organic compounds
N′-[(1E)-2,5-Dimethoxybenzylidene]pyridine-2-carbohydrazide
aKirkuk University, College of Education, Department of Chemistry, Kirkuk, Iraq, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, eChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and fDepartment of Bio-Chemistry, Faculty of Science, University of Beni Suef, Egypt
*Correspondence e-mail: shaabankamel@yahoo.com
The molecule of the title compound, C15H15N3O3, is twisted, with the dihedral angle between the pyridyl and benzene rings being 58.34 (6)°. In the crystal, amide-N—H⋯O(amide) and imine-C—H⋯O(amide) hydrogen bonds lead to zigzag (glide symmetry) chains extending along the c axis which are joined into layers parallel to the [100] direction by offset π–π stacking interactions between inversion-related benzene rings [centroid–centroid distance = 3.7468 (7) Å] and by C—H⋯π(pyridyl) interactions. Pyridyl rings protrude from the surfaces of the layers and partially intercalate with those of adjacent layers.
Keywords: crystal structure; pyridine; carbohydrazide; hydrogen bond; π–π stacking; picolinic acid.
CCDC reference: 1818291
Structure description
Picolinic acid (PA) is a naturally occurring product of the degradation of tryptophan which is known to up-regulate host immune responses, especially macrophage cell functions (Shanshan et al., 2006). The antimicrobial activity of PA against several strains of microorganisms has been reported (Maria et al., 2008). In addition, PA and its derivatives have other biological activities, such as their use as dietary supplements (Komorowski et al., 2008) and anti-oxidants (Kırkıl et al., 2008), and they are metabolites of fungi (Dowd, 1999). Picolinic acid have been found to possess significant antifungal activity against a wide range of soil borne pathogens (Aditi & Supradi, 2014). As a continuation of our efforts on the synthesis of biologically active compounds containing we report herein the of N′-[(1E)-2,5-dimethoxybenzylidene]pyridine-2-carbohydrazide.
In the title compound (Fig. 1), the dihedral angle between the pyridyl and benzene rings is 58.34 (6)°. In the crystal, N2—H2⋯O3 hydrogen bonds, assisted by C9—H9⋯O3 hydrogen bonds, form chains extending along the c axis (Table 1 and Fig. 2). The chains are connected into layers parallel to [100] by offset π–π stacking interactions between inversion-related benzene rings [centroid–centroid = 3.7468 (7) Å; interplanar spacing = 3.3311 (5) Å] and by C4—H4⋯Cg1 interactions (Cg1 is the centroid of the N3/C11–C15 pyridine ring.; Table 1 and Fig. 2). The pyridine rings protrude from the surfaces of the layers and partially intercalate with those of adjacent layers.
