organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Amino-4-(4-meth­­oxy­phen­yl)-1-(4-methyl­phen­yl)-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carbo­nitrile

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, eChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and fResearch Center, University of Ishik, Erbil, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 18 January 2018; accepted 28 January 2018; online 2 February 2018)

In the title compound, C24H23N3O2, the cyclo­hexene and 1,4-di­hydro­pyridine rings of the 1,4,5,6,7,8-hexa­hydro­quinoline ring system each adopt a twisted-boat conformation. The dihedral angle between the benzene rings is 13.89 (10)°. In the crystal, mol­ecules are linked through pairs of amino–nitrile N—H⋯N hydrogen bonds, forming inversion dimers. Weak C—H⋯O and C—H⋯π inter­actions connect the dimers, forming a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Studies have shown that 1,4,5,6,7,8-hexa­hydro­quinolines have significant cytotoxic activity against different human cancer cell lines (Mohamed et al., 2012[Mohamed, N. A., Anwar, M. M., El-serwy, W. S. & Elsherbiny, M. (2012). Pharma Chemica, 4, 2055-2067.]; Al-Said et al., 2011[Al-Said, M. S., Ghorab, M. M., Al-Dosari, M. S. & Hamed, M. M. (2011). Eur. J. Med. Chem. 46, 201-207.]; Alqasoumi et al., 2009[Alqasoumi, S. I., Al-Taweel, A. M., Alafeefy, A. M., Hamed, M. M., Noaman, E. & Ghorab, M. M. (2009). Bioorg. Med. Chem. Lett. 19, 6939-6942.]). In recent years, hexa­hydro­quinoline derivatives attracted more inter­est because of their biological and pharmacological activities, e.g. anti­microbial (Muli et al., 2014[Muli, P. N., Chobe, S. S., Kamble, R. D., Hese, S. V., Mogle, P. P. & Dawane, B. S. (2014). World Journal of Pharmaceutical Research, 3, 728-735.]; Shah et al., 2012[Shah, N. K., Shah, N. M., Patel, M. P. & Patel, R. G. (2012). J. Serb. Chem. Soc. 77, 279-286.]), anti­oxidant (Yang et al., 2011[Yang, X. H., Zhang, P. H., Zhou, Y. H., Liu, C. G., Lin, X. Y. & Cui, J. F. (2011). Arkivoc, 10, 327-337.]), anti­malarial (Kalaria et al., 2014[Kalaria, P. N., Satasia, S. P. & Raval, D. K. (2014). Eur. J. Med. Chem. 78, 207-216.]) and anti­osteoporotic (Sashidhara et al., 2013[Sashidhara, K. V., Modukuri, R. K., Choudhary, D., Bhaskara Rao, K., Kumar, M., Khedgikar, V. & Trivedi, R. (2013). Eur. J. Med. Chem. 70, 802-810.]). In addition, hexa­hydro­quinolines have been used as calcium channel blockers for the treatment of cardiovascular diseases including hypertension (Joshi & Pawar, 2013[Joshi, V. M. & Pawar, R. P. (2013). Eur. Chem. Bull. 2, 679-682.]; Gunduz et al., 2009[Gunduz, M. G., Celebi, S., Kaygisiz, B., Simsek, R., Erol, K. & Safak, C. (2009). Lat. Am. J. Pharm. 28, 922-926.]; Aydin et al., 2006[Aydin, F., Safak, C., Simşek, R., Erol, K., Ulgen, M. & Linden, A. (2006). Pharmazie, 61, 655-659.]; Simsek et al., 2006[Simsek, R., Gunduz, M., Sırmagul, B., Safak, C., Erol, K. & Linden, A. (2006). Arzneim.-Forsch. Drug. Res. 56, 529-534.]).

As shown in Fig. 1[link], the cyclo­hexene (C4–C9) and 1,4-di­hydro­pyridine (N1/C1–C4/C9) rings of the 1,4,5,6,7,8- hexa­hydro­quinoline ring system (N1/C1–C9) each adopt a twisted-boat conformation [puckering parameters QT = 0.467 (2) Å, θ = 122.5 (2)°, φ = 354.0 (3)° and QT = 0.2541 (19) Å, θ = 106.6 (4)°, φ = 1.1 (5)°, respectively]. The methyl­benzene and methoxybenzene rings form a dihedral angle of 13.89 (10)°. This angle is similar to the value of 11.52 (7)° found in the closely related structure of 2-amino-4-(4-chloro­phen­yl)-1-(4-methyl­phen­yl)-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carbo­nitrile (Mohamed et al., 2015[Mohamed, S. K., Akkurt, M., Jasinski, J. P., Allah, O. A. A. A. & Albayati, M. R. (2015). Acta Cryst. E71, o949-o950.]).

