organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-5-{4-[2-(5-Ethyl­pyridin-2-yl)eth­­oxy]benzyl­­idene}thia­zolidine-2,4-dione

aAnalytical Research, Custom Pharmaceutical Services, Dr. Reddy's Laboratories Ltd., Bollaram Road, Miyapur, Hyderabad 500 049, India, bCentre for Chemical Sciences & Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500 085, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: balakumarank@drreddys.com, chakkaravarthi_2005@yahoo.com

Edited by O. Blacque, University of Zürich, Switzerland (Received 20 December 2017; accepted 23 December 2017; online 9 January 2018)

In the title compound, C19H18N2O3S, the thia­zolidine ring makes dihedral angles of 46.97 (8) and 7.19 (9)° with the pyridine and benzene rings, respectively. The intra­molecular structure is stabilized by a weak C—H⋯S hydrogen bond, which generates a S(6) graph-set motif, and a weak C—H⋯O contact. In the crystal, N—H⋯N and C—H⋯O hydrogen bonds leads to infinite one-dimensional chains along (201) and generate an R22(7) ring-set motif. The crystal structure is further consolidated by weak ππ [centroid-to-centroid distance = 3.8204 (10) Å] inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Thia­zolidinediones are known to sensitize tissues to insulin have been developed and clinically used as anti­diabetic agents. They have been shown to reduce plasma glucose and lipid levels and are used for the treatment of type 2 diabetes (Day, 1999[Day, C. (1999). Diabet. Med. 16, 179-192.]; Spiegelman, 1998[Spiegelman, B. M. (1998). Diabetes, 47, 507-514.]). In view of this biological importance, the crystal structure of the title compound (Fig. 1[link]) been determined and the results are presented here.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling and 30% probability displacement ellipsoids.

The geometric parameters for the title compound agree with those of reported similar structures (Vijayakumar et al., 2012[Vijayakumar, S., Murugavel, S., Kannan, D. & Bakthadoss, M. (2012). Acta Cryst. E68, o156-o157.]; Xiong et al., 2011[Xiong, L.-Y., Wang, T.-F., Zheng, L.-P., Zhang, C. & Wang, F.-C. (2011). Acta Cryst. E67, o16.]). The thia­zolidine ring is planar [r.m.s. deviation = 0.007 (1) Å] and makes dihedral angles of 46.97 (8) and 7.19 (9)° with the pyridine and benzene rings, respectively. The intra­molecular structure is stabilized by a weak C—H⋯S hydrogen bond, which generates an S(6) graph-set motif (Fig. 1[link]) and a weak C—H⋯O contact (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯S1 0.93 2.63 3.3166 (16) 131
C16—H16⋯O2 0.93 2.49 2.861 (2) 104
N2—H2⋯N1i 0.86 (1) 2.00 (1) 2.8474 (19) 169 (2)
C7—H7⋯O2ii 0.93 2.53 3.310 (2) 142
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

In the crystal, N—H⋯N and C—H⋯O hydrogen bonds generate an [R_{2}^{2}](7) motif (Figs. 2[link] and 3[link]) and lead to the formation of infinite chains along (201). The structure is further consolidated by a weak ππ [centroid-to-centroid distance = 3.8204 (10) Å] inter­action.

[Figure 2]
Figure 2
The crystal packing viewed along the a axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3]
Figure 3
Partial packing of the crystal structure showing the [R_{2}^{2}](7) graph-set motif.

Synthesis and crystallization

4-[2-(5-Ethyl-2-pyrid­yl)eth­oxy]benzaldehyde (600 mg, 2.32 mmol) and 2, 4- thio­zolidindione (299 mg, 2.55 mmol) were dissolved in methanol (7 ml) together with a catalytic amount of piperidine (1.85 mmol). The yellow mixture was heated under reflux overnight. The suspension was acidified with acetic acid (140 mg, 2.3 mmol) and stirred for one additional hour after the addition of methanol (5 ml). The mixture was cooled in an ice bath, and the resulting solid was filtered, washed with methanol and dried under vacuum. Single crystals suitable for X-ray diffraction studies were obtained by slow evaporation of a solution of the title compound in dimethyl formamide at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H18N2O3S
Mr 354.41
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 7.6756 (2), 13.6762 (3), 17.6561 (4)
β (°) 110.442 (2)
V3) 1736.70 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.83
Crystal size (mm) 0.32 × 0.28 × 0.24
 
Data collection
Diffractometer Bruker APEX2 CCD Diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.514, 0.668
No. of measured, independent and observed [I > 2σ(I)] reflections 6076, 3314, 2894
Rint 0.013
(sin θ/λ)max−1) 0.616
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.115, 1.05
No. of reflections 3314
No. of parameters 231
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.22
Computer programs: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2016/6 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.] and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS2016/6 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2016/6 (Sheldrick, 2015 and PLATON (Spek, 2009).

