organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-Methyl-1-(nitro­meth­yl)-4-(propan-2-yl)naphthalene

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie des Substances Naturelles, `Unité Associé au CNRST (URAC16)', Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, Université Cadi Ayyad, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide, Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, BP 1014, Avenue Ibn Battouta, Rabat, Morocco
*Correspondence e-mail: dakirmohamed18@gmail.com

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 5 February 2018; accepted 15 February 2018; online 23 February 2018)

The title compound, C15H17NO2, was synthesized in two steps from a mixture of α-himachalene (2-methyl­ene-6,6,9-tri­methylbi­cyclo­[5.4.01,7]undec-8-ene), β-him­achalene (2,6,6,9-tetra­methylbi­cyclo­[5.4.01,7]undeca-1,8-diene) and γ-him­achalene (2,6,6,9-tetra­methylbi­cyclo­[5.4.01,7]undeca-2,8-diene), which was iso­lated from an essential oil of the Atlas cedar (Cedrus atlantica). The nitro group and the isopropyl group lie almost normal to the mean plane of the naphthalene moiety, making dihedral angles of 83.13 (19) and 71.72 (16)°, respectively, and are inclined to one another by 49.8 (2)°. In the crystal, mol­ecules are linked by pairs of C—H⋯π inter­actions and weak C—H⋯O inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The bicyclic sesquiterpenes α-, β- and γ-himachalene are the main constituents of the essential oil of the Atlas cedar (Cedrus Atlantica) (El Haib et al., 2011[El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101-108.]; Loubidi et al., 2014[Loubidi, M., Agustin, D., Benharref, A. & Poli, R. (2014). C. R. Chim. 17, 549-556.]). The reactivity of these sesquiterpenes and derivatives has been studied extensively by our team in order to prepare new products having biological proprieties (Zaki et al., 2014[Zaki, M., Benharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2014). Acta Cryst. E70, o444.]; Benharref et al., 2016[Benharref, A., Oukhrib, A., Ait Elhad, M., El Ammari, L., Saadi, M. & Berraho, M. (2016). IUCrData, 1, x160703.]; Ait Elhad et al., 2017[Ait Elhad, M., Benharref, A., Taourirte, M., Daran J-Cl Oukhrib, A. & Berraho, M. (2017). IUCrData, 2, x170368.]). Indeed, these compounds were tested, using the food-poisoning technique, for their potential anti­fungal activity against the phytopathogen Botrytis cinerea (Daoubi et al., 2004[Daoubi, M., Duran-Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927-932.]). In this paper, we report on the crystal structure of 6-methyl-1-(nitro­meth­yl)-4-(propan-2-yl)naphthalene.

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. In the mol­ecule, the naphthalene ring system is approximately planar, with an r.m.s. deviation of 0.0156 (16) Å. The dihedral angle between the two phenyl rings is 1.11 (7)°. The nitro group (N/O1/O2) and the iso­propyle group (C12/C13/C14) lie almost normal to the mean plane of the naphthalene moiety, making dihedral angles of 83.13 (19) and 71.72 (16)°, respectively, and are inclined to one another by 49.8 (2)°. In the crystal, mol­ecules are linked by pairs of C—H⋯π inter­actions, forming dimers (Table 1[link] and Fig. 2[link]). Two weak C10—H10⋯O1i and C11—H11A⋯O2ii inter­actions are also observed (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1i 0.95 2.49 3.349 (2) 150
C11—H11A⋯O2ii 0.99 2.56 3.337 (3) 135
C11—H11BCgii 0.99 2.91 3.511 (2) 120
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) x, y-1, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A partial view of the crystal packing, showing the C—H⋯π inter­actions as green lines (see Table 2[link]; the H atom involved is shown as a blue ball).
[Figure 3]
Figure 3
A view along the b axis of the crystal packing.

