inorganic compounds
Caesium neodymium sulfate, CsNd(SO4)2
aGeosciences, Museums Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia, bSchool of Chemistry, University of Melbourne 3010, Victoria, Australia, and cInstitute of Physics, Academy of Sciences of the Czech Republic, v.v.i., Na, Slovance 2, 182 21 Praha, Czech Republic
*Correspondence e-mail: omissen@museum.vic.gov.au
The 4)2, was determined from intensity data collected on a Rigaku tabletop XtaLAB mini II diffractometer at the International Union of Crystallography Congress 2017, in Hyderabad, India. CsNd(SO4)2 is the fourth to be reported in the CsPr(SO4)2 family: the Cs and Nd atoms have site symmetries of 2.. and ..2, respectively. In the extended structure, NdO8 square antiprisms and SO4 tetrahedra are connected into layers, which propagate in the (101) plane and CsO14 polyhedra connect the layers into a three-dimensional network.
of caesium neodymium(III) sulfate, CsNd(SOKeywords: crystal structure; double salt; complex twinning; synchrotron radiation.
CCDC reference: 1820344
Structure description
Double salts of the form M+REE3+(SO4)2·nH2O (where M+ is an alkali metal cation, usually Rb+ or Cs+) were first reported by Bukovec and coworkers in a series of articles in the 1970s (e.g. Bukovec & Golič, 1975; Bukovec et al., 1977, 1978). It was not possible to determine the crystal structures for all of these compounds (e.g. Bukovec et al., 1980). Double salts have often been studied for the properties that result from two different cations in combination (e.g. Meyn et al., 1993). CsNd(SO4)2·4H2O was studied for its dehydration kinetics, resulting in the decomposition products of CsNd(SO4)2·H2O and then CsNd(SO4)2; however, no has been reported for the latter two compounds (Bukovec et al., 1980). CsNd(SO4)2 is isostructural with three other compounds with reported crystal structures, namely CsPr(SO4)2 (Bukovec et al., 1978), RbDy(SO4)2 (Sarukhanyan et al., 1984) and a bismuth-chromate analogue, RbBi(CrO4)2 (Riou et al., 1984).
The 4)2 is an infinite, three dimensional framework. The structure may be considered as a layered structure, incorporating layers of edge- and corner-linked SO4 and NdO8 polyhedra in the ac plane, with fourteen-coordinate Cs+ cations bridging the layers with seven Cs—O bonds to each layer (Table 1; Figs. 1 and 2). Isostructural networks have been reported (three with crystal structures) as discussed above.
of CsNd(SOThe bond-valence sums for all cationic elements are slightly low, especially the metallic elements Cs and Nd. Bond-valence sums for Cs (0.851 to 0.892) and Nd (2.749 to 2.756) especially are poor, whether using the values of Brown & Altermatt (1985) or the revised values of Gagné & Hawthorne (2015). It would be of interest to study the bond-valence behaviour of each element in more detail, in a fashion similar to the studies on Pb (Krivovichev & Brown, 2001), Tl (Locock & Burns, 2004) and Te (Mills & Christy, 2013), among others. Specific studies on Cs and Nd should generate bond-valence sums closer to the expected values of 1 and 3 valence units.
Synthesis and crystallization
CsNd(SO4)2 was synthesized from a complex mixture of several inorganic compounds dissolved in diluted sulfuric acid (Sigma Aldrich, initial purity 99.999%, pH = −1 after dilution), including caesium nitrate (Sigma Aldrich, 99%) and neodymium(III) oxide (Sigma Aldrich, 99.9%). Initial hydrothermal synthesis at 200°C did not yield any crystals. Subsequently, the vessel was left at room temperature over a period of months. During this time, pale-purple plate-like crystals were observed growing on the bottom of the Teflon vessel. Single crystal X-ray diffraction showed these to be crystals of the title compound.
