organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

10-[1,1-Di­chloro-4-(tri­methyl­sil­yl)but-1-en-3-yn-2-yl]-10H-pheno­thia­zine

CROSSMARK_Color_square_no_text.svg

aDepartment of Material Science and Chemistry, Wakayama University, Sakaedani, Wakayama, 640-8510, Japan
*Correspondence e-mail: okuno@center.wakayama-u.ac.jp

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 23 January 2018; accepted 7 February 2018; online 16 February 2018)

The title compound, C19H17Cl2NSSi, is an enamine derivative, in which the N atom adopts a shallow trigonal–pyramidal geometry [displacement from the plane of its attached C atoms = 0.1383 (18) Å]. The dihedral angle between the plane through the three amino carbon atoms and the vinyl group is 89.47 (7)°. The pheno­thia­zine unit has a butterfly structure and the central six-membered ring adopts a boat conformation. The fold angle between the benzene rings is 28.52 (7)°. The crystal structure features weak Csp3—H⋯Cl hydrogen bonds, H⋯S contacts and ππ stacking inter­actions between pheno­thia­zine units.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Enamine was coined as a nitro­gen analogue of enol (Kuehne, 1970[Kuehne, M. E. (1970). Synthesis, pp. 510-537.]; Valentine & Scott, 1978[Valentine, D. Jr & Scott, J. W. (1978). Synthesis, pp. 329-356.]; Hickmott, 1982[Hickmott, P. W. (1982). Tetrahedron, 38, 1975-2050.]; Whitesell & Whitesell, 1983[Whitesell, J. K. & Whitesell, M. A. (1983). Synthesis, 1983, 517-536.]). An enamine unit is incorporated by many important natural products (Yet, 2003[Yet, L. (2003). Chem. Rev. 103, 4283-4306.]), and halogen-substituted enamines play a significant role as building blocks in organic synthesis (Geary & Hultin, 2009[Geary, L. M. & Hultin, P. G. (2009). Org. Lett. 11, 5478-5481.]; Mansfield et al., 2015[Mansfield, S. J., Campbell, C. D., Jones, M. W. & Anderson, E. A. (2015). Chem. Commun. 51, 3316-3319.]).

The N1/C1/C12/C13 amino group has a shallow trigonal–pyramidal geometry in which the nitro­gen atom is displaced upwards from the C1/C12/C13 plane by 0.1383 (18) Å (Fig. 1[link]). The dihedral angle between this plane and the vinyl group (N1/C13/C14/C15/Cl1/Cl2; r.m.s. deviation = 0.0185 Å) is 89.45 (2)°, indicating no conjugation between them. When a vinyl group at an N-position carries an electron-withdrawing substituent or a small geminal substituent, the planes have a small dihedral angle and good conjugation. (Lebedev et al., 2002[Lebedev, A. Y., Izmer, V. V., Kazyul'kin, D. N., Beletskaya, I. P. & Voskoboynikov, A. S. (2002). Org. Lett. 4, 623-626.]; Okuno & Iwahashi, 2013[Okuno, T. & Iwahashi, H. (2013). Acta Cryst. E69, o665.]; Garg & Ling, 2015[Garg, B. & Ling, Y.-C. (2015). Chem. Commun. 51, 8809-8812.]). However, the title compound has a twisted form because of the bulky eneyne group. The pheno­thia­zine unit has a butterfly structure and the central six-membered ring adopts a boat conformation. The fold angle between the C1–C6 and C7–C12 rings is 28.52 (7)°. The angle is similar to those in other reported 10-vinyl-10H-pheno­thia­zines (Ehmann et al., 1994[Ehmann, A., Gompper, R., Hartmann, H., Müller, T. J. J., Polborn, K. & Schütz, R. (1994). Angew. Chem. Int. Ed. Engl. 33, 572-575.]; Muller et al., 2002[Muller, T. J. J., Gompper, R. & Polborn, K. (2002). CSD Communication (Private Communication).]; Umezono & Okuno, 2015[Umezono, S. & Okuno, T. (2015). J. Mol. Struct. 1084, 172-176.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level and H atoms are shown as small spheres.

