 (5)
O3i—Cs1—O2iv125.10 (19)S1—O1—Cs1xii100.3 (4)
O2ii—Cs1—O2iv69.7 (3)Nd1xi—O1—Cs1xii109.5 (2)
O2iii—Cs1—O2iv110.1 (3)S1—O1—Cs194.8 (4)
O3iv—Cs1—O2iv42.33 (18)Nd1xi—O1—Cs1110.2 (3)
O3v—Cs1—O2iv133.29 (18)Cs1xii—O1—Cs1106.3 (2)
O4vi—Cs1—O2iv52.0 (2)S1—O1—Nd140.3 (3)
O4vii—Cs1—O2iv128.3 (2)Nd1xi—O1—Nd1110.0 (3)
O1ii—Cs1—O2iv88.6 (2)Cs1xii—O1—Nd1138.1 (2)
O1iii—Cs1—O2iv88.46 (19)Cs1—O1—Nd172.26 (14)
O2v—Cs1—O2iv175.6 (2)S1—O1—Cs1xiii34.2 (3)
O3—Cs1—O141.67 (18)Nd1xi—O1—Cs1xiii167.1 (3)
O3i—Cs1—O165.81 (19)Cs1xii—O1—Cs1xiii77.87 (15)
O2ii—Cs1—O1132.85 (18)Cs1—O1—Cs1xiii76.74 (13)
O2iii—Cs1—O151.65 (18)Nd1—O1—Cs1xiii60.79 (9)
O3iv—Cs1—O1114.82 (19)S1—O2—Nd1x119.7 (5)
O3v—Cs1—O1125.26 (19)S1—O2—Cs1xii104.0 (4)
O4vi—Cs1—O154.6 (2)Nd1x—O2—Cs1xii121.7 (3)
O4vii—Cs1—O1120.3 (2)S1—O2—Cs1xiii99.1 (4)
O1ii—Cs1—O1175.8 (2)Nd1x—O2—Cs1xiii99.5 (3)
O1iii—Cs1—O188.02 (17)Cs1xii—O2—Cs1xiii110.1 (3)
O2v—Cs1—O191.51 (19)S1—O2—Cs138.7 (3)
O2iv—Cs1—O191.69 (18)Nd1x—O2—Cs1155.8 (3)
O3—Cs1—O1i65.81 (19)Cs1xii—O2—Cs180.60 (16)
O3i—Cs1—O1i41.67 (18)Cs1xiii—O2—Cs178.74 (15)
O2ii—Cs1—O1i51.65 (18)S1—O3—Nd1100.2 (4)
O2iii—Cs1—O1i132.85 (18)S1—O3—Cs1113.1 (4)
O3iv—Cs1—O1i125.26 (19)Nd1—O3—Cs1105.9 (3)
O3v—Cs1—O1i114.82 (19)S1—O3—Cs1xiii107.9 (4)
O4vi—Cs1—O1i120.3 (2)Nd1—O3—Cs1xiii109.6 (3)
O4vii—Cs1—O1i54.6 (2)Cs1—O3—Cs1xiii118.5 (2)
O1ii—Cs1—O1i88.02 (17)S1—O3—Cs1xii49.8 (3)
O1iii—Cs1—O1i175.8 (2)Nd1—O3—Cs1xii149.9 (3)
O2v—Cs1—O1i91.69 (18)Cs1—O3—Cs1xii87.65 (17)
O2iv—Cs1—O1i91.51 (19)Cs1xiii—O3—Cs1xii85.63 (17)
O1—Cs1—O1i87.8 (3)S1—O4—Nd197.9 (4)
O1viii—Nd1—O1ix90.1 (4)S1—O4—Cs1vi160.6 (5)
O1viii—Nd1—O2iv74.4 (3)Nd1—O4—Cs1vi100.9 (3)
O1ix—Nd1—O2iv88.7 (3)S1—O4—Nd1x82.4 (4)
O1viii—Nd1—O2x88.7 (3)Nd1—O4—Nd1x122.8 (3)
O1ix—Nd1—O2x74.4 (3)Cs1vi—O4—Nd1x91.3 (2)
O2iv—Nd1—O2x156.2 (4)S1—O4—Nd1xi75.8 (3)
O1viii—Nd1—O377.7 (2)Nd1—O4—Nd1xi120.6 (3)
O1ix—Nd1—O3166.2 (3)Cs1vi—O4—Nd1xi90.6 (2)
O2iv—Nd1—O381.9 (3)Nd1x—O4—Nd1xi114.9 (2)
O2x—Nd1—O3111.2 (3)S1—O4—Cs1xiii48.1 (3)
O1viii—Nd1—O3vi166.2 (3)Nd1—O4—Cs1xiii73.10 (19)
O1ix—Nd1—O3vi77.7 (2)Cs1vi—O4—Cs1xiii143.7 (2)
O2iv—Nd1—O3vi111.2 (3)Nd1x—O4—Cs1xiii65.27 (14)
O2x—Nd1—O3vi81.9 (3)Nd1xi—O4—Cs1xiii123.8 (2)
O3—Nd1—O3vi115.2 (3)S1—O4—Cs144.4 (3)
O1viii—Nd1—O4vi137.4 (3)Nd1—O4—Cs166.90 (18)
O1ix—Nd1—O4vi114.4 (3)Cs1vi—O4—Cs1142.6 (2)
O2iv—Nd1—O4vi72.0 (3)Nd1x—O4—Cs1125.5 (2)
O2x—Nd1—O4vi130.1 (3)Nd1xi—O4—Cs169.23 (13)
O3—Nd1—O4vi72.3 (3)Cs1xiii—O4—Cs169.26 (11)
O3vi—Nd1—O4vi55.4 (3)S1—O4—Cs1xii28.9 (3)
O1viii—Nd1—O4114.4 (3)Nd1—O4—Cs1xii126.7 (3)
O1ix—Nd1—O4137.4 (3)Cs1vi—O4—Cs1xii132.0 (2)
O2iv—Nd1—O4130.1 (3)Nd1x—O4—Cs1xii68.85 (14)
O2x—Nd1—O472.0 (3)Nd1xi—O4—Cs1xii62.84 (12)
O3—Nd1—O455.4 (3)Cs1xiii—O4—Cs1xii66.96 (11)
O3vi—Nd1—O472.3 (3)Cs1—O4—Cs1xii66.87 (10)
O4vi—Nd1—O471.2 (4)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y, z; (iv) x+1/2, y, z+1; (v) x+1/2, y+3/2, z1/2; (vi) x+3/2, y+1, z; (vii) x+3/2, y+1/2, z+1/2; (viii) x, y, z+1; (ix) x+3/2, y+1, z+1; (x) x+1, y+1, z+1; (xi) x, y, z1; (xii) x1/2, y, z; (xiii) x1/2, y, z+1.
Bond-valence sums (in valence units) for atoms in CsNd(SO4)2 top
Cs1Nd1S1Σ
O10.084 (×2↓), 0.045 (×2↓)0.386 (×2↓)1.4711.986
O20.105 (×2↓), 0.061 (×2↓)0.378 (×2↓)1.4311.975
O30.122 (×2↓), 0.097 (×2↓)0.323 (×2↓)1.5012.043
O40.086 (×2↓)0.287 (×2↓)1.4451.818
Σ0.8512.7495.848
 