Refinement
Considering the relatively simple nature of the 4)2, the was complicated due to complex observed in some crystals. This was observed on crystals run on the micro-focus MX1 and MX2 macromolecular beamlines of the Australian Synchrotron. The extraneous diffraction spots led to the pseudo-hexagonal a = 10.902 (2), b = 13.934 (3), c = 10.957 (2) Å, α = β = 90°, γ = 119.73 (3) and V = 1445.4 (5) Å3. This cell was shown to be a transposition of the Pnna cell due to of CsNd(SO4)2 crystals by using the JANA2006 crystallographic program (Petříček et al., 2014). Firstly, the program searched for higher symmetry supercells, which may induce reticular but no such cells were found. An averaging procedure was then performed, which takes into account by sygonic and also metric This procedure showed that Rint values were significantly lower for the orthorhombic mmm Laue symmetry group (0.07) rather than any hexagonal Laue group (0.4). Finally, the space-group test, which took matrices into account, showed that the Pnna had the best figure of merit, consistent with the determined from a non-twinned crystal fragment (see below). Using JANA2006, the crystal was found to be comprised of three twin components. A of the structure model refined from the twinned crystal using synchrotron diffraction data on the MX1 beamline (Cowieson et al., 2015) may be found in the supporting information. The first component was found to have a twin of 0.271 (3) and matrix of [1 0 0 / 0 1 0 / 0 0 1], the second 0.00048 (10) and [ 0 / 0 1 0 / − 0 ] and the third 0.729 (3) and [− 0 / 0 1 0 / − 0 −]. Practically, the second twin component has a negligible effect on the and the crystal is best considered to be a two-component twin with the two components in a 27:73 ratio.
of CsNd(SOWhilst it was possible to solve the structure after the treatment of R1 and wR2 at convergence were higher than those obtained from a non-twinned fragment. The reported here was solved on a Rigaku XtaLAB mini II diffractometer at the International Union of Crystallography Congress 2017, Hyderabad, India, using a single, non-twinned crystal fragment. This crystal was obtained by crushing a large, highly twinned, pale-purple crystalline mass in oil, and mounting a smaller, single fragment (dimensions 0.024 ×0.024 ×0.053 µm) that floated away after crushing.
