organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-1-(4-Bromo­phen­yl)-3-[3-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, cApplied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt, dNational Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, PO Box 6086, Riyadh 11442, Saudi Arabia, and eSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by M. Zeller, Purdue University, USA (Received 27 December 2017; accepted 11 January 2018; online 19 January 2018)

In the title compound, C27H20BrN5O, the dihedral angle between the heterocyclic rings is 10.2 (2)°. The phenyl ring bound to the triazole ring is disordered over two orientations in a 0.808 (4):0.192 (4) ratio. In the crystal, C—H⋯O inter­actions form chains along [010]. ππ inter­actions are observed between the phen­yl–pyrazolyl unit and the phenyl­ene group of a neighbouring mol­ecule.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrazolyltriazoles show some biological applications as anti­microbial (Abdel-Wahab et al., 2017[Abdel-Wahab, B. F., Khidre, R. E., Mohamed, H. A. & El-Hiti, G. A. (2017). Arab. J. Sci. Eng. 42, 2441-2448.]), anti-invasive and anti­mycobacterial agents (Kumar et al., 2003[Kumar, A., Husain, M., Prasad, A. K., Singh, I., Vats, A., Sharma, N. K., Sharma, S. K., Gupta, R. K., Olsen, C. E., Bracke, M. E., Gross, R. A. & Parmar, V. S. (2003). Indian J. Chem. 42B, 1950-1957.]). In addition, some pyrazolyltriazoles are useful as herbicides (Lang & Walworth, 1979[Lang, S. A. Jr & Walworth, B. L. (1979). US Patent 4169838.]).

The asymmetric unit comprises one mol­ecule (Fig. 1[link]). In the crystal, C—H⋯O hydrogen bonds link the mol­ecules, forming chains along [010] (Table 1[link], Fig. 2[link]). ππ inter­actions involving the phen­yl–pyrazolyl group and the phenyl­ene group of a neighbouring mol­ecule are also observed [centroid-to-centroid distance = 3.887 (3) Å; symmetry operator for the phenyl­ene group: [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.93 2.28 3.201 (4) 172
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
An ORTEP representation of the asymmetric unit showing 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
A segment of the crystal structure showing C—H⋯O and ππ inter­actions.

Synthesis and crystallization

The title compound was synthesized based on a literature procedure by the reaction of a mixture of 3-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazole-4-carb­aldehyde and 1-(4-bromo­phen­yl)ethanone in aqueous ethanol in the presence of sodium hydroxide at room temperature for 5 h (Abdel-Wahab et al., 2017[Abdel-Wahab, B. F., Khidre, R. E., Mohamed, H. A. & El-Hiti, G. A. (2017). Arab. J. Sci. Eng. 42, 2441-2448.]). The solid obtained was collected by filtration, washed with cold water and recrystallized from di­methyl­formamide solution to obtain colourless crystals (86%), m.p 168–169°C (lit 168–169°C; Abdel-Wahab et al., 2017[Abdel-Wahab, B. F., Khidre, R. E., Mohamed, H. A. & El-Hiti, G. A. (2017). Arab. J. Sci. Eng. 42, 2441-2448.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C16–C21 phenyl ring is disordered with two components oriented approximately perpendicular to each other. The occupancies refined to 0.808 (4) and 0.192 (4). The components were restrained to have similar geometries (SAME command in SHELXL) and chemically equivalent bonds around the ipso-carbon atoms C16 and C16A were restrained to be similar (SADI commands of SHELXL, e.s.d. = 0.01 Å2). ADPs of disordered atoms were restrained to be close to isotropic and Uij components of ADPs for disordered atoms closer to each other than 2.0 Å were restrained to be similar (ISOR and SIMU restraints of SHELXL; e.s.d. = 0.01 Å2 for SIMU N3, C16 and C16A, 0.1 Å2 for all others).