Synthesis and crystallization

In a reactor of 250 ml equipped with a magnetic stirrer and a dropping funnel, we introduced 70 ml of di­chloro­methane and 3 ml of nitric acid. After cooling, 6 g (30 mmol) of 1-isopropyl-4,7-di­methyl­naphthalene dissolved in 30 ml of di­chloro­methane was added dropwise through the dropping funnel (Benharref et al., 2015[Benharref, A., Elkarroumi, J., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o659-o660.]). The reaction mixture was stirred for 4 h, then 40 ml of ice water was added and the resultion solution extracted with di­chloro­methane. The organic layers were combined, washed three times with 40 ml with water and dried over sodium sulfate and finally concentrated under vacuum. The residue was subjected to chromatography on a silica-gel column with hexa­ne–ethyl acetate (98/2 v/v) as eluent, which allowed the isolation of the title compound (yield: 3 g, 12 mmol, 40%). The title compound was recrystallized from hexane.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H17NO2
Mr 243.29
Crystal system, space group Monoclinic, C2/c
Temperature (K) 173
a, b, c (Å) 29.001 (10), 4.8412 (19), 20.474 (9)
β (°) 113.16 (2)
V3) 2642.7 (18)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.50 × 0.45 × 0.15
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.960, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 26616, 2912, 2579
Rint 0.028
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.132, 1.09
No. of reflections 2912
No. of parameters 166
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.23
Computer programs: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