the final values ofStructure solution was carried out by SHELXT (Sheldrick, 2015a) and structure by full-matrix least-squares was implemented by SHELXL (Sheldrick, 2015b) in the OLEX2 environment (Dolomanov et al., 2009). Full collection and details are shown in Table 2. The residual Fourier peaks are relatively large (3.61 e Å−3 maximum, −3.20 e Å−3 minimum), but not unreasonably so for small inorganic crystals with heavy scattering elements. A bond-valence summary is shown in Table 2, using the parameters of Gagné & Hawthorne (2015) for S—O, Cs—O and Nd—O bonds.
using
|
Full crystal data, data collection and structure .
details are summarized in Table 3
|
Structural data
CCDC reference: 1820344
https://doi.org/10.1107/S2414314618001694/hb4205sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618001694/hb4205Isup2.hkl
https://doi.org/10.1107/S2414314618001694/hb4205sup3.txt
of twinned structure from synchrotron data. DOI:Structure factors (FCF format) of twinned structure from synchrotron data. DOI: https://doi.org/10.1107/S2414314618001694/hb4205sup4.txt
Data collection: CrysAlis PRO (Rigaku OD, 2017); cell
CrysAlis PRO (Rigaku OD, 2017); data reduction: CrysAlis PRO (Rigaku OD, 2017); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).CsNd(SO4)2 | Dx = 4.219 Mg m−3 |
Mr = 469.27 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnna | Cell parameters from 968 reflections |
a = 9.574 (2) Å | θ = 2.9–29.9° |
b = 14.115 (3) Å | µ = 12.46 mm−1 |
c = 5.4666 (11) Å | T = 293 K |
V = 738.7 (3) Å3 | Fragment, pale purple |
Z = 4 | 0.05 × 0.02 × 0.02 mm |
F(000) = 844 |
Rigaku XtaLAB Mini II diffractometer | 771 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed X-ray tube | Rint = 0.102 |
CCD plate scans | θmax = 30.4°, θmin = 2.9° |
Absorption correction: gaussian (ABSPACK in Crys Alis PRO; Rigaku OD, 2017) | h = −13→13 |
Tmin = 0.554, Tmax = 0.759 | k = −20→18 |
3915 measured reflections | l = −5→7 |
1092 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.064 | w = 1/[σ2(Fo2) + (0.0907P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.170 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 3.61 e Å−3 |
1092 reflections | Δρmin = −3.20 e Å−3 |
56 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cs1 | 0.92197 (10) | 0.750000 | 0.250000 | 0.0213 (3) | |
Nd1 | 0.750000 | 0.500000 | 0.68152 (16) | 0.0165 (3) | |
S1 | 0.5851 (3) | 0.58533 (19) | 0.2371 (6) | 0.0149 (6) | |
O1 | 0.6532 (9) | 0.6041 (6) | −0.0010 (13) | 0.0190 (17) | |
O2 | 0.4359 (7) | 0.6153 (7) | 0.2254 (16) | 0.0226 (19) | |
O3 | 0.6571 (8) | 0.6370 (5) | 0.4342 (14) | 0.0169 (17) | |
O4 | 0.5960 (9) | 0.4831 (6) | 0.2998 (16) | 0.0201 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cs1 | 0.0134 (5) | 0.0257 (5) | 0.0248 (6) | 0.000 | 0.000 | 0.0007 (5) |
Nd1 | 0.0119 (4) | 0.0224 (5) | 0.0152 (5) | −0.0009 (4) | 0.000 | 0.000 |