Synthesis and crystallization
The title compound was synthesized according to our previously reported procedure (Mohamed et al., 2013).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1818291
https://doi.org/10.1107/S2414314618001281/tk4047sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618001281/tk4047Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618001281/tk4047Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C15H15N3O3 | F(000) = 600 |
Mr = 285.30 | Dx = 1.393 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 10.7311 (3) Å | Cell parameters from 8226 reflections |
b = 16.4986 (4) Å | θ = 4.4–72.4° |
c = 8.2033 (2) Å | µ = 0.82 mm−1 |
β = 110.458 (1)° | T = 150 K |
V = 1360.78 (6) Å3 | Plate, colourless |
Z = 4 | 0.22 × 0.16 × 0.04 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2647 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 2375 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.028 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.4°, θmin = 4.4° |
ω scans | h = −12→13 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −20→19 |
Tmin = 0.88, Tmax = 0.97 | l = −9→10 |
10229 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.090 | All H-atom parameters refined |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0467P)2 + 0.3581P] where P = (Fo2 + 2Fc2)/3 |
2647 reflections | (Δ/σ)max < 0.001 |
250 parameters | Δρmax = 0.14 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.58069 (8) | 0.51301 (5) | 0.21382 (11) | 0.0264 (2) | |
O2 | 0.21048 (9) | 0.35193 (5) | 0.42335 (12) | 0.0296 (2) | |
O3 | 0.81174 (8) | 0.15852 (5) | 0.53933 (11) | 0.0249 (2) | |
H3 | 0.3676 (14) | 0.5724 (9) | 0.2692 (19) | 0.027 (4)* | |
N1 | 0.65193 (9) | 0.27831 (6) | 0.34398 (13) | 0.0216 (2) | |
N2 | 0.75529 (9) | 0.24318 (6) | 0.30438 (13) | 0.0208 (2) | |
H2 | 0.7731 (16) | 0.2602 (10) | 0.213 (2) | 0.038 (4)* | |
N3 | 0.90627 (10) | 0.15664 (6) | 0.16736 (13) | 0.0223 (2) | |
C1 | 0.50657 (11) | 0.39155 (7) | 0.30184 (14) | 0.0194 (2) | |
C2 | 0.48793 (11) | 0.47459 (7) | 0.26627 (14) | 0.0204 (2) | |
C3 | 0.37985 (11) | 0.51426 (7) | 0.28827 (15) | 0.0228 (2) | |
C4 | 0.29014 (11) | 0.47126 (7) | 0.34139 (15) | 0.0234 (2) | |
H4 | 0.2133 (15) | 0.4986 (9) | 0.355 (2) | 0.031 (4)* | |
C5 | 0.30648 (11) | 0.38848 (7) | 0.37352 (15) | 0.0217 (2) | |
C6 | 0.41474 (11) | 0.34879 (7) | 0.35589 (15) | 0.0206 (2) | |
H6 | 0.4310 (14) | 0.2915 (9) | 0.3807 (18) | 0.025 (3)* | |
C7 | 0.55518 (14) | 0.59604 (7) | 0.16353 (17) | 0.0284 (3) | |
