organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N′-[(1E)-2,5-Di­meth­­oxy­benzyl­­idene]pyridine-2-carbohydrazide

aKirkuk University, College of Education, Department of Chemistry, Kirkuk, Iraq, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, eChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and fDepartment of Bio-Chemistry, Faculty of Science, University of Beni Suef, Egypt
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 19 January 2018; accepted 20 January 2018; online 31 January 2018)

The mol­ecule of the title compound, C15H15N3O3, is twisted, with the dihedral angle between the pyridyl and benzene rings being 58.34 (6)°. In the crystal, amide-N—H⋯O(amide) and imine-C—H⋯O(amide) hydrogen bonds lead to zigzag (glide symmetry) chains extending along the c axis which are joined into layers parallel to the [100] direction by offset ππ stacking inter­actions between inversion-related benzene rings [centroid–centroid distance = 3.7468 (7) Å] and by C—H⋯π(pyrid­yl) inter­actions. Pyridyl rings protrude from the surfaces of the layers and partially inter­calate with those of adjacent layers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Picolinic acid (PA) is a naturally occurring product of the degradation of tryptophan which is known to up-regulate host immune responses, especially macrophage cell functions (Shanshan et al., 2006[Shanshan, C., Katsumasa, S., Toshiaki, S., Seiko, Y., Miho, H., Chiaki, S. & Haruaki, T. (2006). J. Antimicrob. Chemother. 57, 85-93.]). The anti­microbial activity of PA against several strains of microorganisms has been reported (Maria et al., 2008[Maria, H. B., Sylwia, K. C., Renata, M., Jerzy, P., Renata, S. & Wtodzimierz, L. (2008). Pol. J. Food Nutr. Sci. 58, 415-418.]). In addition, PA and its derivatives have other biological activities, such as their use as dietary supplements (Komorowski et al., 2008[Komorowski, J. R., Greenberg, D. & Juturu, V. (2008). Toxicol. In Vitro, 22, 819-826.]) and anti-oxidants (Kırkıl et al., 2008[Kırkıl, G., Hamdi Muz, M., Seçkin, D., Şahin, K., Küçük, O. & Ömer, (2008). Respir. Med. 102, 840-844.]), and they are metabolites of fungi (Dowd, 1999[Dowd, P. F. (1999). Nat. Toxins, 7, 337-341.]). Picolinic acid hydrazones have been found to possess significant anti­fungal activity against a wide range of soil borne pathogens (Aditi & Supradi, 2014[Aditi, K. & Supradi, S. (2014). Plant Path. J, 13, 152-159.]). As a continuation of our efforts on the synthesis of biologically active compounds containing hydrazones, we report herein the crystal structure of N′-[(1E)-2,5-di­meth­oxy­benzyl­idene]pyridine-2-carbohydrazide.

In the title compound (Fig. 1[link]), the dihedral angle between the pyridyl and benzene rings is 58.34 (6)°. In the crystal, N2—H2⋯O3 hydrogen bonds, assisted by C9—H9⋯O3 hydrogen bonds, form chains extending along the c axis (Table 1[link] and Fig. 2[link]). The chains are connected into layers parallel to [100] by offset ππ stacking inter­actions between inversion-related benzene rings [centroid–centroid = 3.7468 (7) Å; inter­planar spacing = 3.3311 (5) Å] and by C4—H4⋯Cg1 inter­actions (Cg1 is the centroid of the N3/C11–C15 pyridine ring.; Table 1[link] and Fig. 2[link]). The pyridine rings protrude from the surfaces of the layers and partially inter­calate with those of adjacent layers.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N3/C11–C15 pyridine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.879 (18) 2.103 (18) 2.9403 (13) 159.0 (15)
C9—H9⋯O3i 0.967 (16) 2.525 (15) 3.3202 (14) 139.5 (12)
C4—H4⋯Cg1ii 0.979 (15) 2.839 (16) 3.7240 (13) 150.6 (12)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The title mol­ecule of the title compound, with the atom-labelling scheme and 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
A view in projection along the a axis of the unit-cell contents, showing their association through offset ππ stacking (orange dashed lines) and C—H⋯π(ring) inter­actions (green dashed lines). The N—N⋯O and C—H⋯O hydrogen bonds are shown, respectively, as blue and black dashed lines.