S1 | 0.0066 (11) | 0.0228 (14) | 0.0153 (14) | −0.0009 (9) | 0.0005 (11) | 0.0001 (12) |
O1 | 0.010 (4) | 0.035 (4) | 0.012 (4) | 0.000 (4) | 0.002 (3) | −0.002 (4) |
O2 | 0.006 (3) | 0.043 (5) | 0.018 (5) | 0.003 (4) | 0.001 (3) | 0.005 (4) |
O3 | 0.007 (4) | 0.028 (4) | 0.015 (4) | −0.003 (3) | −0.002 (3) | −0.006 (3) |
O4 | 0.018 (4) | 0.020 (4) | 0.022 (5) | −0.003 (3) | 0.004 (4) | 0.003 (3) |
Cs1—O3 | 3.161 (8) | Cs1—O1i | 3.570 (9) |
Cs1—O3i | 3.161 (8) | Nd1—O1viii | 2.456 (8) |
Cs1—O2ii | 3.223 (9) | Nd1—O1ix | 2.456 (8) |
Cs1—O2iii | 3.223 (9) | Nd1—O2iv | 2.464 (8) |
Cs1—O3iv | 3.254 (8) | Nd1—O2x | 2.464 (8) |
Cs1—O3v | 3.254 (8) | Nd1—O3 | 2.522 (8) |
Cs1—O4vi | 3.305 (8) | Nd1—O3vi | 2.522 (8) |
Cs1—O4vii | 3.305 (8) | Nd1—O4vi | 2.566 (9) |
Cs1—O1ii | 3.316 (8) | Nd1—O4 | 2.566 (9) |
Cs1—O1iii | 3.316 (8) | S1—O3 | 1.472 (8) |
Cs1—O2v | 3.444 (9) | S1—O1 | 1.480 (8) |
Cs1—O2iv | 3.444 (9) | S1—O4 | 1.487 (9) |
Cs1—O1 | 3.570 (9) | S1—O2 | 1.491 (7) |
O3—Cs1—O3i | 73.3 (3) | O3—S1—O1 | 110.4 (5) |
O3—Cs1—O2ii | 94.3 (2) | O3—S1—O4 | 106.2 (5) |
O3i—Cs1—O2ii | 89.56 (19) | O1—S1—O4 | 110.2 (5) |
O3—Cs1—O2iii | 89.56 (19) | O3—S1—O2 | 109.8 (5) |
O3i—Cs1—O2iii | 94.3 (2) | O1—S1—O2 | 109.5 (5) |
O2ii—Cs1—O2iii | 175.3 (3) | O4—S1—O2 | 110.6 (5) |
O3—Cs1—O3iv | 97.97 (16) | O3—S1—Nd1 | 52.3 (3) |
O3i—Cs1—O3iv | 166.2 (3) | O1—S1—Nd1 | 121.9 (3) |
O2ii—Cs1—O3iv | 80.4 (2) | O4—S1—Nd1 | 54.1 (4) |
O2iii—Cs1—O3iv | 96.3 (2) | O2—S1—Nd1 | 128.6 (4) |
O3—Cs1—O3v | 166.2 (3) | O3—S1—Nd1x | 120.9 (3) |
O3i—Cs1—O3v | 97.97 (16) | O1—S1—Nd1x | 125.8 (4) |
O2ii—Cs1—O3v | 96.3 (2) | O4—S1—Nd1x | 72.4 (4) |
O2iii—Cs1—O3v | 80.4 (2) | O2—S1—Nd1x | 38.3 (4) |
O3iv—Cs1—O3v | 92.5 (3) | Nd1—S1—Nd1x | 103.51 (8) |
O3—Cs1—O4vi | 55.2 (2) | O3—S1—Nd1xi | 125.0 (3) |
O3i—Cs1—O4vi | 119.1 (2) | O1—S1—Nd1xi | 29.7 (3) |
O2ii—Cs1—O4vi | 121.5 (2) | O4—S1—Nd1xi | 80.8 (4) |
O2iii—Cs1—O4vi | 58.8 (2) | O2—S1—Nd1xi | 118.4 (4) |
O3iv—Cs1—O4vi | 60.3 (2) | Nd1—S1—Nd1xi | 107.56 (7) |
O3v—Cs1—O4vi | 124.6 (2) | Nd1x—S1—Nd1xi | 113.33 (8) |
O3—Cs1—O4vii | 119.1 (2) | O3—S1—Cs1xii | 113.3 (3) |
O3i—Cs1—O4vii | 55.2 (2) | O1—S1—Cs1xii | 57.6 (3) |
O2ii—Cs1—O4vii | 58.8 (2) | O4—S1—Cs1xii | 140.4 (4) |
O2iii—Cs1—O4vii | 121.5 (2) | O2—S1—Cs1xii | 54.0 (4) |
O3iv—Cs1—O4vii | 124.6 (2) | Nd1—S1—Cs1xii | 165.42 (9) |
O3v—Cs1—O4vii | 60.3 (2) | Nd1x—S1—Cs1xii | 85.59 (6) |
O4vi—Cs1—O4vii | 174.0 (3) | Nd1xi—S1—Cs1xii | 78.39 (6) |
O3—Cs1—O1ii | 135.92 (19) | O3—S1—Cs1xiii | 51.4 (3) |
O3i—Cs1—O1ii | 110.7 (2) | O1—S1—Cs1xiii | 133.7 (4) |
O2ii—Cs1—O1ii | 43.53 (19) | O4—S1—Cs1xiii | 115.7 (4) |
