organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Butyl-5,5-di­phenyl­imidazolidine-2,4-dione

aLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: y.ramli@um5s.net.ma

Edited by O. Blacque, University of Zürich, Switzerland (Received 23 December 2017; accepted 8 January 2018; online 12 January 2018)

In the title compound, C19H20N2O2, the phenyl rings are inclined to the five-membered ring by 58.08 (6) and 66.31 (5)°. In the crystal, pairwise N—H⋯O and C—H⋯N hydrogen bonds form chains along the a-axis direction which are connected into layers approximately parallel to [010] by C—H⋯O hydrogen bonds. The layers are connected by C—H⋯π(ring) inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Hydantoin is an important nucleus found in numerous natural products and in several clinically important medicines. One of the most significant hydantoin derivatives is 5,5-di­phenyl­imidazolidine-2,4-dione (phenytoin). As part of our ongoing studies of phenytoin derivatives (Ramli et al., 2017a[Ramli, Y., Akrad, R., Guerrab, W., Taoufik, J., Ansar, M. & Mague, J. T. (2017a). IUCrData, 2, x170098.],b[Ramli, Y., Guerrab, W., Moussaif, A., Taoufik, J., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x171041.]; Akrad et al., 2017[Akrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). IUCrData, 2, x170033.]; Guerrab et al., 2017a[Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017a). IUCrData, 2, x171534.],b[Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017b). IUCrData, 2, x171591.]), the title compound was prepared and its crystal structure is reported here.

In the title mol­ecule, Fig. 1[link], the imidazolidine-2,4-dione ring has phenyl groups attached to the 5-position. The C8–C13 and C14–C19 rings are inclined to the five-membered ring by 58.08 (6) and 66.31 (5)°, respectively.

[Figure 1]
Figure 1
The title mol­ecule with labelling scheme and 50% probability ellipsoids.

In the crystal, pairwise N2—H2⋯O2 hydrogen bonds (Table 1[link]) form centrosymmetric dimers, which are connected into chains along the a- axis direction by pairwise C17—H17⋯N1 hydrogen bonds. The chains are then connected into thick layers approximately parallel to [010] by C18—H18⋯O1 hydrogen bonds (Table 1[link] and Fig. 2[link]). The layers, in turn, are connected along the b-axis direction by C5—H5ACg3 inter­actions (Table 2[link] and Figs. 3[link] and 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C14–C19 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.905 (15) 1.907 (15) 2.8030 (10) 170.0 (13)
C17—H17⋯N1ii 0.969 (14) 2.682 (15) 3.4320 (13) 134.5 (11)
C18—H18⋯O1iii 0.971 (14) 2.467 (15) 3.4231 (13) 167.9 (13)
C5—H5ACg3iv 1.020 (15) 2.706 (15) 3.6276 (11) 150.3 (13)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) -x, -y+1, -z; (iv) x+1, y+1, z.

Table 2
Experimental details

Crystal data
Chemical formula C19H20N2O2
Mr 308.37
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.4920 (4), 8.5213 (4), 12.6353 (6)
α, β, γ (°) 91.900 (1), 99.410 (1), 115.117 (1)
V3) 811.33 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.45 × 0.26 × 0.21
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.91, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 15814, 4333, 3688
Rint 0.023
(sin θ/λ)max−1) 0.688
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.120, 1.08
No. of reflections 4333
No. of parameters 288
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.47, −0.19
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).
[Figure 2]
Figure 2
Detail of the layer formation (plan view) viewed along the b-axis direction. N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds are shown, respectively, as blue, black and pink dashed lines.
[Figure 3]
Figure 3
Elevation view of the layers seen along the c-axis direction. C—H⋯N hydrogen bonds and C—H⋯π(ring) inter­actions are shown, respectively, as pink and green dashed lines.
[Figure 4]
Figure 4
Packing viewed along the c-axis direction. Inter­molecular inter­actions are depicted as in Fig. 3[link].