Table 2
Experimental details

Crystal data
Chemical formula C27H20BrN5O
Mr 510.39
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 15.0387 (12), 6.8105 (3), 24.385 (2)
β (°) 106.473 (8)
V3) 2395.0 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.75
Crystal size (mm) 0.32 × 0.18 × 0.08
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
Absorption correction Gaussian (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.540, 0.874
No. of measured, independent and observed [I > 2σ(I)] reflections 22293, 5994, 2916
Rint 0.033
(sin θ/λ)max−1) 0.702
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.188, 1.03
No. of reflections 5994
No. of parameters 363
No. of restraints 271
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.56, −0.72
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

(E)-1-(4-Bromophenyl)-3-[3-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl]prop-2-en-1-one top
Crystal data top
C27H20BrN5OF(000) = 1040
Mr = 510.39Dx = 1.415 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.0387 (12) ÅCell parameters from 4138 reflections
b = 6.8105 (3) Åθ = 3.3–22.8°
c = 24.385 (2) ŵ = 1.75 mm1
β = 106.473 (8)°T = 293 K
V = 2395.0 (3) Å3Block, colourless
Z = 40.32 × 0.18 × 0.08 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
diffractometer
2916 reflections with I > 2σ(I)
ω scansRint = 0.033
Absorption correction: gaussian
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
θmax = 29.9°, θmin = 3.1°
Tmin = 0.540, Tmax = 0.874h = 1920
22293 measured reflectionsk = 99
5994 independent reflectionsl = 3331
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.188 w = 1/[σ2(Fo2) + (0.077P)2 + 1.0166P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5994 reflectionsΔρmax = 0.56 e Å3
363 parametersΔρmin = 0.72 e Å3
271 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed in calculated positions and refined using a riding model. Aromatic C—H distances were set to 0.93 Å and their Uiso set to 1.2 times the Ueq for the atoms to which they are bonded. Methyl C—H distances were set to 0.96 Å and their U(iso) set to 1.5 times the Ueq for the C atoms to which they are bonded. Methyl H atoms were allowed to rotate, but not to tip.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.0981 (3)1.0213 (5)0.29653 (17)0.0785 (10)
C21.1082 (3)0.8522 (7)0.2687 (2)0.0975 (13)
H21.1602330.8336960.2559040.117*
C31.0414 (3)0.7107 (6)0.25995 (18)0.0824 (11)
H31.0489660.5951220.2414680.099*
C40.9628 (2)0.7353 (4)0.27788 (13)0.0589 (8)
C50.9540 (2)0.9098 (5)0.30512 (14)0.0666 (8)
H50.9014070.9305240.3172470.080*
C61.0209 (3)1.0526 (5)0.31461 (15)0.0738 (9)
H61.0140071.1688180.3330220.089*
C70.8946 (2)0.5723 (5)0.27006 (13)0.0631 (8)
C80.8192 (2)0.5821 (5)0.29743 (13)0.0635 (8)
H80.7943820.7032690.3027060.076*
C90.7861 (2)0.4182 (5)0.31482 (12)0.0604 (8)
H90.8128080.2998580.3089450.072*
C100.7120 (2)0.4097 (4)0.34206 (12)0.0573 (7)
C110.6926 (2)0.2637 (4)0.37887 (13)0.0578 (7)