The crystal structure (Fig. 2[link]) features weak Csp3—H⋯Cl hydrogen bonds (Table 1[link]), H⋯S contacts [H5⋯S1iii = 2.99 Å; symmetry code: (iii) −x + 2, −y, −z + 1] and ππ stacking inter­actions between the pheno­thia­zine units [atoms C7–C12; CgCg(−x + 2, −y, −z) = 3.8002 (11) Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17C⋯Cl1i 0.98 2.80 3.685 (3) 150
Symmetry code: (i) x-1, y, z-1.
[Figure 2]
Figure 2
A view of the inter­molecular inter­actions in the title compound [symmetry codes:(i) x − 1, y, z − 1; (ii) x + 1, y − 1, z + 1].

Synthesis and crystallization

Tetra­kis(tri­phenyl­phosphine)palladium(0) (0.058 g, 0.050 mmol) was added to a solution of 10-(1,2,2-tri­chloro­vin­yl)-10H-pheno­thia­zine (0.33 g, 1.0 mmol) (Okuno et al., 2006[Okuno, T., Ikeda, S., Kubo, N. & Sandman, D. J. (2006). Mol. Cryst. Liq. Cryst. 456, 35-44.]) in toluene (10 ml) under an argon atmosphere. The solution was stirred at room temperature for 20 min, and copper(I) iodide (0.0095 g, 0.050 mmol), tri­methyl­silyl­acetyl­ene (0.14 ml, 1.0 mmol) and di­ethyl­amine (0.15 ml, 1.5 mmol) were added to the solution. It was stirred at 313 K for 10 h, and then poured into 5% ammonium hydroxide. The organic layer was washed with water and dried over anhydrous sodium sulfate. After removal of sodium sulfate, it was concentrated by a rotary evaporator. The residue was purified by column chromatography on a silica gel with hexane as an eluent to give the title compound (0.19 g, 49%). 1H NMR (400 MHz, CDCl3): δ 0.23 (s, 9H); 6.89–6.93 (m, 4H); 7.02–7.09 (m, 4H). Single crystals of sufficient quality for X-ray crystallographic analysis were prepared by recrystallization from a di­chloro­methane solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H17Cl2NSSi
Mr 390.40
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 93
a, b, c (Å) 10.073 (3), 10.370 (3), 10.547 (3)
α, β, γ (°) 105.029 (2), 115.480 (5), 90.3532 (15)
V3) 951.8 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.51
Crystal size (mm) 0.10 × 0.10 × 0.01
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.961, 0.995
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 6593, 3294, 2802
Rint 0.019
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 1.05
No. of reflections 3294
No. of parameters 220
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.22
Computer programs: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2013 (Gruene et al., 2014[Gruene, T., Hahn, H. W., Luebben, A. V., Meilleur, F. & Sheldrick, G. M. (2014). J. Appl. Cryst. 47, 462-466.]), OPTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CrystalStructure (Rigaku, 2014[Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2013 (Gruene et al., 2014); molecular graphics: OPTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).