H7A | 0.5597 (16) | 0.6316 (10) | 0.263 (2) | 0.037 (4)* | |
H7B | 0.6227 (16) | 0.6116 (10) | 0.115 (2) | 0.038 (4)* | |
H7C | 0.4644 (17) | 0.6035 (10) | 0.077 (2) | 0.041 (4)* | |
C8 | 0.21909 (15) | 0.26674 (8) | 0.4476 (2) | 0.0333 (3) | |
H8A | 0.3058 (18) | 0.2514 (10) | 0.537 (2) | 0.039 (4)* | |
H8B | 0.1455 (19) | 0.2525 (11) | 0.486 (2) | 0.051 (5)* | |
H8C | 0.2072 (17) | 0.2381 (10) | 0.333 (2) | 0.042 (4)* | |
C9 | 0.62063 (11) | 0.34959 (7) | 0.28163 (14) | 0.0205 (2) | |
H9 | 0.6707 (15) | 0.3764 (10) | 0.220 (2) | 0.031 (4)* | |
C10 | 0.82496 (11) | 0.18240 (6) | 0.40395 (14) | 0.0190 (2) | |
C11 | 0.92327 (11) | 0.14317 (6) | 0.33502 (15) | 0.0191 (2) | |
C12 | 1.02277 (12) | 0.09433 (7) | 0.44403 (16) | 0.0238 (3) | |
H12 | 1.0303 (15) | 0.0879 (9) | 0.566 (2) | 0.029 (4)* | |
C13 | 1.10766 (12) | 0.05531 (7) | 0.37400 (18) | 0.0287 (3) | |
H13 | 1.1779 (17) | 0.0204 (11) | 0.449 (2) | 0.040 (4)* | |
C14 | 1.09010 (12) | 0.06731 (7) | 0.20079 (17) | 0.0277 (3) | |
H14 | 1.1471 (15) | 0.0400 (9) | 0.1478 (19) | 0.032 (4)* | |
C15 | 0.98899 (12) | 0.11861 (8) | 0.10286 (16) | 0.0256 (3) | |
H15 | 0.9737 (15) | 0.1272 (9) | −0.021 (2) | 0.031 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0258 (4) | 0.0227 (4) | 0.0338 (5) | 0.0000 (3) | 0.0143 (4) | 0.0049 (3) |
O2 | 0.0264 (4) | 0.0270 (5) | 0.0426 (5) | −0.0011 (3) | 0.0209 (4) | −0.0004 (4) |
O3 | 0.0311 (4) | 0.0231 (4) | 0.0263 (4) | 0.0027 (3) | 0.0173 (4) | 0.0026 (3) |
N1 | 0.0202 (5) | 0.0232 (5) | 0.0247 (5) | 0.0033 (4) | 0.0118 (4) | −0.0015 (4) |
N2 | 0.0209 (5) | 0.0222 (5) | 0.0235 (5) | 0.0042 (4) | 0.0128 (4) | 0.0015 (4) |
N3 | 0.0217 (5) | 0.0231 (5) | 0.0243 (5) | 0.0010 (4) | 0.0107 (4) | −0.0001 (4) |
C1 | 0.0191 (5) | 0.0215 (5) | 0.0172 (5) | 0.0013 (4) | 0.0058 (4) | −0.0016 (4) |
C2 | 0.0200 (5) | 0.0226 (6) | 0.0181 (5) | −0.0008 (4) | 0.0059 (4) | 0.0002 (4) |
C3 | 0.0237 (6) | 0.0208 (6) | 0.0222 (6) | 0.0036 (4) | 0.0061 (5) | 0.0005 (4) |
C4 | 0.0210 (5) | 0.0253 (6) | 0.0241 (6) | 0.0050 (4) | 0.0081 (5) | −0.0010 (4) |
C5 | 0.0200 (5) | 0.0252 (6) | 0.0212 (6) | −0.0017 (4) | 0.0089 (5) | −0.0020 (4) |
C6 | 0.0219 (5) | 0.0199 (6) | 0.0205 (6) | 0.0013 (4) | 0.0079 (5) | −0.0015 (4) |
C7 | 0.0331 (7) | 0.0223 (6) | 0.0299 (7) | −0.0013 (5) | 0.0109 (6) | 0.0055 (5) |
C8 | 0.0352 (7) | 0.0276 (7) | 0.0435 (8) | −0.0068 (5) | 0.0219 (7) | −0.0019 (5) |
C9 | 0.0197 (5) | 0.0239 (6) | 0.0187 (5) | 0.0007 (4) | 0.0077 (4) | 0.0001 (4) |
C10 | 0.0191 (5) | 0.0167 (5) | 0.0225 (5) | −0.0023 (4) | 0.0089 (4) | −0.0020 (4) |
C11 | 0.0184 (5) | 0.0170 (5) | 0.0240 (6) | −0.0022 (4) | 0.0101 (4) | −0.0011 (4) |