C120.6418 (2)0.5441 (5)0.33655 (13)0.0612 (8)
H120.6337700.6591090.3151420.073*
C130.7493 (2)0.0945 (4)0.40400 (13)0.0606 (8)
C140.7407 (2)0.0346 (5)0.44564 (13)0.0596 (8)
C150.6705 (3)0.0557 (7)0.47706 (19)0.0974 (13)
H15A0.6209460.1380200.4556560.146*
H15B0.6463170.0713080.4822270.146*
H15C0.6985660.1139720.5137350.146*
C160.8531 (4)0.2993 (6)0.49653 (19)0.0611 (15)0.808 (4)
C170.7985 (3)0.4578 (6)0.49705 (18)0.0747 (13)0.808 (4)
H170.7382020.4641350.4730910.090*0.808 (4)
C180.8355 (5)0.6100 (7)0.5344 (2)0.0883 (16)0.808 (4)
H180.7994000.7195330.5360340.106*0.808 (4)
C190.9245 (6)0.5999 (11)0.5689 (2)0.088 (2)0.808 (4)
H190.9492250.7037960.5932160.105*0.808 (4)
C200.9776 (4)0.4372 (9)0.5679 (2)0.0929 (16)0.808 (4)
H201.0377320.4301990.5919850.112*0.808 (4)
C210.9421 (3)0.2827 (7)0.53099 (19)0.0770 (13)0.808 (4)
H210.9776270.1717830.5297590.092*0.808 (4)
C16A0.842 (2)0.323 (2)0.4904 (7)0.061 (4)0.192 (4)
C17A0.8740 (12)0.489 (2)0.4700 (7)0.075 (5)0.192 (4)
H17A0.8762680.4896260.4323170.090*0.192 (4)
C18A0.9034 (15)0.657 (2)0.5034 (8)0.085 (6)0.192 (4)
H18A0.9269930.7646900.4886340.102*0.192 (4)
C19A0.897 (3)0.660 (4)0.5577 (11)0.103 (9)0.192 (4)
H19A0.9077910.7759430.5786520.123*0.192 (4)
C20A0.8737 (18)0.492 (3)0.5819 (8)0.100 (6)0.192 (4)
H20A0.8787990.4864410.6207620.120*0.192 (4)
C21A0.8425 (15)0.329 (3)0.5468 (6)0.081 (6)0.192 (4)
H21A0.8210920.2198980.5622330.098*0.192 (4)
C220.5037 (2)0.5660 (5)0.37391 (14)0.0695 (9)
C230.4761 (4)0.7453 (7)0.3505 (2)0.1097 (17)
H230.5114570.8116210.3307340.132*
C240.3955 (4)0.8283 (9)0.3563 (2)0.130 (2)
H240.3766080.9502120.3400130.156*
C250.3440 (4)0.7356 (8)0.3852 (2)0.1119 (16)
H250.2905410.7942250.3894950.134*
C260.3705 (4)0.5559 (9)0.4081 (3)0.132 (2)
H260.3343450.4901000.4274670.158*
C270.4514 (3)0.4700 (7)0.4029 (2)0.1058 (15)
H270.4697850.3475460.4189770.127*
N10.8288 (2)0.0556 (5)0.39076 (14)0.0853 (9)
N20.8712 (2)0.0915 (5)0.42212 (14)0.0855 (9)
N30.81813 (19)0.1461 (4)0.45570 (10)0.0615 (6)
N40.6169 (2)0.3054 (4)0.39428 (11)0.0646 (7)
N50.58666 (18)0.4796 (4)0.36765 (11)0.0635 (7)
Br11.19258 (4)1.21670 (8)0.31164 (3)0.1228 (3)
O10.9048 (2)0.4247 (4)0.24355 (11)0.0885 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.067 (2)0.066 (2)0.104 (3)0.0020 (18)0.027 (2)0.008 (2)
C20.075 (3)0.092 (3)0.143 (4)0.004 (2)0.060 (3)0.006 (3)
C30.077 (3)0.071 (2)0.113 (3)0.006 (2)0.050 (2)0.011 (2)
C40.0616 (19)0.0563 (17)0.0609 (17)0.0135 (15)0.0207 (15)0.0069 (14)
C50.066 (2)0.0636 (19)0.076 (2)0.0103 (17)0.0289 (17)0.0002 (16)
C60.074 (2)0.0608 (19)0.088 (2)0.0070 (18)0.0252 (19)0.0018 (17)
C70.070 (2)0.0583 (18)0.0641 (18)0.0089 (16)0.0238 (16)0.0047 (15)
C80.063 (2)0.0587 (18)0.0707 (19)0.0065 (15)0.0227 (16)0.0019 (15)
C90.0593 (19)0.0625 (18)0.0576 (17)0.0068 (15)0.0137 (14)0.0005 (14)
C100.0582 (19)0.0578 (17)0.0550 (16)0.0043 (14)0.0148 (14)0.0016 (14)
C110.0558 (18)0.0559 (17)0.0608 (17)0.0019 (14)0.0150 (14)0.0026 (14)