6-Methyl-1-(nitromethyl)-4-(propan-2-yl)naphthalene top
Crystal data top
C15H17NO2F(000) = 1040
Mr = 243.29Dx = 1.223 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 29.001 (10) ÅCell parameters from 2912 reflections
b = 4.8412 (19) Åθ = 3–27.1°
c = 20.474 (9) ŵ = 0.08 mm1
β = 113.16 (2)°T = 173 K
V = 2642.7 (18) Å3Plate, colourless
Z = 80.50 × 0.45 × 0.15 mm
Data collection top
Bruker X8 APEX
diffractometer
2579 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.028
φ and ω scansθmax = 27.1°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3636
Tmin = 0.960, Tmax = 0.988k = 66
26616 measured reflectionsl = 2626
2912 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.059P)2 + 2.2975P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2912 reflectionsΔρmax = 0.23 e Å3
166 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.79689 (5)0.2689 (3)0.46980 (7)0.0677 (5)
O20.78273 (4)0.5935 (3)0.39377 (7)0.0515 (4)
N10.77205 (5)0.3746 (3)0.41311 (6)0.0335 (3)
C110.72743 (6)0.2118 (3)0.36430 (9)0.0374 (4)
H11A0.73960.05470.34450.045*
H11B0.70950.13470.39250.045*
C20.69125 (5)0.3779 (3)0.30416 (8)0.0298 (3)
C10.65794 (5)0.5709 (3)0.31594 (7)0.0265 (3)
C60.62150 (5)0.7103 (3)0.25662 (7)0.0256 (3)
C50.61847 (5)0.6535 (3)0.18605 (7)0.0274 (3)
C120.57701 (5)0.7833 (3)0.12210 (7)0.0339 (3)
H120.57220.97670.13540.041*
C140.52770 (6)0.6276 (4)0.10593 (9)0.0455 (4)
H14A0.53080.43890.09080.068*
H14B0.50040.72290.06790.068*
H14C0.52040.62150.14870.068*
C30.68822 (5)0.3335 (3)0.23673 (8)0.0344 (3)
H30.71080.20790.22920.041*
C40.65214 (5)0.4710 (3)0.17804 (7)0.0334 (3)
H40.65110.43640.13180.040*
C70.58932 (5)0.9034 (3)0.27020 (8)0.0307 (3)
H70.56490.99770.23110.037*
C80.59199 (6)0.9594 (3)0.33739 (8)0.0345 (3)
C150.55733 (7)1.1693 (4)0.34918 (10)0.0482 (4)
H15A0.54461.29510.30840.072*
H15B0.57581.27510.39240.072*
H15C0.52921.07360.35430.072*
C90.62796 (6)0.8178 (3)0.39508 (8)0.0387 (4)
H90.63010.85300.44180.046*
C100.65986 (6)0.6305 (3)0.38503 (8)0.0344 (3)
H100.68380.53840.42500.041*
C130.58857 (7)0.7985 (5)0.05544 (9)0.0549 (5)
H13A0.62050.89510.06660.082*
H13B0.56170.89890.01810.082*
H13C0.59100.61110.03890.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0646 (9)0.0796 (10)0.0357 (6)0.0173 (8)0.0051 (6)0.0262 (7)
O20.0421 (6)0.0404 (7)0.0567 (7)0.0125 (5)0.0029 (5)0.0166 (6)
N10.0311 (6)0.0357 (7)0.0308 (6)0.0003 (5)0.0091 (5)0.0083 (5)
C110.0332 (7)0.0268 (7)0.0435 (8)0.0026 (6)0.0055 (6)0.0102 (6)
C20.0267 (6)0.0217 (6)0.0345 (7)0.0027 (5)0.0050 (5)0.0028 (5)
C10.0266 (6)0.0222 (6)0.0285 (6)0.0072 (5)0.0085 (5)0.0007 (5)
C60.0259 (6)0.0219 (6)0.0282 (6)0.0040 (5)0.0098 (5)0.0009 (5)
C50.0271 (6)0.0273 (7)0.0251 (6)0.0010 (5)0.0075 (5)0.0003 (5)
C120.0324 (7)0.0369 (8)0.0282 (7)0.0044 (6)0.0077 (6)0.0035 (6)
C140.0306 (8)0.0500 (10)0.0444 (9)0.0026 (7)0.0024 (7)0.0018 (8)
C30.0294 (7)0.0288 (7)0.0410 (8)0.0039 (6)0.0096 (6)0.0053 (6)
C40.0315 (7)0.0379 (8)0.0285 (7)0.0025 (6)0.0094 (6)0.0063 (6)
C70.0306 (7)0.0256 (7)0.0369 (7)0.0019 (5)0.0143 (6)0.0011 (6)
C80.0365 (7)0.0303 (7)0.0437 (8)0.0114 (6)0.0231 (6)0.0102 (6)
C150.0479 (9)0.0449 (9)0.0650 (11)0.0097 (8)0.0362 (9)0.0198 (8)
C90.0427 (8)0.0469 (9)0.0321 (7)0.0180 (7)0.0207 (7)0.0104 (7)
C100.0347 (7)0.0394 (8)0.0268 (7)0.0115 (6)0.0096 (6)0.0032 (6)
C130.0499 (10)0.0804 (14)0.0309 (8)0.0126 (10)0.0121 (7)0.0150 (9)
Geometric parameters (Å, º) top
O1—N11.2123 (17)C14—H14B0.9800
O2—N11.2133 (17)C14—H14C0.9800