Synthesis and crystallization

The title compound was synthesized according to our previously reported procedure (Mohamed et al., 2013[Mohamed, S. K., Albayati, M. R., Sabry HH Younes, S. H. H. & Abed-Alkareem, M. G. (2013). Chem. Sci. J., Article No. CSJ-97.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H15N3O3
Mr 285.30
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 10.7311 (3), 16.4986 (4), 8.2033 (2)
β (°) 110.458 (1)
V3) 1360.78 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.82
Crystal size (mm) 0.22 × 0.16 × 0.04
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT, SADABS, and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.88, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 10229, 2647, 2375
Rint 0.028
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 1.06
No. of reflections 2647
No. of parameters 250
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.14, −0.25
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT, SADABS, and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

N'-[(1E)-2,5-Dimethoxybenzylidene]pyridine-2-carbohydrazide top
Crystal data top
C15H15N3O3F(000) = 600
Mr = 285.30Dx = 1.393 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 10.7311 (3) ÅCell parameters from 8226 reflections
b = 16.4986 (4) Åθ = 4.4–72.4°
c = 8.2033 (2) ŵ = 0.82 mm1
β = 110.458 (1)°T = 150 K
V = 1360.78 (6) Å3Plate, colourless
Z = 40.22 × 0.16 × 0.04 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2647 independent reflections
Radiation source: INCOATEC IµS micro-focus source2375 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 4.4°
ω scansh = 1213
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 2019
Tmin = 0.88, Tmax = 0.97l = 910
10229 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.090All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.3581P]
where P = (Fo2 + 2Fc2)/3
2647 reflections(Δ/σ)max < 0.001
250 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58069 (8)0.51301 (5)0.21382 (11)0.0264 (2)
O20.21048 (9)0.35193 (5)0.42335 (12)0.0296 (2)
O30.81174 (8)0.15852 (5)0.53933 (11)0.0249 (2)
H30.3676 (14)0.5724 (9)0.2692 (19)0.027 (4)*
N10.65193 (9)0.27831 (6)0.34398 (13)0.0216 (2)
N20.75529 (9)0.24318 (6)0.30438 (13)0.0208 (2)
H20.7731 (16)0.2602 (10)0.213 (2)0.038 (4)*
N30.90627 (10)0.15664 (6)0.16736 (13)0.0223 (2)
C10.50657 (11)0.39155 (7)0.30184 (14)0.0194 (2)
C20.48793 (11)0.47459 (7)0.26627 (14)0.0204 (2)
C30.37985 (11)0.51426 (7)0.28827 (15)0.0228 (2)
C40.29014 (11)0.47126 (7)0.34139 (15)0.0234 (2)
H40.2133 (15)0.4986 (9)0.355 (2)0.031 (4)*
C50.30648 (11)0.38848 (7)0.37352 (15)0.0217 (2)
C60.41474 (11)0.34879 (7)0.35589 (15)0.0206 (2)
H60.4310 (14)0.2915 (9)0.3807 (18)0.025 (3)*
C70.55518 (14)0.59604 (7)0.16353 (17)0.0284 (3)
H7A0.5597 (16)0.6316 (10)0.263 (2)0.037 (4)*
H7B0.6227 (16)0.6116 (10)0.115 (2)0.038 (4)*
H7C0.4644 (17)0.6035 (10)0.077 (2)0.041 (4)*
C80.21909 (15)0.26674 (8)0.4476 (2)0.0333 (3)
H8A0.3058 (18)0.2514 (10)0.537 (2)0.039 (4)*
H8B0.1455 (19)0.2525 (11)0.486 (2)0.051 (5)*
H8C0.2072 (17)0.2381 (10)0.333 (2)0.042 (4)*
C90.62063 (11)0.34959 (7)0.28163 (14)0.0205 (2)
H90.6707 (15)0.3764 (10)0.220 (2)0.031 (4)*
C100.82496 (11)0.18240 (6)0.40395 (14)0.0190 (2)
C110.92327 (11)0.14317 (6)0.33502 (15)0.0191 (2)
C121.02277 (12)0.09433 (7)0.44403 (16)0.0238 (3)
H121.0303 (15)0.0879 (9)0.566 (2)0.029 (4)*
C131.10766 (12)0.05531 (7)0.37400 (18)0.0287 (3)
H131.1779 (17)0.0204 (11)0.449 (2)0.040 (4)*
C141.09010 (12)0.06731 (7)0.20079 (17)0.0277 (3)
H141.1471 (15)0.0400 (9)0.1478 (19)0.032 (4)*
C150.98899 (12)0.11861 (8)0.10286 (16)0.0256 (3)
H150.9737 (15)0.1272 (9)0.021 (2)0.031 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0258 (4)0.0227 (4)0.0338 (5)0.0000 (3)0.0143 (4)0.0049 (3)
O20.0264 (4)0.0270 (5)0.0426 (5)0.0011 (3)0.0209 (4)0.0004 (4)
O30.0311 (4)0.0231 (4)0.0263 (4)0.0027 (3)0.0173 (4)0.0026 (3)
N10.0202 (5)0.0232 (5)0.0247 (5)0.0033 (4)0.0118 (4)0.0015 (4)
N20.0209 (5)0.0222 (5)0.0235 (5)0.0042 (4)0.0128 (4)0.0015 (4)
N30.0217 (5)0.0231 (5)0.0243 (5)0.0010 (4)0.0107 (4)0.0001 (4)