(E)-5-{4-[2-(5-Ethylpyridin-2-yl)ethoxy]benzylidene}thiazolidine- 2,4-dione top
Crystal data top
C19H18N2O3SF(000) = 744
Mr = 354.41Dx = 1.355 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 7.6756 (2) ÅCell parameters from 2884 reflections
b = 13.6762 (3) Åθ = 3.2–71.7°
c = 17.6561 (4) ŵ = 1.83 mm1
β = 110.442 (2)°T = 295 K
V = 1736.70 (7) Å3Needle, colourless
Z = 40.32 × 0.28 × 0.24 mm
Data collection top
Bruker APEX2 CCD Diffractometer2894 reflections with I > 2σ(I)
ω and φ scansRint = 0.013
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 71.7°, θmin = 4.2°
Tmin = 0.514, Tmax = 0.668h = 94
6076 measured reflectionsk = 1616
3314 independent reflectionsl = 1921
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.3059P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3314 reflectionsΔρmax = 0.19 e Å3
231 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. C-bound H atoms were placed in calculated positions and allowed to ride on their carrier atoms, with C—H = 0.93 Å (aromatic CH), 0.97 Å for CH2, or 0.96 Å (methyl CH), and with Uiso = 1.5Ueq(methyl C) and Uiso = 1.2Ueq(aromatic and methylene C). H atom for NH group was located in difference-Fourier maps and refined with a distance restraint N—H = 0.86 (1) Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2212 (3)0.88704 (17)0.36053 (12)0.0697 (6)
H1A0.1196170.8453720.3593110.105*
H1B0.2031200.9097320.3068650.105*
H1C0.2265560.9420200.3950810.105*
C20.4006 (3)0.83058 (16)0.39245 (11)0.0587 (5)
H2A0.5011900.8715250.3894950.070*
H2B0.3925550.7740430.3582200.070*
C30.4456 (2)0.79665 (12)0.47862 (10)0.0442 (4)
C40.5414 (2)0.85396 (13)0.54435 (11)0.0508 (4)
H40.5841510.9153430.5363080.061*
C50.5742 (2)0.82076 (12)0.62190 (11)0.0494 (4)
H50.6385440.8593670.6662060.059*
C60.5099 (2)0.72919 (12)0.63283 (9)0.0420 (3)
C70.3879 (2)0.70610 (12)0.49544 (10)0.0444 (4)
H70.3239150.6660590.4520540.053*
C80.5444 (3)0.68656 (13)0.71561 (10)0.0527 (4)
H8A0.6024050.7353540.7565310.063*
H8B0.4269780.6679930.7206360.063*
C90.6681 (3)0.59875 (13)0.72869 (10)0.0500 (4)
H9A0.6056550.5473050.6912330.060*
H9B0.7814310.6156750.7191150.060*
C100.7955 (2)0.47641 (11)0.82902 (9)0.0407 (3)
C110.8401 (2)0.44784 (12)0.90892 (9)0.0441 (4)
H110.8148950.4895960.9453780.053*
C120.9210 (2)0.35853 (12)0.93485 (9)0.0447 (4)
H120.9508440.3407810.9887570.054*
C130.9592 (2)0.29401 (11)0.88119 (10)0.0416 (3)
C140.9161 (3)0.32535 (13)0.80174 (10)0.0521 (4)
H140.9415770.2839990.7651030.063*
C150.8372 (3)0.41527 (13)0.77520 (10)0.0521 (4)
H150.8122380.4345610.7219430.062*