O2iii—Cs1—O1ii | 132.05 (19) | O2—S1—Cs1xiii | 59.1 (4) |
O3iv—Cs1—O1ii | 68.0 (2) | Nd1—S1—Cs1xiii | 82.85 (7) |
O3v—Cs1—O1ii | 56.75 (19) | Nd1x—S1—Cs1xiii | 75.37 (6) |
O4vi—Cs1—O1ii | 128.2 (2) | Nd1xi—S1—Cs1xiii | 163.41 (8) |
O4vii—Cs1—O1ii | 56.7 (2) | Cs1xii—S1—Cs1xiii | 88.59 (6) |
O3—Cs1—O1iii | 110.7 (2) | O3—S1—Cs1 | 47.0 (3) |
O3i—Cs1—O1iii | 135.92 (19) | O1—S1—Cs1 | 63.5 (3) |
O2ii—Cs1—O1iii | 132.05 (19) | O4—S1—Cs1 | 120.4 (4) |
O2iii—Cs1—O1iii | 43.53 (19) | O2—S1—Cs1 | 127.8 (4) |
O3iv—Cs1—O1iii | 56.75 (19) | Nd1—S1—Cs1 | 78.61 (6) |
O3v—Cs1—O1iii | 68.0 (2) | Nd1x—S1—Cs1 | 162.66 (9) |
O4vi—Cs1—O1iii | 56.7 (2) | Nd1xi—S1—Cs1 | 81.72 (6) |
O4vii—Cs1—O1iii | 128.2 (2) | Cs1xii—S1—Cs1 | 89.34 (6) |
O1ii—Cs1—O1iii | 96.2 (3) | Cs1xiii—S1—Cs1 | 87.95 (6) |
O3—Cs1—O2v | 125.10 (19) | O3—S1—Cs1vi | 119.4 (3) |
O3i—Cs1—O2v | 59.14 (19) | O1—S1—Cs1vi | 101.5 (3) |
O2ii—Cs1—O2v | 110.1 (3) | O4—S1—Cs1vi | 13.4 (4) |
O2iii—Cs1—O2v | 69.7 (3) | O2—S1—Cs1vi | 105.7 (4) |
O3iv—Cs1—O2v | 133.29 (18) | Nd1—S1—Cs1vi | 67.16 (5) |
O3v—Cs1—O2v | 42.33 (18) | Nd1x—S1—Cs1vi | 68.67 (5) |
O4vi—Cs1—O2v | 128.3 (2) | Nd1xi—S1—Cs1vi | 71.75 (5) |
O4vii—Cs1—O2v | 52.0 (2) | Cs1xii—S1—Cs1vi | 127.29 (7) |
O1ii—Cs1—O2v | 88.46 (19) | Cs1xiii—S1—Cs1vi | 124.77 (7) |
O1iii—Cs1—O2v | 88.6 (2) | Cs1—S1—Cs1vi | 126.57 (6) |
O3—Cs1—O2iv | 59.14 (19) | S1—O1—Nd1xi | 132.9 (5) |
O3i—Cs1—O2iv | 125.10 (19) | S1—O1—Cs1xii | 100.3 (4) |
O2ii—Cs1—O2iv | 69.7 (3) | Nd1xi—O1—Cs1xii | 109.5 (2) |
O2iii—Cs1—O2iv | 110.1 (3) | S1—O1—Cs1 | 94.8 (4) |
O3iv—Cs1—O2iv | 42.33 (18) | Nd1xi—O1—Cs1 | 110.2 (3) |
O3v—Cs1—O2iv | 133.29 (18) | Cs1xii—O1—Cs1 | 106.3 (2) |
O4vi—Cs1—O2iv | 52.0 (2) | S1—O1—Nd1 | 40.3 (3) |
O4vii—Cs1—O2iv | 128.3 (2) | Nd1xi—O1—Nd1 | 110.0 (3) |
O1ii—Cs1—O2iv | 88.6 (2) | Cs1xii—O1—Nd1 | 138.1 (2) |
O1iii—Cs1—O2iv | 88.46 (19) | Cs1—O1—Nd1 | 72.26 (14) |
O2v—Cs1—O2iv | 175.6 (2) | S1—O1—Cs1xiii | 34.2 (3) |
O3—Cs1—O1 | 41.67 (18) | Nd1xi—O1—Cs1xiii | 167.1 (3) |
O3i—Cs1—O1 | 65.81 (19) | Cs1xii—O1—Cs1xiii | 77.87 (15) |
O2ii—Cs1—O1 | 132.85 (18) | Cs1—O1—Cs1xiii | 76.74 (13) |
O2iii—Cs1—O1 | 51.65 (18) | Nd1—O1—Cs1xiii | 60.79 (9) |
O3iv—Cs1—O1 | 114.82 (19) | S1—O2—Nd1x | 119.7 (5) |
O3v—Cs1—O1 | 125.26 (19) | S1—O2—Cs1xii | 104.0 (4) |
O4vi—Cs1—O1 | 54.6 (2) | Nd1x—O2—Cs1xii | 121.7 (3) |
O4vii—Cs1—O1 | 120.3 (2) | S1—O2—Cs1xiii | 99.1 (4) |
O1ii—Cs1—O1 | 175.8 (2) | Nd1x—O2—Cs1xiii | 99.5 (3) |
O1iii—Cs1—O1 | 88.02 (17) | Cs1xii—O2—Cs1xiii | 110.1 (3) |
O2v—Cs1—O1 | 91.51 (19) | S1—O2—Cs1 | 38.7 (3) |
O2iv—Cs1—O1 | 91.69 (18) | Nd1x—O2—Cs1 | 155.8 (3) |
O3—Cs1—O1i | 65.81 (19) | Cs1xii—O2—Cs1 | 80.60 (16) |