[Figure 1]
Figure 1
The title mol­ecule, showing the atom-numbering scheme, with displacement ellipsoids drawn at the 50% probability level.

In the crystal, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds with an R22(12) ring motif (Table 1[link]), forming centrosymmetric dimers (Fig. 2[link]). These dimers are assembled into a three-dimensional network via C—H⋯O and C—H⋯π inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C10–C15 and C16–C21 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N3i 0.86 2.31 3.016 (3) 140
C11—H11⋯O1ii 0.95 2.70 3.408 (2) 132
C21—H21⋯O1ii 0.95 2.68 3.433 (3) 136
C22—H22C⋯N3iii 0.98 2.81 3.407 (4) 120
C23—H23B⋯O2iv 0.98 2.76 3.484 (3) 131
C21—H21⋯Cg3v 0.95 2.99 3.571 (2) 120
C22—H22BCg4vi 0.98 2.92 3.695 (3) 137
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (vi) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular packing, viewed along the c axis, showing the inter­molecular hydrogen bonds as dashed lines.

Synthesis and crystallization

To a solution of 1,3-cyclo­hexa­nedione (3.36 g, 0.03 mol) and p-toluidine (3.21 g, 0.03 mol) in ethanol (40 ml), a catalytic amount of tri­ethyl­amine was added and the mixture was heated under reflux for 3 h. 4-Meth­oxy­benzyl­idenemalono­nitrile (5.53 g, 0.03 mol) was added to the reaction mixture while refluxing for another 3 h. The reaction mixture was then cooled to room temperature. The precipitate that formed was filtered, dried and recrystallized from ethanol solution as orange crystals, yield 67%; m.p. 525 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. 28 reflections were omitted as clear outlier data.