C161.0401 (2)0.19743 (11)0.90231 (10)0.0453 (4)
H161.0420940.1607000.8582980.054*
C171.1124 (2)0.15138 (11)0.97345 (10)0.0418 (3)
C181.2431 (3)0.07767 (14)1.11410 (11)0.0561 (4)
C191.1908 (2)0.05152 (12)0.97676 (10)0.0447 (4)
N10.41797 (19)0.67230 (10)0.57002 (8)0.0433 (3)
N21.2580 (2)0.01780 (10)1.05478 (9)0.0493 (3)
H21.310 (3)0.0389 (10)1.0662 (14)0.076 (7)*
O10.71184 (17)0.56551 (9)0.80991 (6)0.0499 (3)
O21.1955 (2)0.00511 (9)0.91897 (8)0.0638 (4)
O31.2938 (3)0.06030 (13)1.18489 (8)0.0859 (6)
S11.13659 (7)0.19066 (3)1.07087 (3)0.05382 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0856 (15)0.0638 (12)0.0490 (10)0.0104 (11)0.0101 (10)0.0119 (9)
C20.0670 (11)0.0661 (12)0.0466 (10)0.0021 (9)0.0245 (9)0.0125 (9)
C30.0437 (8)0.0469 (9)0.0432 (8)0.0048 (7)0.0168 (7)0.0076 (7)
C40.0541 (10)0.0378 (8)0.0571 (10)0.0033 (7)0.0151 (8)0.0061 (7)
C50.0530 (9)0.0399 (8)0.0458 (9)0.0013 (7)0.0051 (7)0.0032 (7)
C60.0472 (8)0.0381 (8)0.0378 (8)0.0093 (6)0.0110 (6)0.0023 (6)
C70.0494 (9)0.0443 (8)0.0370 (8)0.0022 (7)0.0121 (7)0.0008 (6)
C80.0703 (11)0.0491 (10)0.0365 (8)0.0144 (8)0.0160 (8)0.0037 (7)
C90.0609 (10)0.0511 (10)0.0363 (8)0.0125 (8)0.0149 (7)0.0087 (7)
C100.0448 (8)0.0378 (8)0.0372 (8)0.0018 (6)0.0113 (6)0.0024 (6)
C110.0558 (9)0.0418 (8)0.0359 (7)0.0060 (7)0.0173 (7)0.0004 (6)
C120.0544 (9)0.0434 (8)0.0369 (7)0.0045 (7)0.0168 (7)0.0071 (6)
C130.0453 (8)0.0383 (8)0.0402 (8)0.0002 (6)0.0138 (6)0.0024 (6)
C140.0691 (11)0.0472 (9)0.0386 (8)0.0113 (8)0.0172 (8)0.0028 (7)
C150.0702 (11)0.0507 (10)0.0331 (8)0.0125 (8)0.0152 (7)0.0039 (7)
C160.0545 (9)0.0385 (8)0.0446 (9)0.0017 (7)0.0194 (7)0.0004 (7)
C170.0463 (8)0.0353 (8)0.0442 (8)0.0008 (6)0.0161 (7)0.0007 (6)
C180.0675 (11)0.0511 (10)0.0437 (9)0.0124 (8)0.0118 (8)0.0005 (8)
C190.0547 (9)0.0357 (8)0.0442 (8)0.0010 (7)0.0178 (7)0.0005 (7)
N10.0523 (8)0.0371 (7)0.0393 (7)0.0003 (5)0.0144 (6)0.0014 (5)
N20.0638 (9)0.0385 (7)0.0431 (7)0.0105 (6)0.0157 (6)0.0018 (6)
O10.0683 (8)0.0447 (6)0.0353 (6)0.0153 (5)0.0164 (5)0.0064 (5)
O20.1034 (11)0.0441 (7)0.0466 (7)0.0170 (7)0.0294 (7)0.0017 (6)
O30.1260 (14)0.0805 (11)0.0395 (7)0.0390 (10)0.0140 (8)0.0028 (7)
S10.0694 (3)0.0445 (3)0.0435 (2)0.01282 (19)0.0146 (2)0.00351 (17)
Geometric parameters (Å, º) top
C1—C21.506 (3)C10—O11.3638 (19)
C1—H1A0.9600C10—C151.384 (2)
C1—H1B0.9600C10—C111.387 (2)
C1—H1C0.9600C11—C121.374 (2)
C2—C31.511 (2)C11—H110.9300
C2—H2A0.9700C12—C131.398 (2)
C2—H2B0.9700C12—H120.9300
C3—C41.381 (2)C13—C141.392 (2)
C3—C71.382 (2)C13—C161.452 (2)