C120.0602 (19)0.0616 (18)0.0631 (17)0.0023 (15)0.0195 (15)0.0028 (15)
C130.064 (2)0.0557 (17)0.0652 (18)0.0050 (15)0.0231 (15)0.0010 (15)
C140.0551 (18)0.0623 (18)0.0619 (17)0.0037 (15)0.0173 (14)0.0008 (15)
C150.085 (3)0.113 (3)0.108 (3)0.025 (2)0.051 (2)0.037 (3)
C160.065 (3)0.062 (2)0.054 (2)0.007 (2)0.012 (2)0.002 (2)
C170.083 (3)0.066 (3)0.069 (3)0.002 (2)0.012 (2)0.000 (2)
C180.121 (5)0.065 (3)0.081 (3)0.004 (3)0.031 (3)0.010 (3)
C190.108 (6)0.083 (4)0.067 (3)0.031 (4)0.017 (3)0.015 (3)
C200.084 (4)0.106 (4)0.076 (3)0.025 (3)0.002 (3)0.003 (3)
C210.074 (3)0.073 (3)0.076 (3)0.005 (2)0.008 (2)0.001 (2)
C16A0.062 (6)0.060 (6)0.056 (6)0.007 (6)0.011 (6)0.001 (6)
C17A0.067 (10)0.068 (9)0.080 (10)0.005 (8)0.005 (8)0.012 (8)
C18A0.084 (12)0.064 (10)0.090 (11)0.000 (9)0.001 (10)0.007 (9)
C19A0.094 (16)0.094 (15)0.111 (15)0.015 (14)0.014 (13)0.019 (13)
C20A0.107 (14)0.111 (13)0.078 (11)0.024 (12)0.021 (10)0.036 (11)
C21A0.093 (15)0.079 (12)0.071 (12)0.015 (11)0.022 (10)0.007 (10)
C220.062 (2)0.078 (2)0.072 (2)0.0145 (17)0.0239 (17)0.0045 (17)
C230.114 (4)0.115 (3)0.123 (3)0.056 (3)0.072 (3)0.053 (3)
C240.127 (4)0.143 (4)0.146 (4)0.075 (4)0.080 (4)0.061 (4)
C250.088 (3)0.132 (4)0.128 (4)0.043 (3)0.051 (3)0.023 (3)
C260.106 (4)0.126 (4)0.196 (5)0.034 (3)0.095 (4)0.039 (4)
C270.086 (3)0.096 (3)0.156 (4)0.022 (2)0.068 (3)0.032 (3)
N10.089 (2)0.081 (2)0.103 (2)0.0325 (18)0.0543 (19)0.0303 (18)
N20.085 (2)0.086 (2)0.100 (2)0.0271 (18)0.0492 (19)0.0246 (18)
N30.0634 (17)0.0619 (15)0.0612 (14)0.0084 (13)0.0209 (13)0.0052 (12)
N40.0609 (17)0.0639 (16)0.0716 (16)0.0078 (13)0.0230 (13)0.0067 (13)
N50.0569 (16)0.0639 (16)0.0711 (15)0.0086 (13)0.0203 (13)0.0048 (13)
Br10.0810 (4)0.0904 (4)0.1980 (7)0.0128 (2)0.0410 (4)0.0055 (3)
O10.111 (2)0.0666 (15)0.1043 (18)0.0025 (14)0.0572 (16)0.0202 (14)
Geometric parameters (Å, º) top
C1—C21.367 (6)C17—H170.9300
C1—C61.370 (5)C18—C191.366 (9)
C1—Br11.905 (4)C18—H180.9300
C2—C31.364 (6)C19—C201.370 (9)
C2—H20.9300C19—H190.9300
C3—C41.382 (5)C20—C211.389 (6)
C3—H30.9300C20—H200.9300
C4—C51.386 (4)C21—H210.9300
C4—C71.487 (5)C16A—C17A1.373 (8)
C5—C61.371 (5)C16A—C21A1.374 (8)
C5—H50.9300C16A—N31.459 (9)
C6—H60.9300C17A—C18A1.403 (16)
C7—O11.228 (4)C17A—H17A0.9300
C7—C81.470 (4)C18A—C19A1.354 (19)
C8—C91.339 (4)C18A—H18A0.9300
C8—H80.9300C19A—C20A1.38 (2)
C9—C101.451 (4)C19A—H19A0.9300
C9—H90.9300C20A—C21A1.398 (16)
C10—C121.375 (4)C20A—H20A0.9300
C10—C111.423 (4)C21A—H21A0.9300
C11—N41.327 (4)C22—C231.362 (5)
C11—C131.461 (4)C22—C271.364 (5)
C12—N51.346 (4)C22—N51.426 (4)
C12—H120.9300C23—C241.381 (6)
C13—N11.350 (4)C23—H230.9300
C13—C141.376 (4)C24—C251.343 (7)
C14—N31.354 (4)C24—H240.9300
C14—C151.477 (5)C25—C261.357 (6)
C15—H15A0.9600C25—H250.9300
C15—H15B0.9600C26—C271.388 (6)
C15—H15C0.9600C26—H260.9300
C16—C171.359 (6)C27—H270.9300
C16—C211.368 (6)N1—N21.311 (4)
C16—N31.436 (5)N2—N31.347 (4)
C17—C181.388 (7)N4—N51.367 (4)