Table 2
Experimental details

Crystal data
Chemical formula C24H23N3O2
Mr 385.45
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 9.1066 (4), 19.6406 (9), 11.2901 (5)
β (°) 94.343 (4)
V3) 2013.54 (16)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.66
Crystal size (mm) 0.38 × 0.28 × 0.22
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur Eos Gemini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.813, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7397, 3793, 2933
Rint 0.023
(sin θ/λ)max−1) 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.149, 1.05
No. of reflections 3793
No. of parameters 265
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.25
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-Amino-4-(4-methoxyphenyl)-1-(4-methylphenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carbonitrile top
Crystal data top
C24H23N3O2F(000) = 816
Mr = 385.45Dx = 1.272 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 9.1066 (4) ÅCell parameters from 2845 reflections
b = 19.6406 (9) Åθ = 4.0–71.1°
c = 11.2901 (5) ŵ = 0.66 mm1
β = 94.343 (4)°T = 173 K
V = 2013.54 (16) Å3Irregular, orange
Z = 40.38 × 0.28 × 0.22 mm
Data collection top
Rigaku Oxford Diffraction [model name?]
diffractometer
3793 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source2933 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.0416 pixels mm-1θmax = 71.3°, θmin = 4.5°
ω scansh = 611
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
k = 1923
Tmin = 0.813, Tmax = 1.000l = 1313
7397 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0752P)2 + 0.4388P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3793 reflectionsΔρmax = 0.33 e Å3
265 parametersΔρmin = 0.25 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46137 (17)0.69821 (8)0.77151 (12)0.0500 (4)
O20.9254 (2)0.90959 (8)0.55490 (16)0.0602 (4)
N10.52568 (18)0.59661 (9)0.39959 (14)0.0402 (4)
N20.7293 (2)0.52949 (10)0.36461 (16)0.0505 (5)
H2A0.79360.50510.40540.061*
H2B0.66290.50320.33090.061*
N30.9846 (2)0.54847 (10)0.61603 (17)0.0531 (5)
C10.6661 (2)0.57350 (9)0.43835 (16)0.0365 (4)
C20.7304 (2)0.59502 (9)0.54430 (16)0.0344 (4)
C30.6644 (2)0.65027 (9)0.61721 (15)0.0338 (4)
H30.67930.63690.70280.041*
C40.5003 (2)0.65333 (9)0.58438 (16)0.0358 (4)
C50.4081 (2)0.68142 (10)0.67280 (18)0.0410 (4)
C60.2453 (2)0.68749 (14)0.6401 (2)0.0557 (6)
H6A0.20610.72680.68250.067*
H6B0.19530.64600.66640.067*
C70.2102 (2)0.69671 (13)0.5074 (2)0.0557 (6)
H7A0.24790.74140.48260.067*
H7B0.10220.69620.48930.067*
C80.2800 (2)0.64023 (12)0.43862 (19)0.0482 (5)
H8A0.22730.59700.45060.058*
H8B0.26970.65110.35280.058*
C90.4407 (2)0.63125 (10)0.47773 (17)0.0381 (4)
C100.7382 (2)0.71933 (9)0.60276 (15)0.0334 (4)
C110.7090 (2)0.75732 (10)0.49983 (16)0.0421 (5)
H110.64340.73990.43770.051*
C120.7741 (3)0.82000 (10)0.48682 (18)0.0472 (5)
H120.75300.84540.41600.057*
C130.8699 (2)0.84605 (10)0.57628 (19)0.0439 (5)
C140.9020 (2)0.80888 (11)0.67871 (19)0.0465 (5)
H140.96840.82620.74040.056*
C150.8356 (2)0.74549 (10)0.69038 (17)0.0415 (4)
H150.85800.71970.76060.050*
C160.4724 (2)0.58466 (10)0.27725 (16)0.0377 (4)
C170.4055 (2)0.52317 (10)0.24530 (18)0.0440 (5)
H170.39500.48880.30330.053*
C180.3542 (3)0.51228 (11)0.1284 (2)0.0493 (5)
H180.31110.46960.10630.059*
C190.3643 (2)0.56241 (12)0.04289 (18)0.0465 (5)
C200.4346 (2)0.62267 (11)0.07619 (19)0.0471 (5)
H200.44500.65710.01830.057*
C210.4898 (2)0.63388 (10)0.19185 (19)0.0442 (5)
H210.53950.67520.21260.053*
C221.0145 (3)0.93964 (14)0.6489 (3)0.0714 (8)
H22A1.04430.98530.62540.107*
H22B1.10240.91160.66680.107*
H22C0.95870.94280.71960.107*
C230.2984 (3)0.55176 (15)0.0820 (2)0.0655 (7)
H23A0.20000.57220.09070.098*
H23B0.29100.50290.09880.098*
H23C0.36120.57330.13800.098*
C240.8710 (2)0.56923 (9)0.58305 (17)0.0382 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0454 (8)0.0660 (9)0.0386 (7)0.0022 (7)0.0023 (6)0.0111 (7)
O20.0724 (11)0.0429 (8)0.0654 (10)0.0117 (8)0.0065 (8)0.0014 (7)
N10.0349 (8)0.0502 (9)0.0343 (8)0.0089 (7)0.0056 (6)0.0083 (7)
N20.0458 (10)0.0572 (10)0.0466 (10)0.0162 (8)0.0088 (8)0.0144 (8)
N30.0421 (10)0.0568 (11)0.0581 (11)0.0144 (9)0.0115 (8)0.0075 (9)
C10.0336 (10)0.0381 (9)0.0371 (9)0.0060 (7)0.0013 (7)0.0007 (7)
C20.0316 (9)0.0349 (9)0.0357 (9)0.0037 (7)0.0035 (7)0.0014 (7)
C30.0336 (9)0.0382 (9)0.0286 (8)0.0025 (7)0.0034 (7)0.0000 (7)
C40.0303 (9)0.0405 (9)0.0360 (9)0.0011 (7)0.0010 (7)0.0013 (7)