C4—C51.380 (2)C14—C151.379 (2)
C4—H40.9300C14—H140.9300
C5—C61.384 (2)C15—H150.9300
C5—H50.9300C16—C171.340 (2)
C6—N11.337 (2)C16—H160.9300
C6—C81.508 (2)C17—C191.486 (2)
C7—N11.337 (2)C17—S11.7488 (16)
C7—H70.9300C18—O31.196 (2)
C8—C91.498 (2)C18—N21.365 (2)
C8—H8A0.9700C18—S11.7897 (19)
C8—H8B0.9700C19—O21.213 (2)
C9—O11.4281 (19)C19—N21.371 (2)
C9—H9A0.9700N2—H20.862 (10)
C9—H9B0.9700
C2—C1—H1A109.5H9A—C9—H9B108.3
C2—C1—H1B109.5O1—C10—C15124.86 (14)
H1A—C1—H1B109.5O1—C10—C11115.53 (14)
C2—C1—H1C109.5C15—C10—C11119.61 (15)
H1A—C1—H1C109.5C12—C11—C10120.77 (15)
H1B—C1—H1C109.5C12—C11—H11119.6
C1—C2—C3113.09 (16)C10—C11—H11119.6
C1—C2—H2A109.0C11—C12—C13120.81 (14)
C3—C2—H2A109.0C11—C12—H12119.6
C1—C2—H2B109.0C13—C12—H12119.6
C3—C2—H2B109.0C14—C13—C12117.16 (15)
H2A—C2—H2B107.8C14—C13—C16117.96 (15)
C4—C3—C7116.41 (15)C12—C13—C16124.88 (15)
C4—C3—C2122.65 (16)C15—C14—C13122.60 (16)
C7—C3—C2120.92 (16)C15—C14—H14118.7
C5—C4—C3120.41 (16)C13—C14—H14118.7
C5—C4—H4119.8C14—C15—C10119.01 (15)
C3—C4—H4119.8C14—C15—H15120.5
C4—C5—C6119.07 (16)C10—C15—H15120.5
C4—C5—H5120.5C17—C16—C13131.94 (16)
C6—C5—H5120.5C17—C16—H16114.0
N1—C6—C5121.44 (15)C13—C16—H16114.0
N1—C6—C8116.24 (15)C16—C17—C19119.89 (15)
C5—C6—C8122.30 (15)C16—C17—S1130.14 (13)
N1—C7—C3124.28 (16)C19—C17—S1109.96 (11)
N1—C7—H7117.9O3—C18—N2126.78 (18)
C3—C7—H7117.9O3—C18—S1123.41 (15)
C9—C8—C6110.28 (14)N2—C18—S1109.81 (13)
C9—C8—H8A109.6O2—C19—N2123.91 (15)
C6—C8—H8A109.6O2—C19—C17125.37 (15)
C9—C8—H8B109.6N2—C19—C17110.72 (14)
C6—C8—H8B109.6C6—N1—C7118.38 (14)
H8A—C8—H8B108.1C18—N2—C19117.78 (14)
O1—C9—C8108.90 (14)C18—N2—H2121.0 (16)
O1—C9—H9A109.9C19—N2—H2121.2 (16)
C8—C9—H9A109.9C10—O1—C9117.26 (13)
O1—C9—H9B109.9C17—S1—C1891.72 (8)
C8—C9—H9B109.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···S10.932.633.3166 (16)131
C16—H16···O20.932.492.861 (2)104
N2—H2···N1i0.86 (1)2.00 (1)2.8474 (19)169 (2)
C7—H7···O2ii0.932.533.310 (2)142
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y+1/2, z1/2.
 

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDay, C. (1999). Diabet. Med. 16, 179–192.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpiegelman, B. M. (1998). Diabetes, 47, 507–514.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVijayakumar, S., Murugavel, S., Kannan, D. & Bakthadoss, M. (2012). Acta Cryst. E68, o156–o157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiong, L.-Y., Wang, T.-F., Zheng, L.-P., Zhang, C. & Wang, F.-C. (2011). Acta Cryst. E67, o16.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]