Synthesis and crystallization

To a solution of 5,5-di­phenyl­imidazolidine-2,4-dione (1 g), one equivalent of butyl bromide in absolute di­methyl­formamide (DMF) was added and the resulting solution heated under reflux for 3 h in the presence of 1.3 equivalents of K2CO3. The reaction mixture was filtered while hot, and the solvent evaporated under reduced pressure. The residue obtained was dried and crystallized from an ethanol solution to yield colourless block-shaped crystals of the title compound (Guerrab et al., 2017c[Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017c). IUCrData, 2, x171693.],d[Guerrab, W., Mague, J. T., Akrad, R., Ansar, M., Taoufik, J. & Ramli, Y. (2017d). IUCrData, 2, x171808.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-Butyl-5,5-diphenylimidazolidine-2,4-dione top
Crystal data top
C19H20N2O2Z = 2
Mr = 308.37F(000) = 328
Triclinic, P1Dx = 1.262 Mg m3
a = 8.4920 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5213 (4) ÅCell parameters from 9307 reflections
c = 12.6353 (6) Åθ = 2.7–29.3°
α = 91.900 (1)°µ = 0.08 mm1
β = 99.410 (1)°T = 100 K
γ = 115.117 (1)°Column, colourless
V = 811.33 (7) Å30.45 × 0.26 × 0.21 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4333 independent reflections
Radiation source: fine-focus sealed tube3688 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.3333 pixels mm-1θmax = 29.3°, θmin = 2.7°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1111
Tmin = 0.91, Tmax = 0.98l = 1717
15814 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.120All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.080P)2 + 0.0762P]
where P = (Fo2 + 2Fc2)/3
4333 reflections(Δ/σ)max < 0.001
288 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42900 (9)0.63578 (9)0.10520 (5)0.01768 (16)
O20.68520 (9)0.68073 (9)0.45909 (5)0.01767 (16)
N10.59096 (10)0.69754 (10)0.27850 (6)0.01357 (17)
N20.41937 (10)0.47738 (10)0.35721 (6)0.01472 (17)
H20.3814 (19)0.4141 (19)0.4117 (12)0.033 (4)*
C10.32148 (11)0.44377 (11)0.24628 (6)0.01266 (18)
C20.44877 (12)0.60095 (11)0.19723 (7)0.01304 (18)
C30.57377 (12)0.62163 (11)0.37502 (7)0.01326 (18)
C40.74278 (12)0.85862 (12)0.26622 (7)0.01638 (19)
H4A0.7735 (16)0.8419 (15)0.1980 (10)0.018 (3)*
H4B0.8414 (16)0.8716 (16)0.3248 (10)0.019 (3)*
C50.70205 (14)1.01678 (13)0.26977 (8)0.0205 (2)
H5A0.8127 (19)1.1209 (19)0.2579 (11)0.030 (3)*
H5B0.6049 (17)0.9971 (17)0.2054 (10)0.025 (3)*
C60.65343 (16)1.05668 (14)0.37531 (9)0.0271 (2)
H6A0.618 (2)1.154 (2)0.3626 (12)0.039 (4)*