C10.0191 (5)0.0215 (5)0.0172 (5)0.0013 (4)0.0058 (4)0.0016 (4)
C20.0200 (5)0.0226 (6)0.0181 (5)0.0008 (4)0.0059 (4)0.0002 (4)
C30.0237 (6)0.0208 (6)0.0222 (6)0.0036 (4)0.0061 (5)0.0005 (4)
C40.0210 (5)0.0253 (6)0.0241 (6)0.0050 (4)0.0081 (5)0.0010 (4)
C50.0200 (5)0.0252 (6)0.0212 (6)0.0017 (4)0.0089 (5)0.0020 (4)
C60.0219 (5)0.0199 (6)0.0205 (6)0.0013 (4)0.0079 (5)0.0015 (4)
C70.0331 (7)0.0223 (6)0.0299 (7)0.0013 (5)0.0109 (6)0.0055 (5)
C80.0352 (7)0.0276 (7)0.0435 (8)0.0068 (5)0.0219 (7)0.0019 (5)
C90.0197 (5)0.0239 (6)0.0187 (5)0.0007 (4)0.0077 (4)0.0001 (4)
C100.0191 (5)0.0167 (5)0.0225 (5)0.0023 (4)0.0089 (4)0.0020 (4)
C110.0184 (5)0.0170 (5)0.0240 (6)0.0022 (4)0.0101 (4)0.0011 (4)
C120.0239 (6)0.0219 (6)0.0272 (6)0.0009 (4)0.0110 (5)0.0039 (4)
C130.0242 (6)0.0261 (6)0.0380 (7)0.0063 (5)0.0137 (5)0.0071 (5)
C140.0263 (6)0.0248 (6)0.0383 (7)0.0028 (5)0.0191 (5)0.0005 (5)
C150.0264 (6)0.0276 (6)0.0276 (6)0.0005 (5)0.0154 (5)0.0017 (5)
Geometric parameters (Å, º) top
O1—C21.3702 (13)C5—C61.3845 (16)
O1—C71.4293 (14)C6—H60.969 (15)
O2—C51.3734 (14)C7—H7A0.994 (17)
O2—C81.4180 (16)C7—H7B0.977 (17)
O3—C101.2324 (14)C7—H7C0.993 (17)
N1—C91.2795 (15)C8—H8A0.997 (18)
N1—N21.3869 (13)C8—H8B0.975 (19)
N2—C101.3435 (15)C8—H8C1.019 (18)
N2—H20.879 (18)C9—H90.967 (16)
N3—C151.3380 (15)C10—C111.5062 (14)
N3—C111.3412 (15)C11—C121.3862 (16)
C1—C21.4005 (16)C12—C131.3929 (17)
C1—C61.4039 (15)C12—H120.984 (15)
C1—C91.4652 (15)C13—C141.3807 (19)
C2—C31.3973 (16)C13—H130.977 (17)
C3—C41.3831 (17)C14—C151.3891 (18)
C3—H30.973 (15)C14—H140.976 (16)
C4—C51.3905 (17)C15—H150.983 (16)
C4—H40.979 (15)
C2—O1—C7116.56 (9)H7A—C7—H7C105.6 (14)
C5—O2—C8117.26 (9)H7B—C7—H7C111.0 (13)
C9—N1—N2114.22 (9)O2—C8—H8A110.7 (9)
C10—N2—N1119.36 (9)O2—C8—H8B105.3 (11)
C10—N2—H2121.0 (11)H8A—C8—H8B110.7 (14)
N1—N2—H2119.6 (11)O2—C8—H8C110.4 (9)
C15—N3—C11117.17 (10)H8A—C8—H8C110.4 (13)
C2—C1—C6119.51 (10)H8B—C8—H8C109.3 (14)
C2—C1—C9120.18 (10)N1—C9—C1120.13 (10)
C6—C1—C9120.31 (10)N1—C9—H9121.0 (9)
O1—C2—C3123.43 (10)C1—C9—H9118.9 (9)
O1—C2—C1116.83 (10)O3—C10—N2124.86 (10)
C3—C2—C1119.73 (10)O3—C10—C11121.15 (10)
C4—C3—C2120.07 (11)N2—C10—C11113.98 (9)
C4—C3—H3119.1 (9)N3—C11—C12123.77 (10)
C2—C3—H3120.9 (9)N3—C11—C10116.85 (10)
C3—C4—C5120.52 (10)C12—C11—C10119.36 (10)
C3—C4—H4120.3 (9)C11—C12—C13118.03 (11)
C5—C4—H4119.1 (9)C11—C12—H12119.4 (9)
O2—C5—C6124.57 (11)C13—C12—H12122.6 (9)
O2—C5—C4115.44 (10)C14—C13—C12118.98 (11)
C6—C5—C4119.98 (10)C14—C13—H13122.0 (10)
C5—C6—C1120.17 (10)C12—C13—H13119.1 (10)
C5—C6—H6122.3 (8)C13—C14—C15118.72 (11)
C1—C6—H6117.5 (8)C13—C14—H14120.7 (9)
O1—C7—H7A112.3 (9)C15—C14—H14120.5 (9)
O1—C7—H7B106.0 (10)N3—C15—C14123.31 (11)
H7A—C7—H7B110.6 (14)N3—C15—H15116.6 (9)
O1—C7—H7C111.5 (10)C14—C15—H15120.0 (9)
C9—N1—N2—C10158.68 (11)N2—N1—C9—C1175.33 (10)
C7—O1—C2—C36.40 (16)C2—C1—C9—N1166.98 (11)
C7—O1—C2—C1174.85 (10)C6—C1—C9—N113.43 (17)
C6—C1—C2—O1179.91 (10)N1—N2—C10—O36.16 (17)
C9—C1—C2—O10.31 (15)N1—N2—C10—C11173.16 (9)
C6—C1—C2—C31.28 (16)C15—N3—C11—C121.74 (16)
C9—C1—C2—C3179.12 (10)C15—N3—C11—C10176.62 (10)
O1—C2—C3—C4179.90 (10)O3—C10—C11—N3162.00 (10)
C1—C2—C3—C41.38 (17)N2—C10—C11—N317.34 (14)
C2—C3—C4—C50.06 (17)O3—C10—C11—C1216.44 (16)
C8—O2—C5—C64.14 (17)N2—C10—C11—C12164.22 (10)
C8—O2—C5—C4176.43 (11)N3—C11—C12—C131.80 (17)
C3—C4—C5—O2179.18 (10)C10—C11—C12—C13176.52 (10)
C3—C4—C5—C61.35 (17)C11—C12—C13—C140.54 (18)
O2—C5—C6—C1179.15 (10)C12—C13—C14—C150.63 (18)
C4—C5—C6—C11.43 (17)C11—N3—C15—C140.44 (17)
C2—C1—C6—C50.12 (16)C13—C14—C15—N30.71 (19)
C9—C1—C6—C5179.48 (10)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N3/C11–C15 pyridine ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.879 (18)2.103 (18)2.9403 (13)159.0 (15)
C9—H9···O3i0.967 (16)2.525 (15)3.3202 (14)139.5 (12)
C4—H4···Cg1ii0.979 (15)2.839 (16)3.7240 (13)150.6 (12)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The support of NSF–MRI for the purchase of the diffractometer and of Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