C2—C1—C6120.9 (4)C18—C19—C20120.2 (5)
C2—C1—Br1120.2 (3)C18—C19—H19119.9
C6—C1—Br1118.9 (3)C20—C19—H19119.9
C3—C2—C1119.5 (4)C19—C20—C21120.4 (5)
C3—C2—H2120.2C19—C20—H20119.8
C1—C2—H2120.2C21—C20—H20119.8
C2—C3—C4121.5 (3)C16—C21—C20117.6 (5)
C2—C3—H3119.2C16—C21—H21121.2
C4—C3—H3119.2C20—C21—H21121.2
C3—C4—C5117.5 (3)C17A—C16A—C21A115.9 (11)
C3—C4—C7119.3 (3)C17A—C16A—N3121.6 (12)
C5—C4—C7123.1 (3)C21A—C16A—N3122.3 (12)
C6—C5—C4121.6 (3)C16A—C17A—C18A123.1 (13)
C6—C5—H5119.2C16A—C17A—H17A118.4
C4—C5—H5119.2C18A—C17A—H17A118.4
C1—C6—C5118.9 (3)C19A—C18A—C17A118.7 (17)
C1—C6—H6120.5C19A—C18A—H18A120.7
C5—C6—H6120.5C17A—C18A—H18A120.7
O1—C7—C8120.2 (3)C18A—C19A—C20A120.2 (19)
O1—C7—C4119.6 (3)C18A—C19A—H19A119.9
C8—C7—C4120.0 (3)C20A—C19A—H19A119.9
C9—C8—C7120.7 (3)C19A—C20A—C21A118.6 (17)
C9—C8—H8119.7C19A—C20A—H20A120.7
C7—C8—H8119.7C21A—C20A—H20A120.7
C8—C9—C10125.6 (3)C16A—C21A—C20A122.7 (14)
C8—C9—H9117.2C16A—C21A—H21A118.6
C10—C9—H9117.2C20A—C21A—H21A118.6
C12—C10—C11103.8 (3)C23—C22—C27119.6 (4)
C12—C10—C9126.6 (3)C23—C22—N5119.8 (3)
C11—C10—C9129.6 (3)C27—C22—N5120.6 (3)
N4—C11—C10112.0 (3)C22—C23—C24119.8 (4)
N4—C11—C13119.7 (3)C22—C23—H23120.1
C10—C11—C13128.0 (3)C24—C23—H23120.1
N5—C12—C10107.8 (3)C25—C24—C23121.0 (5)
N5—C12—H12126.1C25—C24—H24119.5
C10—C12—H12126.1C23—C24—H24119.5
N1—C13—C14109.1 (3)C24—C25—C26119.6 (4)
N1—C13—C11120.3 (3)C24—C25—H25120.2
C14—C13—C11130.4 (3)C26—C25—H25120.2
N3—C14—C13103.6 (3)C25—C26—C27120.3 (5)
N3—C14—C15123.8 (3)C25—C26—H26119.8
C13—C14—C15132.5 (3)C27—C26—H26119.8
C14—C15—H15A109.5C22—C27—C26119.7 (4)
C14—C15—H15B109.5C22—C27—H27120.2
H15A—C15—H15B109.5C26—C27—H27120.2
C14—C15—H15C109.5N2—N1—C13109.1 (3)
H15A—C15—H15C109.5N1—N2—N3107.0 (3)
H15B—C15—H15C109.5N2—N3—C14111.3 (2)
C17—C16—C21123.3 (4)N2—N3—C16117.3 (3)
C17—C16—N3118.7 (4)C14—N3—C16131.4 (3)
C21—C16—N3117.9 (4)N2—N3—C16A119.3 (11)
C16—C17—C18117.9 (5)C14—N3—C16A128.9 (13)
C16—C17—H17121.0C11—N4—N5104.3 (2)
C18—C17—H17121.0C12—N5—N4112.1 (3)
C19—C18—C17120.5 (5)C12—N5—C22128.5 (3)
C19—C18—H18119.8N4—N5—C22119.4 (3)
C17—C18—H18119.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.932.283.201 (4)172
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Footnotes

Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.

Funding information

This project was supported by King Saud University, Deanship of Scientific Research, Research Chairs.

References

First citationAbdel-Wahab, B. F., Khidre, R. E., Mohamed, H. A. & El-Hiti, G. A. (2017). Arab. J. Sci. Eng. 42, 2441–2448.  CAS Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKumar, A., Husain, M., Prasad, A. K., Singh, I., Vats, A., Sharma, N. K., Sharma, S. K., Gupta, R. K., Olsen, C. E., Bracke, M. E., Gross, R. A. & Parmar, V. S. (2003). Indian J. Chem. 42B, 1950–1957.  CAS Google Scholar
First citationLang, S. A. Jr & Walworth, B. L. (1979). US Patent 4169838.  Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]