H6B0.549 (2)0.952 (2)0.3879 (12)0.037 (4)*
C70.80448 (19)1.11144 (16)0.47267 (9)0.0340 (3)
H7A0.913 (2)1.221 (2)0.4622 (13)0.047 (4)*
H7B0.769 (2)1.139 (2)0.5382 (14)0.048 (4)*
H7C0.8433 (19)1.016 (2)0.4869 (11)0.035 (4)*
C80.29414 (11)0.26678 (12)0.19392 (7)0.01378 (18)
C90.21611 (13)0.12177 (13)0.24851 (8)0.0198 (2)
H90.1819 (18)0.1379 (18)0.3189 (11)0.031 (4)*
C100.18844 (14)0.04268 (13)0.20653 (9)0.0237 (2)
H100.1318 (19)0.1425 (19)0.2477 (12)0.034 (4)*
C110.23838 (14)0.06393 (13)0.10958 (9)0.0237 (2)
H110.221 (2)0.183 (2)0.0800 (12)0.041 (4)*
C120.31514 (15)0.07902 (14)0.05488 (8)0.0247 (2)
H120.354 (2)0.065 (2)0.0151 (12)0.040 (4)*
C130.34288 (14)0.24465 (13)0.09651 (7)0.0193 (2)
H130.4002 (19)0.3469 (19)0.0586 (11)0.032 (4)*
C140.14426 (12)0.45375 (11)0.23816 (7)0.01344 (18)
C150.09485 (13)0.50500 (12)0.32794 (7)0.01705 (19)
H150.1725 (17)0.5326 (16)0.4004 (10)0.021 (3)*
C160.06848 (14)0.51135 (13)0.31780 (8)0.0214 (2)
H160.1032 (18)0.5442 (18)0.3810 (11)0.027 (3)*
C170.18115 (13)0.46744 (13)0.21804 (9)0.0217 (2)
H170.2961 (18)0.4682 (18)0.2119 (11)0.031 (3)*
C180.13172 (13)0.41824 (13)0.12736 (8)0.0209 (2)
H180.2136 (19)0.3874 (18)0.0584 (11)0.028 (3)*
C190.03005 (13)0.41048 (13)0.13743 (7)0.0175 (2)
H190.0628 (17)0.3725 (17)0.0729 (10)0.024 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0197 (3)0.0190 (3)0.0128 (3)0.0067 (3)0.0035 (2)0.0050 (2)
O20.0153 (3)0.0192 (3)0.0132 (3)0.0032 (3)0.0005 (2)0.0027 (2)
N10.0135 (4)0.0134 (3)0.0123 (3)0.0040 (3)0.0033 (3)0.0033 (3)
N20.0143 (4)0.0156 (4)0.0107 (3)0.0034 (3)0.0013 (3)0.0035 (3)
C10.0132 (4)0.0141 (4)0.0098 (4)0.0051 (3)0.0022 (3)0.0028 (3)
C20.0137 (4)0.0135 (4)0.0129 (4)0.0065 (3)0.0037 (3)0.0021 (3)
C30.0142 (4)0.0143 (4)0.0124 (4)0.0067 (3)0.0036 (3)0.0027 (3)
C40.0140 (4)0.0156 (4)0.0162 (4)0.0025 (3)0.0046 (3)0.0039 (3)
C50.0218 (5)0.0143 (4)0.0223 (5)0.0051 (4)0.0032 (4)0.0046 (3)
C60.0298 (6)0.0192 (5)0.0332 (6)0.0099 (5)0.0116 (4)0.0011 (4)
C70.0483 (8)0.0230 (6)0.0223 (5)0.0078 (5)0.0078 (5)0.0022 (4)
C80.0115 (4)0.0138 (4)0.0148 (4)0.0049 (3)0.0009 (3)0.0013 (3)
C90.0210 (5)0.0171 (5)0.0219 (5)0.0072 (4)0.0087 (4)0.0044 (3)
C100.0250 (5)0.0153 (5)0.0300 (5)0.0075 (4)0.0065 (4)0.0047 (4)
C110.0262 (5)0.0175 (5)0.0269 (5)0.0111 (4)0.0007 (4)0.0021 (4)
C120.0329 (6)0.0254 (5)0.0182 (5)0.0151 (5)0.0054 (4)0.0006 (4)
C130.0239 (5)0.0189 (5)0.0156 (4)0.0096 (4)0.0045 (3)0.0028 (3)
C140.0130 (4)0.0118 (4)0.0146 (4)0.0044 (3)0.0030 (3)0.0029 (3)
C150.0175 (4)0.0153 (4)0.0169 (4)0.0059 (4)0.0033 (3)0.0000 (3)