Funding information

Funding for this research was provided by: NSF–MRI (grant No. 1228232).

References

First citationAditi, K. & Supradi, S. (2014). Plant Path. J, 13, 152–159.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT, SADABS, and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowd, P. F. (1999). Nat. Toxins, 7, 337–341.  CrossRef PubMed CAS Google Scholar
First citationKırkıl, G., Hamdi Muz, M., Seçkin, D., Şahin, K., Küçük, O. & Ömer, (2008). Respir. Med. 102, 840–844.  Google Scholar
First citationKomorowski, J. R., Greenberg, D. & Juturu, V. (2008). Toxicol. In Vitro, 22, 819–826.  CrossRef PubMed CAS Google Scholar
First citationMaria, H. B., Sylwia, K. C., Renata, M., Jerzy, P., Renata, S. & Wtodzimierz, L. (2008). Pol. J. Food Nutr. Sci. 58, 415–418.  Google Scholar
First citationMohamed, S. K., Albayati, M. R., Sabry HH Younes, S. H. H. & Abed-Alkareem, M. G. (2013). Chem. Sci. J., Article No. CSJ-97.  Google Scholar
First citationShanshan, C., Katsumasa, S., Toshiaki, S., Seiko, Y., Miho, H., Chiaki, S. & Haruaki, T. (2006). J. Antimicrob. Chemother. 57, 85–93.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]