Footnotes

Now at School of Earth, Atmosphere and the Environment, Monash University, Clayton 3800, Victoria, Australia.

Acknowledgements

We thank Brendan Abrahams for his assistance in the crystal structure determination on the MX1 beamline and Ashley Sutton (University of Melbourne) for his help with a single-crystal study, which verified that CsNd(SO4)2 had not undergone dehydration from a hydrated sulfate before the single-crystal study reported in this article. Dr Takashi Sato (Rigaku) is thanked for performing the single-crystal analysis and data processing.

Funding information

Funding for this research was provided by: Ian Potter Foundation (`tracking tellurium'); Museums Victoria (`1854 Student Scholarship').

References

First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBukovec, N., Bukovec, P., Golič, L. & Šiftar, J. (1977). Monatsh. Chem. 108, 997–1003.  CrossRef CAS Web of Science Google Scholar
First citationBukovec, N., Bukovec, P. & Šiftar, J. (1980). Thermochim. Acta, 36, 217–224.  CrossRef CAS Web of Science Google Scholar
First citationBukovec, P. & Golič, L. (1975). Vest. Sloven. Kemi. Drustva, 22, 19–25.  CAS Google Scholar
First citationBukovec, N., Golič, L., Bukovec, P. & Šiftar, J. (1978). Monatsh. Chem. 109, 1305–1310.  CrossRef CAS Web of Science Google Scholar
First citationCowieson, N. P., Aragao, D., Clift, M., Ericsson, D. J., Gee, C., Harrop, S. J., Mudie, N., Panjikar, S., Price, J. R., Riboldi-Tunnicliffe, A., Williamson, R. & Caradoc-Davies, T. (2015). J. Synchrotron Rad. 22, 187–190.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrivovichev, S. V. & Brown, I. (2001). Z. Kristallogr. 216, 245–247.  CAS Google Scholar
First citationLocock, A. J. & Burns, P. C. (2004). Z. Kristallogr. 219, 259–266.  Web of Science CrossRef CAS Google Scholar
First citationMeyn, M., Beneke, K. & Lagaly, G. (1993). Inorg. Chem. 32, 1209–1215.  CrossRef CAS Web of Science Google Scholar
First citationMills, S. J. & Christy, A. G. (2013). Acta Cryst. B69, 145–149.  CrossRef CAS IUCr Journals Google Scholar
First citationPalmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationRigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRiou, A., Roult, G., Gerault, Y. & Cudennec, Y. (1984). Rev. Chim. Miner. 21, 732–739.  CAS Google Scholar
First citationSarukhanyan, N. L., Iskhakova, L. D., Trunov, V. K. & Ganeev, G. (1984). Kristallografiya, 29, 440–444.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]