C160.0211 (5)0.0189 (5)0.0255 (5)0.0090 (4)0.0082 (4)0.0011 (4)
C170.0165 (5)0.0191 (5)0.0312 (5)0.0100 (4)0.0031 (4)0.0000 (4)
C180.0183 (5)0.0224 (5)0.0216 (5)0.0101 (4)0.0005 (4)0.0022 (4)
C190.0176 (4)0.0202 (5)0.0149 (4)0.0088 (4)0.0021 (3)0.0025 (3)
Geometric parameters (Å, º) top
O1—C21.2123 (11)C8—C131.3925 (13)
O2—C31.2283 (10)C8—C91.3973 (13)
N1—C21.3728 (11)C9—C101.3896 (14)
N1—C31.3991 (11)C9—H91.003 (14)
N1—C41.4654 (11)C10—C111.3905 (15)
N2—C31.3408 (12)C10—H100.995 (15)
N2—C11.4587 (10)C11—C121.3840 (15)
N2—H20.905 (15)C11—H111.010 (16)
C1—C141.5301 (12)C12—C131.3972 (14)
C1—C81.5338 (12)C12—H121.011 (15)
C1—C21.5465 (12)C13—H130.984 (15)
C4—C51.5281 (14)C14—C151.3900 (13)
C4—H4A0.964 (12)C14—C191.3993 (12)
C4—H4B0.988 (12)C15—C161.3961 (14)
C5—C61.5275 (15)C15—H150.992 (12)
C5—H5A1.020 (15)C16—C171.3837 (14)
C5—H5B1.013 (13)C16—H160.967 (14)
C6—C71.5212 (17)C17—C181.3927 (14)
C6—H6A1.004 (15)C17—H170.969 (14)
C6—H6B0.997 (15)C18—C191.3886 (14)
C7—H7A1.028 (17)C18—H180.971 (14)
C7—H7B0.981 (17)C19—H190.990 (13)
C7—H7C1.007 (15)
C2—N1—C3111.33 (7)C6—C7—H7C111.7 (8)
C2—N1—C4124.68 (7)H7A—C7—H7C107.8 (13)
C3—N1—C4123.98 (7)H7B—C7—H7C107.2 (13)
C3—N2—C1113.32 (7)C13—C8—C9119.30 (8)
C3—N2—H2120.8 (9)C13—C8—C1123.58 (8)
C1—N2—H2125.7 (9)C9—C8—C1117.12 (8)
N2—C1—C14112.71 (7)C10—C9—C8120.43 (9)
N2—C1—C8110.20 (7)C10—C9—H9120.3 (8)
C14—C1—C8110.87 (7)C8—C9—H9119.3 (8)
N2—C1—C2100.48 (7)C9—C10—C11120.06 (9)
C14—C1—C2108.75 (7)C9—C10—H10117.9 (9)
C8—C1—C2113.48 (7)C11—C10—H10122.1 (9)
O1—C2—N1125.51 (8)C12—C11—C10119.82 (9)
O1—C2—C1127.53 (8)C12—C11—H11120.2 (9)
N1—C2—C1106.96 (7)C10—C11—H11120.0 (9)
O2—C3—N2128.06 (8)C11—C12—C13120.40 (10)
O2—C3—N1124.03 (8)C11—C12—H12120.5 (9)
N2—C3—N1107.90 (7)C13—C12—H12119.1 (9)
N1—C4—C5112.24 (8)C8—C13—C12119.99 (9)
N1—C4—H4A107.6 (7)C8—C13—H13119.5 (8)
C5—C4—H4A110.0 (7)C12—C13—H13120.5 (8)
N1—C4—H4B106.1 (7)C15—C14—C19119.54 (8)
C5—C4—H4B112.1 (7)C15—C14—C1121.67 (8)
H4A—C4—H4B108.6 (10)C19—C14—C1118.79 (8)
C6—C5—C4114.43 (8)C14—C15—C16120.17 (9)
C6—C5—H5A109.5 (8)C14—C15—H15120.6 (7)
C4—C5—H5A106.6 (8)C16—C15—H15119.1 (7)
C6—C5—H5B111.6 (8)C17—C16—C15119.97 (9)
C4—C5—H5B107.6 (7)C17—C16—H16120.4 (8)
H5A—C5—H5B106.7 (11)C15—C16—H16119.7 (8)
C7—C6—C5113.73 (10)C16—C17—C18120.27 (9)
C7—C6—H6A110.2 (9)C16—C17—H17119.7 (8)
C5—C6—H6A105.1 (9)C18—C17—H17120.1 (8)
C7—C6—H6B110.1 (8)C19—C18—C17119.85 (9)
C5—C6—H6B108.8 (8)C19—C18—H18121.6 (8)
H6A—C6—H6B108.6 (13)C17—C18—H18118.6 (8)
C6—C7—H7A111.5 (9)C18—C19—C14120.20 (9)
C6—C7—H7B111.1 (10)C18—C19—H19119.3 (7)