10-[1,1-Dichloro-4-(trimethylsilyl)but-1-en-3-yn-2-yl]-10H-phenothiazine top
Crystal data top
C19H17Cl2NSSiZ = 2
Mr = 390.40F(000) = 404.00
Triclinic, P1Dx = 1.362 Mg m3
a = 10.073 (3) ÅMo Kα radiation, λ = 0.71075 Å
b = 10.370 (3) ÅCell parameters from 3280 reflections
c = 10.547 (3) Åθ = 2.1–31.1°
α = 105.029 (2)°µ = 0.51 mm1
β = 115.480 (5)°T = 93 K
γ = 90.3532 (15)°Chip, colorless
V = 951.8 (4) Å30.10 × 0.10 × 0.01 mm
Data collection top
Rigaku Saturn724+
diffractometer
2802 reflections with F2 > 2.0σ(F2)
Detector resolution: 7.111 pixels mm-1Rint = 0.019
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 1011
Tmin = 0.961, Tmax = 0.995k = 1212
6593 measured reflectionsl = 1212
3294 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0311P)2 + 0.618P]
where P = (Fo2 + 2Fc2)/3
3294 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.22 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

The C-bound H atoms were placed at ideal positions and were refined as riding on their parent C atoms. Uiso(H) values of the H atoms were set at 1.2Ueq(parent atom for Csp2) and 1.5 Ueq(parent atom for Csp3).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.15825 (6)0.49602 (5)0.45814 (5)0.02756 (14)
Cl20.99925 (6)0.66282 (5)0.27723 (6)0.02713 (14)
S11.11156 (6)0.03876 (5)0.33623 (5)0.02274 (13)
Si10.55882 (6)0.36903 (6)0.24744 (6)0.01966 (14)
N10.97946 (17)0.26504 (16)0.21053 (17)0.0167 (3)
C10.8870 (2)0.19488 (18)0.24819 (19)0.0162 (4)
C20.7498 (2)0.23375 (19)0.2328 (2)0.0190 (4)
C30.6616 (2)0.1646 (2)0.2722 (2)0.0213 (4)
C40.7072 (2)0.0548 (2)0.3235 (2)0.0228 (4)
C50.8424 (2)0.0142 (2)0.3367 (2)0.0208 (4)
C60.9339 (2)0.08561 (19)0.3031 (2)0.0179 (4)
C71.1366 (2)0.08824 (19)0.1992 (2)0.0180 (4)
C81.2287 (2)0.0224 (2)0.1445 (2)0.0215 (4)
C91.2651 (2)0.0688 (2)0.0496 (2)0.0217 (4)
C101.2059 (2)0.1788 (2)0.0071 (2)0.0215 (4)
C111.1088 (2)0.24270 (19)0.0571 (2)0.0191 (4)
C121.0741 (2)0.19844 (19)0.1545 (2)0.0163 (4)
C130.9441 (2)0.39215 (19)0.1853 (2)0.0162 (4)
C141.0224 (2)0.50325 (19)0.2928 (2)0.0177 (4)
C150.8274 (2)0.39420 (19)0.0461 (2)0.0187 (4)
C160.7258 (2)0.3840 (2)0.0724 (2)0.0216 (4)
C170.5561 (2)0.5327 (2)0.2888 (3)0.0301 (5)
C180.3951 (3)0.3323 (2)0.2177 (3)0.0329 (5)
C190.5650 (2)0.2299 (2)0.3960 (2)0.0282 (5)
H20.71640.307660.195390.0228*
H30.569490.193080.263790.0256*
H40.646320.007420.349480.0273*
H50.872680.062950.368920.0250*
H81.267010.054810.172040.0258*
H91.33040.025140.014350.0260*
H101.231410.211340.056890.0257*
H111.066260.316620.024650.0229*
H17A0.645030.552370.30010.0361*