O3i—Cs1—O1i | 41.67 (18) | Cs1xiii—O2—Cs1 | 78.74 (15) |
O2ii—Cs1—O1i | 51.65 (18) | S1—O3—Nd1 | 100.2 (4) |
O2iii—Cs1—O1i | 132.85 (18) | S1—O3—Cs1 | 113.1 (4) |
O3iv—Cs1—O1i | 125.26 (19) | Nd1—O3—Cs1 | 105.9 (3) |
O3v—Cs1—O1i | 114.82 (19) | S1—O3—Cs1xiii | 107.9 (4) |
O4vi—Cs1—O1i | 120.3 (2) | Nd1—O3—Cs1xiii | 109.6 (3) |
O4vii—Cs1—O1i | 54.6 (2) | Cs1—O3—Cs1xiii | 118.5 (2) |
O1ii—Cs1—O1i | 88.02 (17) | S1—O3—Cs1xii | 49.8 (3) |
O1iii—Cs1—O1i | 175.8 (2) | Nd1—O3—Cs1xii | 149.9 (3) |
O2v—Cs1—O1i | 91.69 (18) | Cs1—O3—Cs1xii | 87.65 (17) |
O2iv—Cs1—O1i | 91.51 (19) | Cs1xiii—O3—Cs1xii | 85.63 (17) |
O1—Cs1—O1i | 87.8 (3) | S1—O4—Nd1 | 97.9 (4) |
O1viii—Nd1—O1ix | 90.1 (4) | S1—O4—Cs1vi | 160.6 (5) |
O1viii—Nd1—O2iv | 74.4 (3) | Nd1—O4—Cs1vi | 100.9 (3) |
O1ix—Nd1—O2iv | 88.7 (3) | S1—O4—Nd1x | 82.4 (4) |
O1viii—Nd1—O2x | 88.7 (3) | Nd1—O4—Nd1x | 122.8 (3) |
O1ix—Nd1—O2x | 74.4 (3) | Cs1vi—O4—Nd1x | 91.3 (2) |
O2iv—Nd1—O2x | 156.2 (4) | S1—O4—Nd1xi | 75.8 (3) |
O1viii—Nd1—O3 | 77.7 (2) | Nd1—O4—Nd1xi | 120.6 (3) |
O1ix—Nd1—O3 | 166.2 (3) | Cs1vi—O4—Nd1xi | 90.6 (2) |
O2iv—Nd1—O3 | 81.9 (3) | Nd1x—O4—Nd1xi | 114.9 (2) |
O2x—Nd1—O3 | 111.2 (3) | S1—O4—Cs1xiii | 48.1 (3) |
O1viii—Nd1—O3vi | 166.2 (3) | Nd1—O4—Cs1xiii | 73.10 (19) |
O1ix—Nd1—O3vi | 77.7 (2) | Cs1vi—O4—Cs1xiii | 143.7 (2) |
O2iv—Nd1—O3vi | 111.2 (3) | Nd1x—O4—Cs1xiii | 65.27 (14) |
O2x—Nd1—O3vi | 81.9 (3) | Nd1xi—O4—Cs1xiii | 123.8 (2) |
O3—Nd1—O3vi | 115.2 (3) | S1—O4—Cs1 | 44.4 (3) |
O1viii—Nd1—O4vi | 137.4 (3) | Nd1—O4—Cs1 | 66.90 (18) |
O1ix—Nd1—O4vi | 114.4 (3) | Cs1vi—O4—Cs1 | 142.6 (2) |
O2iv—Nd1—O4vi | 72.0 (3) | Nd1x—O4—Cs1 | 125.5 (2) |
O2x—Nd1—O4vi | 130.1 (3) | Nd1xi—O4—Cs1 | 69.23 (13) |
O3—Nd1—O4vi | 72.3 (3) | Cs1xiii—O4—Cs1 | 69.26 (11) |
O3vi—Nd1—O4vi | 55.4 (3) | S1—O4—Cs1xii | 28.9 (3) |
O1viii—Nd1—O4 | 114.4 (3) | Nd1—O4—Cs1xii | 126.7 (3) |
O1ix—Nd1—O4 | 137.4 (3) | Cs1vi—O4—Cs1xii | 132.0 (2) |
O2iv—Nd1—O4 | 130.1 (3) | Nd1x—O4—Cs1xii | 68.85 (14) |
O2x—Nd1—O4 | 72.0 (3) | Nd1xi—O4—Cs1xii | 62.84 (12) |
O3—Nd1—O4 | 55.4 (3) | Cs1xiii—O4—Cs1xii | 66.96 (11) |
O3vi—Nd1—O4 | 72.3 (3) | Cs1—O4—Cs1xii | 66.87 (10) |
O4vi—Nd1—O4 | 71.2 (4) |
Symmetry codes: (i) x, −y+3/2, −z+1/2; (ii) x+1/2, −y+3/2, z+1/2; (iii) x+1/2, y, −z; (iv) x+1/2, y, −z+1; (v) x+1/2, −y+3/2, z−1/2; (vi) −x+3/2, −y+1, z; (vii) −x+3/2, y+1/2, −z+1/2; (viii) x, y, z+1; (ix) −x+3/2, −y+1, z+1; (x) −x+1, −y+1, −z+1; (xi) x, y, z−1; (xii) x−1/2, y, −z; (xiii) x−1/2, y, −z+1. |
Cs1 | Nd1 | S1 | Σ | |
O1 | 0.084 (×2↓), 0.045 (×2↓) | 0.386 (×2↓) | 1.471 | 1.986 |
O2 | 0.105 (×2↓), 0.061 (×2↓) | 0.378 (×2↓) | 1.431 | 1.975 |