H7A—C7—H7B107.4 (13)C14—C19—H19120.5 (7)
C3—N2—C1—C14115.91 (8)N2—C1—C8—C953.68 (10)
C3—N2—C1—C8119.66 (8)C14—C1—C8—C971.80 (10)
C3—N2—C1—C20.32 (9)C2—C1—C8—C9165.47 (8)
C3—N1—C2—O1179.80 (8)C13—C8—C9—C100.43 (15)
C4—N1—C2—O10.41 (15)C1—C8—C9—C10179.46 (9)
C3—N1—C2—C10.76 (10)C8—C9—C10—C110.02 (16)
C4—N1—C2—C1179.85 (8)C9—C10—C11—C120.21 (16)
N2—C1—C2—O1179.69 (9)C10—C11—C12—C130.04 (17)
C14—C1—C2—O161.17 (12)C9—C8—C13—C120.60 (14)
C8—C1—C2—O162.72 (12)C1—C8—C13—C12179.28 (9)
N2—C1—C2—N10.27 (9)C11—C12—C13—C80.37 (16)
C14—C1—C2—N1118.25 (8)N2—C1—C14—C155.28 (12)
C8—C1—C2—N1117.86 (8)C8—C1—C14—C15129.34 (9)
C1—N2—C3—O2178.49 (9)C2—C1—C14—C15105.23 (9)
C1—N2—C3—N10.79 (10)N2—C1—C14—C19174.92 (8)
C2—N1—C3—O2178.34 (8)C8—C1—C14—C1950.86 (11)
C4—N1—C3—O21.05 (14)C2—C1—C14—C1974.57 (10)
C2—N1—C3—N20.97 (10)C19—C14—C15—C160.70 (14)
C4—N1—C3—N2179.63 (8)C1—C14—C15—C16179.50 (8)
C2—N1—C4—C579.83 (11)C14—C15—C16—C170.34 (15)
C3—N1—C4—C5100.86 (10)C15—C16—C17—C180.54 (15)
N1—C4—C5—C660.84 (11)C16—C17—C18—C191.06 (16)
C4—C5—C6—C765.38 (12)C17—C18—C19—C140.70 (15)
N2—C1—C8—C13126.20 (9)C15—C14—C19—C180.18 (14)
C14—C1—C8—C13108.32 (10)C1—C14—C19—C18179.99 (8)
C2—C1—C8—C1314.41 (12)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C14–C19 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.905 (15)1.907 (15)2.8030 (10)170.0 (13)
C17—H17···N1ii0.969 (14)2.682 (15)3.4320 (13)134.5 (11)
C18—H18···O1iii0.971 (14)2.467 (15)3.4231 (13)167.9 (13)
C5—H5A···Cg3iv1.020 (15)2.706 (15)3.6276 (11)150.3 (13)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x, y+1, z; (iv) x+1, y+1, z.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAkrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). IUCrData, 2, x170033.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017a). IUCrData, 2, x171534.  Google Scholar
First citationGuerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017b). IUCrData, 2, x171591.  Google Scholar
First citationGuerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017c). IUCrData, 2, x171693.  Google Scholar
First citationGuerrab, W., Mague, J. T., Akrad, R., Ansar, M., Taoufik, J. & Ramli, Y. (2017d). IUCrData, 2, x171808.  Google Scholar
First citationRamli, Y., Akrad, R., Guerrab, W., Taoufik, J., Ansar, M. & Mague, J. T. (2017a). IUCrData, 2, x170098.  Google Scholar
First citationRamli, Y., Guerrab, W., Moussaif, A., Taoufik, J., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x171041.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]