H17B0.554420.604310.208130.0361*
H17C0.467440.527850.379970.0361*
H18A0.388760.409950.145230.0395*
H18B0.405660.253010.181740.0395*
H18C0.304630.314680.310610.0395*
H19A0.559690.144090.374580.0339*
H19B0.657940.245540.4020.0339*
H19C0.480750.226780.489760.0339*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0214 (3)0.0318 (3)0.0189 (3)0.0017 (2)0.0021 (2)0.0029 (2)
Cl20.0284 (3)0.0160 (3)0.0364 (3)0.0035 (2)0.0145 (2)0.0066 (2)
S10.0221 (3)0.0290 (3)0.0209 (3)0.0094 (2)0.0091 (2)0.0140 (2)
Si10.0163 (3)0.0226 (3)0.0180 (3)0.0032 (2)0.0053 (2)0.0067 (2)
N10.0177 (8)0.0165 (8)0.0179 (8)0.0047 (6)0.0086 (7)0.0068 (7)
C10.0189 (10)0.0154 (9)0.0106 (9)0.0008 (7)0.0054 (8)0.0002 (8)
C20.0221 (10)0.0174 (10)0.0155 (10)0.0030 (8)0.0072 (8)0.0036 (8)
C30.0198 (10)0.0226 (11)0.0196 (10)0.0006 (8)0.0095 (9)0.0018 (8)
C40.0254 (11)0.0217 (11)0.0210 (10)0.0023 (8)0.0111 (9)0.0047 (9)
C50.0268 (11)0.0186 (10)0.0174 (10)0.0024 (8)0.0096 (9)0.0062 (8)
C60.0203 (10)0.0198 (10)0.0112 (9)0.0040 (8)0.0052 (8)0.0041 (8)
C70.0157 (10)0.0195 (10)0.0149 (9)0.0009 (8)0.0038 (8)0.0041 (8)
C80.0178 (10)0.0201 (10)0.0208 (10)0.0035 (8)0.0045 (9)0.0042 (8)
C90.0160 (10)0.0237 (11)0.0195 (10)0.0020 (8)0.0072 (8)0.0016 (9)
C100.0205 (10)0.0225 (11)0.0211 (10)0.0016 (8)0.0110 (9)0.0031 (9)
C110.0201 (10)0.0180 (10)0.0178 (10)0.0007 (8)0.0077 (8)0.0043 (8)
C120.0136 (9)0.0164 (10)0.0136 (9)0.0004 (7)0.0037 (8)0.0001 (8)
C130.0177 (10)0.0167 (10)0.0159 (9)0.0041 (8)0.0085 (8)0.0056 (8)
C140.0162 (10)0.0198 (10)0.0192 (10)0.0043 (8)0.0091 (8)0.0067 (8)
C150.0221 (11)0.0172 (10)0.0204 (10)0.0035 (8)0.0126 (9)0.0055 (8)
C160.0231 (11)0.0221 (11)0.0197 (11)0.0051 (8)0.0091 (9)0.0071 (9)
C170.0214 (11)0.0300 (12)0.0299 (12)0.0020 (9)0.0013 (10)0.0125 (10)
C180.0273 (12)0.0344 (13)0.0369 (13)0.0001 (10)0.0172 (11)0.0053 (11)
C190.0256 (11)0.0341 (12)0.0201 (11)0.0037 (9)0.0077 (9)0.0047 (9)
Geometric parameters (Å, º) top
Cl1—C141.7128 (19)C11—C121.393 (4)
Cl2—C141.713 (2)C13—C141.333 (2)
S1—C61.766 (2)C13—C151.438 (3)
S1—C71.765 (3)C15—C161.204 (3)
Si1—C161.8545 (19)C2—H20.950
Si1—C171.856 (3)C3—H30.950
Si1—C181.860 (3)C4—H40.950
Si1—C191.858 (2)C5—H50.950
N1—C11.420 (3)C8—H80.950
N1—C121.420 (3)C9—H90.950
N1—C131.429 (3)C10—H100.950
C1—C21.395 (3)C11—H110.950
C1—C61.398 (3)C17—H17A0.980
C2—C31.393 (4)C17—H17B0.980
C3—C41.383 (3)C17—H17C0.980
C4—C51.388 (3)C18—H18A0.980
C5—C61.390 (4)C18—H18B0.980
C7—C81.386 (3)C18—H18C0.980
C7—C121.399 (3)C19—H19A0.980
C8—C91.390 (4)C19—H19B0.980
C9—C101.379 (3)C19—H19C0.980