O3 | 0.122 (×2↓), 0.097 (×2↓) | 0.323 (×2↓) | 1.501 | 2.043 |
O4 | 0.086 (×2↓) | 0.287 (×2↓) | 1.445 | 1.818 |
Σ | 0.851 | 2.749 | 5.848 |
Footnotes
‡Now at School of Earth, Atmosphere and the Environment, Monash University, Clayton 3800, Victoria, Australia.
Acknowledgements
We thank Brendan Abrahams for his assistance in the 4)2 had not undergone dehydration from a hydrated sulfate before the single-crystal study reported in this article. Dr Takashi Sato (Rigaku) is thanked for performing the single-crystal analysis and data processing.
determination on the MX1 beamline and Ashley Sutton (University of Melbourne) for his help with a single-crystal study, which verified that CsNd(SOFunding information
Funding for this research was provided by: Ian Potter Foundation (`tracking tellurium'); Museums Victoria (`1854 Student Scholarship').
References
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bukovec, N., Bukovec, P., Golič, L. & Šiftar, J. (1977). Monatsh. Chem. 108, 997–1003. CrossRef CAS Web of Science Google Scholar
Bukovec, N., Bukovec, P. & Šiftar, J. (1980). Thermochim. Acta, 36, 217–224. CrossRef CAS Web of Science Google Scholar
Bukovec, P. & Golič, L. (1975). Vest. Sloven. Kemi. Drustva, 22, 19–25. CAS Google Scholar
Bukovec, N., Golič, L., Bukovec, P. & Šiftar, J. (1978). Monatsh. Chem. 109, 1305–1310. CrossRef CAS Web of Science Google Scholar
Cowieson, N. P., Aragao, D., Clift, M., Ericsson, D. J., Gee, C., Harrop, S. J., Mudie, N., Panjikar, S., Price, J. R., Riboldi-Tunnicliffe, A., Williamson, R. & Caradoc-Davies, T. (2015). J. Synchrotron Rad. 22, 187–190. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578. Web of Science CrossRef IUCr Journals Google Scholar
Krivovichev, S. V. & Brown, I. (2001). Z. Kristallogr. 216, 245–247. CAS Google Scholar
Locock, A. J. & Burns, P. C. (2004). Z. Kristallogr. 219, 259–266. Web of Science CrossRef CAS Google Scholar
Meyn, M., Beneke, K. & Lagaly, G. (1993). Inorg. Chem. 32, 1209–1215. CrossRef CAS Web of Science Google Scholar
Mills, S. J. & Christy, A. G. (2013). Acta Cryst. B69, 145–149. CrossRef CAS IUCr Journals Google Scholar
Palmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England. Google Scholar
Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352. Google Scholar
Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Riou, A., Roult, G., Gerault, Y. & Cudennec, Y. (1984). Rev. Chim. Miner. 21, 732–739. CAS Google Scholar
Sarukhanyan, N. L., Iskhakova, L. D., Trunov, V. K. & Ganeev, G. (1984). Kristallografiya, 29, 440–444. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.