N1—C111.509 (2)C3—C41.412 (2)
C11—C21.499 (2)C3—H30.9500
C11—H11A0.9900C4—H40.9500
C11—H11B0.9900C7—C81.374 (2)
C2—C31.365 (2)C7—H70.9500
C2—C11.431 (2)C8—C91.409 (2)
C1—C101.423 (2)C8—C151.514 (2)
C1—C61.4275 (19)C15—H15A0.9800
C6—C71.4238 (19)C15—H15B0.9800
C6—C51.4389 (19)C15—H15C0.9800
C5—C41.374 (2)C9—C101.367 (2)
C5—C121.5219 (19)C9—H90.9500
C12—C131.530 (2)C10—H100.9500
C12—C141.533 (2)C13—H13A0.9800
C12—H121.0000C13—H13B0.9800
C14—H14A0.9800C13—H13C0.9800
O1—N1—O2123.31 (14)H14B—C14—H14C109.5
O1—N1—C11116.44 (13)C2—C3—C4121.18 (13)
O2—N1—C11120.16 (12)C2—C3—H3119.4
C2—C11—N1113.86 (12)C4—C3—H3119.4
C2—C11—H11A108.8C5—C4—C3121.69 (13)
N1—C11—H11A108.8C5—C4—H4119.2
C2—C11—H11B108.8C3—C4—H4119.2
N1—C11—H11B108.8C8—C7—C6122.82 (14)
H11A—C11—H11B107.7C8—C7—H7118.6
C3—C2—C1119.60 (12)C6—C7—H7118.6
C3—C2—C11119.47 (14)C7—C8—C9118.37 (14)
C1—C2—C11120.83 (13)C7—C8—C15120.83 (15)
C10—C1—C6118.42 (13)C9—C8—C15120.80 (14)
C10—C1—C2122.35 (13)C8—C15—H15A109.5
C6—C1—C2119.23 (12)C8—C15—H15B109.5
C7—C6—C1117.85 (12)H15A—C15—H15B109.5
C7—C6—C5122.40 (12)C8—C15—H15C109.5
C1—C6—C5119.75 (12)H15A—C15—H15C109.5
C4—C5—C6118.51 (12)H15B—C15—H15C109.5
C4—C5—C12121.39 (12)C10—C9—C8121.21 (13)
C6—C5—C12120.03 (12)C10—C9—H9119.4
C5—C12—C13114.28 (13)C8—C9—H9119.4
C5—C12—C14109.69 (13)C9—C10—C1121.33 (14)
C13—C12—C14110.13 (14)C9—C10—H10119.3
C5—C12—H12107.5C1—C10—H10119.3
C13—C12—H12107.5C12—C13—H13A109.5
C14—C12—H12107.5C12—C13—H13B109.5
C12—C14—H14A109.5H13A—C13—H13B109.5
C12—C14—H14B109.5C12—C13—H13C109.5
H14A—C14—H14B109.5H13A—C13—H13C109.5
C12—C14—H14C109.5H13B—C13—H13C109.5
H14A—C14—H14C109.5
O1—N1—C11—C2165.52 (15)C6—C5—C12—C13158.16 (15)
O2—N1—C11—C217.5 (2)C4—C5—C12—C1499.23 (17)
N1—C11—C2—C3108.31 (16)C6—C5—C12—C1477.62 (17)
N1—C11—C2—C175.26 (17)C1—C2—C3—C41.2 (2)
C3—C2—C1—C10178.70 (13)C11—C2—C3—C4175.32 (13)
C11—C2—C1—C104.87 (19)C6—C5—C4—C31.9 (2)
C3—C2—C1—C61.04 (19)C12—C5—C4—C3175.00 (13)
C11—C2—C1—C6175.39 (12)C2—C3—C4—C50.3 (2)
C10—C1—C6—C70.49 (18)C1—C6—C7—C80.1 (2)
C2—C1—C6—C7179.26 (12)C5—C6—C7—C8179.87 (13)
C10—C1—C6—C5179.72 (12)C6—C7—C8—C90.4 (2)
C2—C1—C6—C50.53 (18)C6—C7—C8—C15179.23 (13)
C7—C6—C5—C4177.81 (13)C7—C8—C9—C100.5 (2)
C1—C6—C5—C41.97 (19)C15—C8—C9—C10179.12 (14)
C7—C6—C5—C125.24 (19)C8—C9—C10—C10.1 (2)
C1—C6—C5—C12174.98 (12)C6—C1—C10—C90.4 (2)
C4—C5—C12—C1325.0 (2)C2—C1—C10—C9179.35 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.952.493.349 (2)150
C11—H11A···O2ii0.992.563.337 (3)135
C11—H11B···Cgii0.992.913.511 (2)120
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x, y1, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAit Elhad, M., Benharref, A., Taourirte, M., Daran J-Cl Oukhrib, A. & Berraho, M. (2017). IUCrData, 2, x170368.  Google Scholar
First citationBenharref, A., Elkarroumi, J., El Ammari, L., Saadi, M. & Berraho, M. (2015). Acta Cryst. E71, o659–o660.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBenharref, A., Oukhrib, A., Ait Elhad, M., El Ammari, L., Saadi, M. & Berraho, M. (2016). IUCrData, 1, x160703.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaoubi, M., Duran-Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLoubidi, M., Agustin, D., Benharref, A. & Poli, R. (2014). C. R. Chim. 17, 549–556.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaki, M., Benharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2014). Acta Cryst. E70, o444.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]