C10—C111.394 (3)
Cl1···N12.9081 (14)C15···H11iv3.5367
Cl2···C153.0800 (18)C15···H18Avii3.2968
S1···N13.0280 (19)C16···H8iii3.3125
N1···C163.513 (3)C16···H11iv3.5327
C1···C42.798 (4)C16···H18Avii3.3061
C1···C72.945 (3)C17···H2vii3.5752
C1···C143.305 (3)C17···H3vii3.1143
C1···C153.221 (3)C17···H17Cxii3.2869
C2···C52.774 (3)C18···H4x3.3855
C2···C132.830 (3)C18···H5x3.3938
C2···C153.204 (4)C18···H10viii3.2643
C3···C62.775 (3)C19···H3xiii3.5287
C6···C122.942 (4)C19···H4xiii3.4500
C7···C102.769 (4)C19···H4x3.5059
C8···C112.774 (3)C19···H8iii3.2502
C9···C122.797 (3)H2···Cl1i3.3516
C11···C132.804 (3)H2···C17vii3.5752
C11···C143.556 (3)H2···H9iii3.4857
C11···C153.223 (3)H2···H17Bvii2.9284
C12···C143.267 (3)H2···H17Cvii3.3981
C12···C153.229 (3)H2···H18Avii3.2152
C14···C163.588 (2)H3···C8viii3.3993
Cl1···C2i3.4595 (19)H3···C9viii2.9402
S1···C5ii3.468 (3)H3···C10viii3.4671
C1···C9iii3.324 (2)H3···C17vii3.1143
C2···Cl1i3.4595 (19)H3···C19ix3.5287
C5···S1ii3.468 (3)H3···H8viii3.5923
C5···C9iii3.590 (3)H3···H9viii2.8063
C5···C10iii3.478 (3)H3···H17Avii3.4702
C6···C9iii3.298 (2)H3···H17Bvii2.5216
C6···C10iii3.397 (2)H3···H17Cvii2.9294
C8···C12iii3.519 (2)H3···H19Bix3.1325
C9···C1iii3.324 (2)H3···H19Cix3.0348
C9···C5iii3.590 (3)H4···S1ii3.3238
C9···C6iii3.298 (2)H4···C18x3.3855
C10···C5iii3.478 (3)H4···C19ix3.4500
C10···C6iii3.397 (2)H4···C19x3.5059
C10···C17iv3.564 (3)H4···H8viii3.4217
C11···C17iv3.556 (3)H4···H18Bx2.7213
C12···C8iii3.519 (2)H4···H18Cx3.3247
C17···C10iv3.564 (3)H4···H19Aix3.3618
C17···C11iv3.556 (3)H4···H19Ax2.7373
S1···H52.8093H4···H19Bix3.0590
S1···H82.8058H4···H19Cix3.3631
N1···H22.6323H5···Cl2xiv3.2136
N1···H112.6281H5···S1ii2.9882
C1···H33.2723H5···C5ii3.1037
C1···H53.2726H5···C6ii3.2323
C2···H43.2679H5···C10iii3.5521
C3···H53.2515H5···C18x3.3938
C4···H23.2643H5···H5ii2.8131
C5···H33.2522H5···H10iii2.9467
C6···H23.2667H5···H18Bx2.9655
C6···H43.2692H5···H18Cx2.9236
C7···H93.2659H8···C15iii3.5303
C7···H113.2648H8···C16iii3.3125
C8···H103.2498H8···C19iii3.2502
C9···H113.2628H8···H3xi3.5923
C10···H83.2490H8···H4xi3.4217
C11···H93.2672H8···H19Aiii2.5110
C12···H83.2729H8···H19Biii3.3608
C12···H103.2694H9···C1iii3.0188
C13···H22.5044H9···C2iii3.0313
C13···H112.4732H9···C3xi3.2731
C14···H23.2846H9···C3iii3.1843
C14···H113.1918H9···C4iii3.2911
C15···H22.6014H9···C5iii3.2509
C15···H112.6242H9···C6iii3.1489
C16···H23.1624H9···H2iii3.4857
C16···H113.2675H9···H3xi2.8063
C16···H17A3.1608H9···H9xv3.5871
C16···H17B3.1414H10···Cl2iv3.0768
C16···H18A3.1723H10···C5iii3.0400