C12 | 0.0239 (6) | 0.0219 (6) | 0.0272 (6) | 0.0009 (4) | 0.0110 (5) | 0.0039 (4) |
C13 | 0.0242 (6) | 0.0261 (6) | 0.0380 (7) | 0.0063 (5) | 0.0137 (5) | 0.0071 (5) |
C14 | 0.0263 (6) | 0.0248 (6) | 0.0383 (7) | 0.0028 (5) | 0.0191 (5) | −0.0005 (5) |
C15 | 0.0264 (6) | 0.0276 (6) | 0.0276 (6) | 0.0005 (5) | 0.0154 (5) | −0.0017 (5) |
O1—C2 | 1.3702 (13) | C5—C6 | 1.3845 (16) |
O1—C7 | 1.4293 (14) | C6—H6 | 0.969 (15) |
O2—C5 | 1.3734 (14) | C7—H7A | 0.994 (17) |
O2—C8 | 1.4180 (16) | C7—H7B | 0.977 (17) |
O3—C10 | 1.2324 (14) | C7—H7C | 0.993 (17) |
N1—C9 | 1.2795 (15) | C8—H8A | 0.997 (18) |
N1—N2 | 1.3869 (13) | C8—H8B | 0.975 (19) |
N2—C10 | 1.3435 (15) | C8—H8C | 1.019 (18) |
N2—H2 | 0.879 (18) | C9—H9 | 0.967 (16) |
N3—C15 | 1.3380 (15) | C10—C11 | 1.5062 (14) |
N3—C11 | 1.3412 (15) | C11—C12 | 1.3862 (16) |
C1—C2 | 1.4005 (16) | C12—C13 | 1.3929 (17) |
C1—C6 | 1.4039 (15) | C12—H12 | 0.984 (15) |
C1—C9 | 1.4652 (15) | C13—C14 | 1.3807 (19) |
C2—C3 | 1.3973 (16) | C13—H13 | 0.977 (17) |
C3—C4 | 1.3831 (17) | C14—C15 | 1.3891 (18) |
C3—H3 | 0.973 (15) | C14—H14 | 0.976 (16) |
C4—C5 | 1.3905 (17) | C15—H15 | 0.983 (16) |
C4—H4 | 0.979 (15) | ||
C2—O1—C7 | 116.56 (9) | H7A—C7—H7C | 105.6 (14) |
C5—O2—C8 | 117.26 (9) | H7B—C7—H7C | 111.0 (13) |
C9—N1—N2 | 114.22 (9) | O2—C8—H8A | 110.7 (9) |
C10—N2—N1 | 119.36 (9) | O2—C8—H8B | 105.3 (11) |
C10—N2—H2 | 121.0 (11) | H8A—C8—H8B | 110.7 (14) |
N1—N2—H2 | 119.6 (11) | O2—C8—H8C | 110.4 (9) |
C15—N3—C11 | 117.17 (10) | H8A—C8—H8C | 110.4 (13) |
C2—C1—C6 | 119.51 (10) | H8B—C8—H8C | 109.3 (14) |
C2—C1—C9 | 120.18 (10) | N1—C9—C1 | 120.13 (10) |
C6—C1—C9 | 120.31 (10) | N1—C9—H9 | 121.0 (9) |
O1—C2—C3 | 123.43 (10) | C1—C9—H9 | 118.9 (9) |
O1—C2—C1 | 116.83 (10) | O3—C10—N2 | 124.86 (10) |
C3—C2—C1 | 119.73 (10) | O3—C10—C11 | 121.15 (10) |
C4—C3—C2 | 120.07 (11) | N2—C10—C11 | 113.98 (9) |
C4—C3—H3 | 119.1 (9) | N3—C11—C12 | 123.77 (10) |
C2—C3—H3 | 120.9 (9) | N3—C11—C10 | 116.85 (10) |
C3—C4—C5 | 120.52 (10) | C12—C11—C10 | 119.36 (10) |
C3—C4—H4 | 120.3 (9) | C11—C12—C13 | 118.03 (11) |
C5—C4—H4 | 119.1 (9) | C11—C12—H12 | 119.4 (9) |
O2—C5—C6 | 124.57 (11) | C13—C12—H12 | 122.6 (9) |
O2—C5—C4 | 115.44 (10) | C14—C13—C12 | 118.98 (11) |
C6—C5—C4 | 119.98 (10) | C14—C13—H13 | 122.0 (10) |
C5—C6—C1 | 120.17 (10) | C12—C13—H13 | 119.1 (10) |
C5—C6—H6 | 122.3 (8) | C13—C14—C15 | 118.72 (11) |
C1—C6—H6 | 117.5 (8) | C13—C14—H14 | 120.7 (9) |
O1—C7—H7A | 112.3 (9) | C15—C14—H14 | 120.5 (9) |
O1—C7—H7B | 106.0 (10) | N3—C15—C14 | 123.31 (11) |
H7A—C7—H7B | 110.6 (14) | N3—C15—H15 | 116.6 (9) |
