metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(nitrilo­triacetamide-κ4N,O,O′,O′′)silver(I) nitrate

aCollege of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, People's Republic of China, Hubei Key Laboratory for Processing and Application of Catalytic Materials
*Correspondence e-mail: ranjw@126.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 1 December 2017; accepted 17 January 2018; online 22 January 2018)

In the centrosymmetric cation of the title compound, [Ag(C6H12N4O3)2]NO3, the AgI ion, lying on a threefold rotoinversion axis, is coordinated by two N atoms and six O atoms from two nitrilo­triacetamide ligands, forming a distorted dodeca­hedral environment. In the crystal, cations and anions are linked through N—H⋯O hydrogen-bonding inter­actions, leading to a three-dimensional network structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Nitrilo­triacetamide (NTA) as a ligand is able to coordinate through various coordination sites. Synthetic aspects of the coordination chemistry of transition metals with nitrilo­triacetamide ligands were given in detail some time ago (Smith et al., 1992[Smith, D. A., Sucheck, S. & Pinkerton, A. A. (1992). J. Chem. Soc. Chem. Commun. pp. 367-368.], 1995[Smith, D. A., Sucheck, S., Cramer, S. & Baker, D. (1995). Synth. Commun. 25, 4123-4132.]). A silver complex of the derivative nitrilo­tris­(N-benzyl­acetamide) as a ligand was reported by Kang et al. (2007[Kang, D., Park, K.-M., Lee, S. Y., Lee, S. S. & Choi, K. S. (2007). Bull. Korean Chem. Soc. 28, 2546-2548.]) where the AgI ion is coordinated by the tetra­dentate ligand and by a bidentate nitrate anion. The resulting coordination environment is distorted octa­hedral. As an extension of the structural characterization of silver compounds with mixed ligands derived from NTA and nitrate, we report here on the synthesis and crystal structure of a new mononuclear silver(I) compound, [Ag(C6H12N4O3)2]+·NO3.

The AgI atom of the cation (Fig. 1[link]) is located on a site with point group symmetry [\overline{3}]. (Wyckoff position 1a) and is linearly coordinated by the central N atoms of two symmetry-related NTA ligands at distances of 2.417 (2) Å. In comparison with a true twofold coordination by N atoms (Ag—N ≃ 2.15 Å), the Ag—N bonds are elongated. The overall coordination sphere is supplemented by six symmetry-related O atoms from the two NTA ligands [Ag—O = 2.7774 (14) Å], leading to a distorted dodeca­hedral coordination environment. The nitrate anion is disordered around a [\overline{3}] axis and is not involved in coordination to the silver cation.

[Figure 1]
Figure 1
The mol­ecular entities in the complex title salt. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (1) −x, −y, −z; (2) −y, x − y, z; (3) y, −x + y, −z; (4) x − y, x, −z; (5) −x + y, −x, z.]

In the crystal structure, N—H⋯O hydrogen-bonding inter­actions (including a trifurcated hydrogen bond) between the amino functions as donor groups and the weakly bound amide O atoms and nitrate O atoms as acceptor groups consolidate the mol­ecular packing within the three-dimensional network structure (Fig. 2[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O1i 0.86 2.15 2.969 (2) 159
N2—H2A⋯O2ii 0.86 2.42 3.256 (4) 163
N2—H2A⋯O2iii 0.86 2.22 2.880 (4) 133
N2—H2A⋯O1iv 0.86 2.59 3.058 (2) 115
Symmetry codes: (i) [-x+y+{\script{2\over 3}}, -x+{\script{1\over 3}}, z+{\script{1\over 3}}]; (ii) [y+{\script{1\over 3}}, -x+y+{\script{2\over 3}}, -z+{\script{2\over 3}}]; (iii) [x-{\script{2\over 3}}, y-{\script{1\over 3}}, z-{\script{1\over 3}}]; (iv) [y+{\script{2\over 3}}, -x+y+{\script{1\over 3}}, -z+{\script{1\over 3}}].
[Figure 2]
Figure 2
The packing diagram for the title compound, viewed along the c axis, with hydrogen bonds drawn as dashed lines.