C16···H18B3.0836H10···C6iii3.3269
C16···H19A3.2246H10···C18xi3.2643
C16···H19B3.1577H10···H5iii2.9467
C17···H18A3.1503H10···H17Aiv3.5883
C17···H18C3.2772H10···H17Biv2.8481
C17···H19B3.2548H10···H18Axi3.1381
C17···H19C3.1989H10···H18Bxi2.6974
C18···H17B3.1933H10···H18Cxi3.4683
C18···H17C3.2287H11···Cl2iv3.0274
C18···H19A3.1655H11···C15iv3.5367
C18···H19C3.2690H11···C16iv3.5327
C19···H17A3.2195H11···H17Aiv3.0624
C19···H17C3.2327H11···H17Biv3.4340
C19···H18B3.2538H17A···Cl1iv3.0622
C19···H18C3.1804H17A···C10iv3.3263
H2···H32.3374H17A···C11iv2.9792
H3···H42.3327H17A···C12iv3.3396
H4···H52.3386H17A···C14iv3.3741
H8···H92.3417H17A···H3vii3.4702
H9···H102.3278H17A···H10iv3.5883
H10···H112.3378H17A···H11iv3.0624
H17A···H19B3.1062H17A···H17Cxii2.9335
H17A···H19C3.4235H17A···H19Cxii3.4663
H17B···H18A2.9819H17B···C2vii3.4469
H17B···H18C3.5218H17B···C3vii3.2519
H17C···H18A3.3910H17B···C9iv3.4581
H17C···H18C3.1524H17B···C10iv2.9052
H17C···H19B3.5224H17B···C11iv3.2457
H17C···H19C3.0611H17B···H2vii2.9284
H18B···H19A3.0603H17B···H3vii2.5216
H18B···H19C3.5860H17B···H10iv2.8481
H18C···H19A3.3337H17B···H11iv3.4340
H18C···H19C3.0918H17B···H18Avii3.5625
Cl1···H2i3.3516H17C···Cl1xvi2.8007
Cl1···H17Aiv3.0622H17C···C3vii3.5492
Cl1···H17Cv2.8007H17C···C17xii3.2869
Cl1···H18Cv3.3133H17C···H2vii3.3981
Cl1···H19Biv3.5590H17C···H3vii2.9294
Cl2···H5vi3.2136H17C···H17Axii2.9335
Cl2···H10iv3.0768H17C···H17Cxii2.8018
Cl2···H11iv3.0274H17C···H19Bxii3.5702
Cl2···H18Avii3.5384H17C···H19Cxii3.3239
Cl2···H18Cvii3.2313H18A···Cl2vii3.5384
Cl2···H19Biv3.1559H18A···C15vii3.2968
S1···H4ii3.3238H18A···C16vii3.3061
S1···H5ii2.9882H18A···H2vii3.2152
C1···H9iii3.0188H18A···H10viii3.1381
C2···H9iii3.0313H18A···H17Bvii3.5625
C2···H17Bvii3.4469H18A···H18Avii2.9950
C3···H9viii3.2731H18B···C4x3.1195
C3···H9iii3.1843H18B···C5x3.2626
C3···H17Bvii3.2519H18B···C10viii3.5828
C3···H17Cvii3.5492H18B···H4x2.7213
C3···H19Bix3.3358H18B···H5x2.9655
C4···H9iii3.2911H18B···H10viii2.6974
C4···H18Bx3.1195H18C···Cl1xvi3.3133
C4···H19Bix3.2894H18C···Cl2vii3.2313
C5···H5ii3.1037H18C···H4x3.3247
C5···H9iii3.2509H18C···H5x2.9236
C5···H10iii3.0400H18C···H10viii3.4683
C5···H18Bx3.2626H19A···C8iii3.3438
C6···H5ii3.2323H19A···H4xiii3.3618
C6···H9iii3.1489H19A···H4x2.7373
C6···H10iii3.3269H19A···H8iii2.5110
C7···H19Cv3.5429H19A···H19Axvii3.2395
C8···H3xi3.3993H19B···Cl1iv3.5590
C8···H19Aiii3.3438H19B···Cl2iv3.1559
C9···H3xi2.9402H19B···C3xiii3.3358
C9···H17Biv3.4581H19B···C4xiii3.2894
C10···H3xi3.4671H19B···H3xiii3.1325
C10···H5iii3.5521H19B···H4xiii3.0590