O1—C7—H7C | 111.5 (10) | C14—C15—H15 | 120.0 (9) |
C9—N1—N2—C10 | 158.68 (11) | N2—N1—C9—C1 | 175.33 (10) |
C7—O1—C2—C3 | −6.40 (16) | C2—C1—C9—N1 | 166.98 (11) |
C7—O1—C2—C1 | 174.85 (10) | C6—C1—C9—N1 | −13.43 (17) |
C6—C1—C2—O1 | −179.91 (10) | N1—N2—C10—O3 | −6.16 (17) |
C9—C1—C2—O1 | −0.31 (15) | N1—N2—C10—C11 | 173.16 (9) |
C6—C1—C2—C3 | 1.28 (16) | C15—N3—C11—C12 | 1.74 (16) |
C9—C1—C2—C3 | −179.12 (10) | C15—N3—C11—C10 | −176.62 (10) |
O1—C2—C3—C4 | 179.90 (10) | O3—C10—C11—N3 | 162.00 (10) |
C1—C2—C3—C4 | −1.38 (17) | N2—C10—C11—N3 | −17.34 (14) |
C2—C3—C4—C5 | 0.06 (17) | O3—C10—C11—C12 | −16.44 (16) |
C8—O2—C5—C6 | −4.14 (17) | N2—C10—C11—C12 | 164.22 (10) |
C8—O2—C5—C4 | 176.43 (11) | N3—C11—C12—C13 | −1.80 (17) |
C3—C4—C5—O2 | −179.18 (10) | C10—C11—C12—C13 | 176.52 (10) |
C3—C4—C5—C6 | 1.35 (17) | C11—C12—C13—C14 | 0.54 (18) |
O2—C5—C6—C1 | 179.15 (10) | C12—C13—C14—C15 | 0.63 (18) |
C4—C5—C6—C1 | −1.43 (17) | C11—N3—C15—C14 | −0.44 (17) |
C2—C1—C6—C5 | 0.12 (16) | C13—C14—C15—N3 | −0.71 (19) |
C9—C1—C6—C5 | −179.48 (10) |
Cg1 is the centroid of the N3/C11–C15 pyridine ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O3i | 0.879 (18) | 2.103 (18) | 2.9403 (13) | 159.0 (15) |
C9—H9···O3i | 0.967 (16) | 2.525 (15) | 3.3202 (14) | 139.5 (12) |
C4—H4···Cg1ii | 0.979 (15) | 2.839 (16) | 3.7240 (13) | 150.6 (12) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y+1/2, −z+1/2. |
Acknowledgements
The support of NSF–MRI for the purchase of the diffractometer and of Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
Funding information
Funding for this research was provided by: NSF–MRI (grant No. 1228232).
References
Aditi, K. & Supradi, S. (2014). Plant Path. J, 13, 152–159. Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT, SADABS, and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dowd, P. F. (1999). Nat. Toxins, 7, 337–341. CrossRef PubMed CAS Google Scholar
Kırkıl, G., Hamdi Muz, M., Seçkin, D., Şahin, K., Küçük, O. & Ömer, (2008). Respir. Med. 102, 840–844. Google Scholar
Komorowski, J. R., Greenberg, D. & Juturu, V. (2008). Toxicol. In Vitro, 22, 819–826. CrossRef PubMed CAS Google Scholar
Maria, H. B., Sylwia, K. C., Renata, M., Jerzy, P., Renata, S. & Wtodzimierz, L. (2008). Pol. J. Food Nutr. Sci. 58, 415–418. Google Scholar
Mohamed, S. K., Albayati, M. R., Sabry HH Younes, S. H. H. & Abed-Alkareem, M. G. (2013). Chem. Sci. J., Article No. CSJ-97. Google Scholar
Shanshan, C., Katsumasa, S., Toshiaki, S., Seiko, Y., Miho, H., Chiaki, S. & Haruaki, T. (2006). J. Antimicrob. Chemother. 57, 85–93. PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.