C50.0366 (10)0.0455 (10)0.0408 (10)0.0016 (8)0.0022 (8)0.0026 (8)
C60.0351 (11)0.0765 (15)0.0558 (13)0.0034 (10)0.0059 (9)0.0201 (12)
C70.0354 (11)0.0706 (15)0.0597 (13)0.0117 (10)0.0049 (10)0.0143 (11)
C80.0324 (10)0.0657 (13)0.0451 (11)0.0077 (9)0.0068 (8)0.0106 (10)
C90.0320 (10)0.0439 (10)0.0378 (9)0.0035 (8)0.0020 (7)0.0022 (8)
C100.0315 (9)0.0371 (9)0.0314 (8)0.0043 (7)0.0009 (7)0.0027 (7)
C110.0536 (12)0.0398 (10)0.0316 (9)0.0038 (9)0.0060 (8)0.0026 (7)
C120.0633 (14)0.0403 (10)0.0375 (10)0.0057 (9)0.0010 (9)0.0030 (8)
C130.0467 (11)0.0379 (10)0.0479 (11)0.0001 (8)0.0089 (9)0.0024 (8)
C140.0403 (11)0.0545 (12)0.0437 (11)0.0078 (9)0.0036 (9)0.0047 (9)
C150.0387 (10)0.0493 (11)0.0355 (9)0.0012 (8)0.0035 (8)0.0043 (8)
C160.0336 (9)0.0431 (10)0.0357 (9)0.0021 (8)0.0026 (7)0.0025 (7)
C170.0452 (11)0.0409 (10)0.0450 (11)0.0061 (8)0.0026 (9)0.0063 (8)
C180.0514 (13)0.0439 (11)0.0513 (12)0.0087 (9)0.0038 (10)0.0053 (9)
C190.0422 (11)0.0561 (12)0.0406 (10)0.0000 (9)0.0004 (9)0.0019 (9)
C200.0460 (12)0.0511 (11)0.0437 (11)0.0058 (9)0.0001 (9)0.0095 (9)
C210.0439 (11)0.0380 (10)0.0494 (11)0.0071 (8)0.0043 (9)0.0018 (8)
C220.0638 (17)0.0592 (15)0.090 (2)0.0223 (13)0.0006 (14)0.0020 (14)
C230.0625 (16)0.0885 (18)0.0436 (12)0.0079 (14)0.0076 (11)0.0030 (12)
C240.0376 (11)0.0369 (9)0.0390 (9)0.0016 (8)0.0041 (8)0.0028 (7)
Geometric parameters (Å, º) top
O1—C51.227 (2)C10—C111.390 (3)
O2—C131.375 (2)C10—C151.377 (3)
O2—C221.416 (3)C11—H110.9500
N1—C11.396 (2)C11—C121.379 (3)
N1—C91.394 (2)C12—H120.9500
N1—C161.448 (2)C12—C131.382 (3)
N2—H2A0.8618C13—C141.380 (3)
N2—H2B0.8621C14—H140.9500
N2—C11.358 (2)C14—C151.395 (3)
N3—C241.148 (3)C15—H150.9500
C1—C21.359 (3)C16—C171.388 (3)
C2—C31.514 (2)C16—C211.383 (3)
C2—C241.414 (3)C17—H170.9500
C3—H31.0000C17—C181.383 (3)
C3—C41.513 (3)C18—H180.9500
C3—C101.528 (3)C18—C191.387 (3)
C4—C51.461 (3)C19—C201.384 (3)
C4—C91.354 (3)C19—C231.505 (3)
C5—C61.505 (3)C20—H200.9500
C6—H6A0.9900C20—C211.381 (3)
C6—H6B0.9900C21—H210.9500
C6—C71.518 (3)C22—H22A0.9800
C7—H7A0.9900C22—H22B0.9800
C7—H7B0.9900C22—H22C0.9800
C7—C81.521 (3)C23—H23A0.9800
C8—H8A0.9900C23—H23B0.9800
C8—H8B0.9900C23—H23C0.9800
C8—C91.507 (3)
C13—O2—C22116.38 (19)C15—C10—C11118.20 (18)
C1—N1—C16118.64 (15)C10—C11—H11119.6
C9—N1—C1119.96 (15)C12—C11—C10120.78 (18)
C9—N1—C16121.40 (15)C12—C11—H11119.6
H2A—N2—H2B109.2C11—C12—H12119.8
C1—N2—H2A109.2C11—C12—C13120.35 (19)
C1—N2—H2B109.7C13—C12—H12119.8
N2—C1—N1115.82 (16)O2—C13—C12115.33 (19)
N2—C1—C2124.27 (17)O2—C13—C14124.8 (2)
C2—C1—N1119.91 (17)C14—C13—C12119.91 (19)
C1—C2—C3122.61 (16)C13—C14—H14120.5
C1—C2—C24118.73 (17)C13—C14—C15119.03 (19)
C24—C2—C3118.42 (15)C15—C14—H14120.5
C2—C3—H3107.9C10—C15—C14121.71 (18)
C2—C3—C10112.45 (15)C10—C15—H15119.1
C4—C3—C2108.71 (15)C14—C15—H15119.1
C4—C3—H3107.9C17—C16—N1119.85 (18)
C4—C3—C10111.90 (15)C21—C16—N1120.25 (18)
C10—C3—H3107.9C21—C16—C17119.89 (18)
C5—C4—C3117.12 (16)C16—C17—H17120.2
C9—C4—C3121.81 (17)C18—C17—C16119.51 (19)
C9—C4—C5121.07 (18)C18—C17—H17120.2
O1—C5—C4120.93 (18)C17—C18—H18119.4
O1—C5—C6121.09 (19)C17—C18—C19121.27 (19)
C4—C5—C6117.97 (17)C19—C18—H18119.4
C5—C6—H6A109.1C18—C19—C23120.7 (2)
C5—C6—H6B109.1C20—C19—C18118.15 (19)
C5—C6—C7112.41 (19)C20—C19—C23121.1 (2)
H6A—C6—H6B107.9C19—C20—H20119.3
C7—C6—H6A109.1C21—C20—C19121.40 (19)
C7—C6—H6B109.1C21—C20—H20119.3
C6—C7—H7A109.5C16—C21—H21120.2
C6—C7—H7B109.5C20—C21—C16119.67 (18)
C6—C7—C8110.6 (2)C20—C21—H21120.2
H7A—C7—H7B108.1O2—C22—H22A109.5
C8—C7—H7A109.5O2—C22—H22B109.5
C8—C7—H7B109.5O2—C22—H22C109.5
C7—C8—H8A109.3H22A—C22—H22B109.5
C7—C8—H8B109.3H22A—C22—H22C109.5
H8A—C8—H8B107.9H22B—C22—H22C109.5
C9—C8—C7111.70 (17)C19—C23—H23A109.5
C9—C8—H8A109.3C19—C23—H23B109.5
C9—C8—H8B109.3C19—C23—H23C109.5
N1—C9—C8116.42 (16)H23A—C23—H23B109.5
C4—C9—N1120.99 (17)H23A—C23—H23C109.5
C4—C9—C8122.56 (18)H23B—C23—H23C109.5
C11—C10—C3120.53 (16)N3—C24—C2179.1 (2)
C15—C10—C3121.27 (16)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C10–C15 and C16–C21 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2A···N3i0.862.313.016 (3)140
C11—H11···O1ii0.952.703.408 (2)132
C21—H21···O1ii0.952.683.433 (3)136
C22—H22C···N3iii0.982.813.407 (4)120
C23—H23B···O2iv0.982.763.484 (3)131
C21—H21···Cg3v0.952.993.571 (2)120
C22—H22B···Cg4vi0.982.923.695 (3)137
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x+2, y+1/2, z+3/2; (iv) x+1, y1/2, z+1/2; (v) x, y+1/2, z3/2; (vi) x+1, y+1/2, z1/2.
 