C10···H17Aiv3.3263H19B···H8iii3.3608
C10···H17Biv2.9052H19B···H17Cxii3.5702
C10···H18Bxi3.5828H19C···C7xvi3.5429
C11···H17Aiv2.9792H19C···H3xiii3.0348
C11···H17Biv3.2457H19C···H4xiii3.3631
C12···H17Aiv3.3396H19C···H17Axii3.4663
C14···H17Aiv3.3741H19C···H17Cxii3.3239
C15···H8iii3.5303
C6—S1—C799.94 (10)C13—C15—C16174.2 (2)
C16—Si1—C17107.98 (9)Si1—C16—C15175.2 (2)
C16—Si1—C18106.78 (12)C1—C2—H2119.879
C16—Si1—C19109.66 (10)C3—C2—H2119.882
C17—Si1—C18110.46 (12)C2—C3—H3119.748
C17—Si1—C19111.21 (12)C4—C3—H3119.747
C18—Si1—C19110.61 (11)C3—C4—H4120.232
C1—N1—C12121.74 (17)C5—C4—H4120.241
C1—N1—C13118.20 (18)C4—C5—H5119.771
C12—N1—C13117.3 (2)C6—C5—H5119.790
N1—C1—C2121.17 (18)C7—C8—H8119.843
N1—C1—C6119.80 (19)C9—C8—H8119.842
C2—C1—C6119.0 (2)C8—C9—H9120.260
C1—C2—C3120.2 (2)C10—C9—H9120.261
C2—C3—C4120.5 (2)C9—C10—H10119.661
C3—C4—C5119.5 (2)C11—C10—H10119.661
C4—C5—C6120.4 (2)C10—C11—H11119.928
S1—C6—C1121.02 (18)C12—C11—H11119.917
S1—C6—C5118.77 (16)Si1—C17—H17A109.475
C1—C6—C5120.2 (2)Si1—C17—H17B109.469
S1—C7—C8118.71 (16)Si1—C17—H17C109.467
S1—C7—C12120.68 (18)H17A—C17—H17B109.471
C8—C7—C12120.4 (2)H17A—C17—H17C109.471
C7—C8—C9120.3 (2)H17B—C17—H17C109.474
C8—C9—C10119.5 (2)Si1—C18—H18A109.471
C9—C10—C11120.7 (2)Si1—C18—H18B109.477
C10—C11—C12120.2 (2)Si1—C18—H18C109.469
N1—C12—C7120.1 (2)H18A—C18—H18B109.470
N1—C12—C11121.01 (19)H18A—C18—H18C109.468
C7—C12—C11118.9 (2)H18B—C18—H18C109.473
N1—C13—C14117.78 (16)Si1—C19—H19A109.468
N1—C13—C15118.82 (14)Si1—C19—H19B109.470
C14—C13—C15123.40 (19)Si1—C19—H19C109.467
Cl1—C14—Cl2114.66 (9)H19A—C19—H19B109.479
Cl1—C14—C13121.79 (17)H19A—C19—H19C109.469
Cl2—C14—C13123.53 (16)H19B—C19—H19C109.474
C6—S1—C7—C8153.30 (11)C6—C1—C2—C30.2 (2)
C6—S1—C7—C1231.54 (13)C1—C2—C3—C41.6 (2)
C7—S1—C6—C130.81 (13)C2—C3—C4—C50.5 (2)
C7—S1—C6—C5151.08 (12)C3—C4—C5—C62.0 (3)
C1—N1—C12—C731.93 (19)C4—C5—C6—S1174.73 (14)
C1—N1—C12—C11149.39 (14)C4—C5—C6—C13.4 (2)
C12—N1—C1—C2147.89 (14)S1—C7—C8—C9172.33 (10)
C12—N1—C1—C632.7 (2)S1—C7—C12—N15.17 (19)
C1—N1—C13—C14101.0 (2)S1—C7—C12—C11173.54 (9)
C1—N1—C13—C1579.4 (2)C8—C7—C12—N1179.75 (12)
C13—N1—C1—C212.6 (2)C8—C7—C12—C111.5 (2)
C13—N1—C1—C6166.74 (12)C12—C7—C8—C92.8 (2)
C12—N1—C13—C1497.6 (2)C7—C8—C9—C101.7 (2)
C12—N1—C13—C1582.0 (2)C8—C9—C10—C110.7 (2)
C13—N1—C12—C7167.38 (12)C9—C10—C11—C122.0 (2)
C13—N1—C12—C1111.30 (19)C10—C11—C12—N1177.85 (13)
N1—C1—C2—C3179.17 (13)C10—C11—C12—C70.8 (2)
N1—C1—C6—S13.6 (2)N1—C13—C14—Cl11.6 (3)
N1—C1—C6—C5178.35 (13)N1—C13—C14—Cl2177.13 (18)
C2—C1—C6—S1175.80 (12)C15—C13—C14—Cl1178.8 (2)