Synthesis and crystallization

The NTA ligand was prepared according to a literature method (Smith et al., 1995[Smith, D. A., Sucheck, S., Cramer, S. & Baker, D. (1995). Synth. Commun. 25, 4123-4132.]). The title compound was synthesized by adding an aqueous solution of AgNO3 (340 mg, 2 mmol) to a solution of the ligand (752 mg, 4 mmol) in water (20 ml). The mixture was stirred for 30 min at room temperature. The solution was then filtered and the filtrate was allowed to stand in air for one week. Colourless crystals were formed at the bottom of the vessel on slow evaporation of the solvent at room temperature (yield: 41.5%). Selected IR data (cm−1): 3416 (vs), 1677 (vs), 1358 (m), 605 (m), 1617 (w), 1264 (w).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N atom of the nitrate group is located on a position with point group symmetry [\overline{3}]. (Wyckoff position 1b). Hence the unique O atom of the nitrate group is equally disordered around the [\overline{3}] axis and was treated with half-occupancy.

Table 2
Experimental details

Crystal data
Chemical formula [Ag(C6H12N4O3)2]NO3
Mr 546.27
Crystal system, space group Trigonal, R[\overline{3}]
Temperature (K) 291
a, c (Å) 11.6518 (16), 12.590 (3)
V3) 1480.3 (5)
Z 3
Radiation type Mo Kα
μ (mm−1) 1.09
Crystal size (mm) 0.30 × 0.26 × 0.24
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.736, 0.780
No. of measured, independent and observed [I > 2σ(I)] reflections 4800, 761, 748
Rint 0.017
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.059, 1.12
No. of reflections 761
No. of parameters 48
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.31
Computer programs: APEX2 and SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(nitrilotriacetamide-κ4N,O,O',O'')silver(I) nitrate top
Crystal data top
[Ag(C6H12N4O3)2]NO3Dx = 1.838 Mg m3
Dm = 1.838 Mg m3
Dm measured by not measured
Mr = 546.27Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 761 reflections
a = 11.6518 (16) Åθ = 1.0–27.5°
c = 12.590 (3) ŵ = 1.09 mm1
V = 1480.3 (5) Å3T = 291 K
Z = 3Cuboid, colorless
F(000) = 8340.30 × 0.26 × 0.24 mm
Data collection top
Bruker APEXII CCD
diffractometer
748 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
φ and ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1515
Tmin = 0.736, Tmax = 0.780k = 1514
4800 measured reflectionsl = 1615
761 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0383P)2 + 1.4406P]
where P = (Fo2 + 2Fc2)/3
761 reflections(Δ/σ)max < 0.001
48 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.00000.00000.00000.03254 (13)
O10.17358 (13)0.06869 (14)0.09278 (10)0.0376 (3)
N10.00000.00000.19194 (18)0.0229 (4)
N20.29870 (16)0.01709 (18)0.24078 (15)0.0418 (4)
H2A0.34320.05260.21780.050*
H2B0.31550.01950.30240.050*
C10.13626 (15)0.05180 (16)0.23128 (13)0.0279 (3)
H1A0.13410.04110.30780.033*
H1B0.18790.14580.21580.033*
C20.20369 (15)0.01821 (15)0.18150 (13)0.0269 (3)
N31.00000.00000.50000.0288 (7)
O20.9536 (3)0.0759 (3)0.5023 (2)0.0452 (6)*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.04075 (16)0.04075 (16)0.01610 (17)0.02038 (8)0.0000.000