Funding information

JPJ would like to acknowledge the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAlqasoumi, S. I., Al-Taweel, A. M., Alafeefy, A. M., Hamed, M. M., Noaman, E. & Ghorab, M. M. (2009). Bioorg. Med. Chem. Lett. 19, 6939–6942.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAl-Said, M. S., Ghorab, M. M., Al-Dosari, M. S. & Hamed, M. M. (2011). Eur. J. Med. Chem. 46, 201–207.  Web of Science CAS PubMed Google Scholar
First citationAydin, F., Safak, C., Simşek, R., Erol, K., Ulgen, M. & Linden, A. (2006). Pharmazie, 61, 655–659.  Web of Science PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGunduz, M. G., Celebi, S., Kaygisiz, B., Simsek, R., Erol, K. & Safak, C. (2009). Lat. Am. J. Pharm. 28, 922–926.  CAS Google Scholar
First citationJoshi, V. M. & Pawar, R. P. (2013). Eur. Chem. Bull. 2, 679–682.  CAS Google Scholar
First citationKalaria, P. N., Satasia, S. P. & Raval, D. K. (2014). Eur. J. Med. Chem. 78, 207–216.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMohamed, S. K., Akkurt, M., Jasinski, J. P., Allah, O. A. A. A. & Albayati, M. R. (2015). Acta Cryst. E71, o949–o950.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, N. A., Anwar, M. M., El-serwy, W. S. & Elsherbiny, M. (2012). Pharma Chemica, 4, 2055–2067.  CAS Google Scholar
First citationMuli, P. N., Chobe, S. S., Kamble, R. D., Hese, S. V., Mogle, P. P. & Dawane, B. S. (2014). World Journal of Pharmaceutical Research, 3, 728–735.  CAS Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSashidhara, K. V., Modukuri, R. K., Choudhary, D., Bhaskara Rao, K., Kumar, M., Khedgikar, V. & Trivedi, R. (2013). Eur. J. Med. Chem. 70, 802–810.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShah, N. K., Shah, N. M., Patel, M. P. & Patel, R. G. (2012). J. Serb. Chem. Soc. 77, 279–286.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimsek, R., Gunduz, M., Sırmagul, B., Safak, C., Erol, K. & Linden, A. (2006). Arzneim.-Forsch. Drug. Res. 56, 529–534.  CAS Google Scholar
First citationYang, X. H., Zhang, P. H., Zhou, Y. H., Liu, C. G., Lin, X. Y. & Cui, J. F. (2011). Arkivoc, 10, 327–337.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]