C2—C1—C6—C52.3 (2)C15—C13—C14—Cl22.5 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+1; (iii) x+2, y, z; (iv) x+2, y+1, z; (v) x+1, y, z+1; (vi) x, y+1, z; (vii) x+1, y+1, z; (viii) x1, y, z; (ix) x, y, z+1; (x) x+1, y, z; (xi) x+1, y, z; (xii) x+1, y+1, z1; (xiii) x, y, z1; (xiv) x, y1, z; (xv) x+3, y, z; (xvi) x1, y, z1; (xvii) x+1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17C···Cl1xvi0.982.803.685 (3)150
Symmetry code: (xvi) x1, y, z1.
 

Funding information

This work was supported by Research for Promoting Technological Seeds from Japan Science and Technology Agency (JST).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationEhmann, A., Gompper, R., Hartmann, H., Müller, T. J. J., Polborn, K. & Schütz, R. (1994). Angew. Chem. Int. Ed. Engl. 33, 572–575.  CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarg, B. & Ling, Y.-C. (2015). Chem. Commun. 51, 8809–8812.  CSD CrossRef CAS Google Scholar
First citationGeary, L. M. & Hultin, P. G. (2009). Org. Lett. 11, 5478–5481.  CrossRef CAS Google Scholar
First citationGruene, T., Hahn, H. W., Luebben, A. V., Meilleur, F. & Sheldrick, G. M. (2014). J. Appl. Cryst. 47, 462–466.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHickmott, P. W. (1982). Tetrahedron, 38, 1975–2050.  CrossRef CAS Web of Science Google Scholar
First citationKuehne, M. E. (1970). Synthesis, pp. 510–537.  CrossRef Google Scholar
First citationLebedev, A. Y., Izmer, V. V., Kazyul'kin, D. N., Beletskaya, I. P. & Voskoboynikov, A. S. (2002). Org. Lett. 4, 623–626.  CSD CrossRef CAS Google Scholar
First citationMansfield, S. J., Campbell, C. D., Jones, M. W. & Anderson, E. A. (2015). Chem. Commun. 51, 3316–3319.  CSD CrossRef CAS Google Scholar
First citationMuller, T. J. J., Gompper, R. & Polborn, K. (2002). CSD Communication (Private Communication)Google Scholar
First citationOkuno, T., Ikeda, S., Kubo, N. & Sandman, D. J. (2006). Mol. Cryst. Liq. Cryst. 456, 35–44.  Web of Science CSD CrossRef CAS Google Scholar
First citationOkuno, T. & Iwahashi, H. (2013). Acta Cryst. E69, o665.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationUmezono, S. & Okuno, T. (2015). J. Mol. Struct. 1084, 172–176.  CSD CrossRef CAS Google Scholar
First citationValentine, D. Jr & Scott, J. W. (1978). Synthesis, pp. 329–356.  Google Scholar
First citationWhitesell, J. K. & Whitesell, M. A. (1983). Synthesis, 1983, 517–536.  CrossRef Google Scholar
First citationYet, L. (2003). Chem. Rev. 103, 4283–4306.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]