O10.0383 (6)0.0522 (8)0.0289 (6)0.0275 (6)0.0018 (5)0.0065 (5)
N10.0229 (6)0.0229 (6)0.0230 (10)0.0114 (3)0.0000.000
N20.0368 (8)0.0525 (9)0.0434 (9)0.0278 (7)0.0116 (7)0.0045 (7)
C10.0266 (7)0.0311 (7)0.0252 (7)0.0140 (6)0.0047 (6)0.0037 (6)
C20.0226 (7)0.0271 (7)0.0280 (7)0.0102 (6)0.0012 (6)0.0042 (6)
N30.0328 (10)0.0328 (10)0.0209 (15)0.0164 (5)0.0000.000
Geometric parameters (Å, º) top
Ag1—N1i2.417 (2)N2—H2A0.8593
Ag1—N12.417 (2)N2—H2B0.8591
Ag1—O1ii2.7774 (14)C1—C21.522 (2)
Ag1—O1i2.7774 (14)C1—H1A0.9700
Ag1—O1iii2.7774 (14)C1—H1B0.9700
Ag1—O1iv2.7774 (14)N3—O2vi1.247 (3)
Ag1—O12.7774 (14)N3—O2vii1.247 (3)
Ag1—O1v2.7774 (14)N3—O2viii1.247 (3)
O1—C21.229 (2)N3—O2ix1.247 (3)
N1—C1v1.4737 (17)N3—O2x1.247 (3)
N1—C11.4737 (17)N3—O21.247 (3)
N1—C1ii1.4738 (17)O2—O2viii1.248 (3)
N2—C21.330 (2)O2—O2vi1.248 (3)
N1—Ag1—N1i180.0O2vi—N3—O2vii180.0
C1v—N1—C1109.31 (11)O2vi—N3—O2viii119.947 (12)
C1v—N1—C1ii109.30 (11)O2vii—N3—O2viii60.053 (12)
C1—N1—C1ii109.31 (11)O2vi—N3—O2ix60.053 (12)
C1v—N1—Ag1109.64 (10)O2vii—N3—O2ix119.947 (12)
C1—N1—Ag1109.64 (10)O2viii—N3—O2ix180.0 (3)
C1ii—N1—Ag1109.64 (10)O2vi—N3—O2x119.947 (13)
C2—N2—H2A120.4O2vii—N3—O2x60.053 (12)
C2—N2—H2B119.6O2viii—N3—O2x119.947 (12)
H2A—N2—H2B120.0O2ix—N3—O2x60.053 (12)
N1—C1—C2112.41 (13)O2vi—N3—O260.054 (12)
N1—C1—H1A109.1O2vii—N3—O2119.946 (12)
C2—C1—H1A109.1O2viii—N3—O260.052 (12)
N1—C1—H1B109.1O2ix—N3—O2119.948 (13)
C2—C1—H1B109.1O2x—N3—O2180.0 (2)
H1A—C1—H1B107.9N3—O2—O2viii59.974 (6)
O1—C2—N2123.50 (16)N3—O2—O2vi59.973 (6)
O1—C2—C1122.03 (14)O2viii—O2—O2vi119.79 (5)
N2—C2—C1114.46 (15)
C1v—N1—C1—C268.5 (2)O2vii—N3—O2—O2viii4.6 (5)
C1ii—N1—C1—C2171.88 (13)O2ix—N3—O2—O2viii180.0
Ag1—N1—C1—C251.68 (13)O2vii—N3—O2—O2vi180.0
N1—C1—C2—O127.5 (2)O2viii—N3—O2—O2vi175.4 (5)
N1—C1—C2—N2153.92 (16)O2ix—N3—O2—O2vi4.6 (5)
O2vi—N3—O2—O2viii175.4 (5)
Symmetry codes: (i) x, y, z; (ii) y, xy, z; (iii) y, x+y, z; (iv) xy, x, z; (v) x+y, x, z; (vi) y+1, x+y+1, z+1; (vii) y+1, xy1, z; (viii) xy, x1, z+1; (ix) x+y+2, x+1, z; (x) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1xi0.862.152.969 (2)159
N2—H2A···O2xii0.862.423.256 (4)163
N2—H2A···O2xiii0.862.222.880 (4)133
N2—H2A···O1xiv0.862.593.058 (2)115
Symmetry codes: (xi) x+y+2/3, x+1/3, z+1/3; (xii) y+1/3, x+y+2/3, z+2/3; (xiii) x2/3, y1/3, z1/3; (xiv) y+2/3, x+y+1/3, z+1/3.
 

Funding information

This research was supported by the Natural Science Foundation of Hubei Provincial Department of Education 77 (D20152901).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKang, D., Park, K.-M., Lee, S. Y., Lee, S. S. & Choi, K. S. (2007). Bull. Korean Chem. Soc. 28, 2546–2548.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, D. A., Sucheck, S. & Pinkerton, A. A. (1992). J. Chem. Soc. Chem. Commun. pp. 367–368.  CSD CrossRef CAS Google Scholar
First citationSmith, D. A., Sucheck, S., Cramer, S. & Baker, D. (1995). Synth. Commun. 25, 4123–4132.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]