organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Carb­­oxy-2-hy­dr­oxy­propan-1-aminium 4-methyl­benzene­sulfonate monohydrate

aPostgraduate Research Department of Physics, Government Arts College (Autonomous), Kumbakonam 612 001, Tamilnadu, India, and bKunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamilnadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 23 December 2017; accepted 30 December 2017; online 9 January 2018)

In the title hydrated salt, C4H10NO3+·C7H7O3S·H2O, an intra­molecular C—H⋯O hydrogen bond in the cation generates an S(6) loop. In the crystal, carboxyl-O—H⋯O(sulfonate), hydroxyl-O—H⋯O(sulfonate), water-O—H⋯O(sulfonate, hydrox­yl) and ammonium-N—H⋯O(water, carbon­yl) hydrogen bonds link the components of the asymmetric unit into supra­molecular layers parallel to (001).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Having a non-centrosymmetric crystal is an important requisite for second harmonic generation (Etter & Huang, 1992[Etter, M. C. & Huang, K. S. (1992). Chem. Mater. 4, 824-827.]; Sarma et al., 1994[Sarma, J. A. R. P., Dhurjati, M. S. K., Ravikumar, K. & Bhanuprakash, K. (1994). Chem. Mater. 6, 1369-1377.]). As part of our studies in this area, we now describe the crystal structure of the title hydrated molecular salt (Fig. 1[link]), which crystallizes in the non-centrosymmetric space group P21. It crystallizes with one independent cation, an anion and a water mol­ecule in the asymmetric unit.

[Figure 1]
Figure 1
A view of the asymmetric unit showing the atom numbering and displacement ellipsoids drawn at the 30% probability level. Dashed lines indicate hydrogen-bonding inter­actions.

There is an intra­molecular C11—H11B⋯O5 hydrogen bond within the cation, which generates an S(6) ring, Table 1[link]. The crystal structure features a variety of hydrogen bonds, as listed in Table 1[link]. As seen from Fig. 2[link], the hydrogen bonds connect the constituents of the asymmetric unit into supra­molecular layers that stack along the c-axis direction.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O5 0.96 2.47 3.068 (4) 120
O5—H5A⋯O3 0.82 1.76 2.576 (3) 172
O6—H6A⋯O2i 0.82 1.90 2.713 (3) 172
O7—H7E⋯O1ii 0.88 (2) 1.98 (3) 2.770 (3) 149 (3)
O7—H7D⋯O6 0.88 (2) 1.88 (3) 2.741 (3) 166 (4)
N1—H1B⋯O7iii 0.91 (2) 2.16 (2) 2.973 (3) 149 (2)
N1—H1C⋯O4ii 0.88 (2) 2.01 (2) 2.874 (3) 166 (3)
N1—H1A⋯O7iv 0.90 (2) 1.92 (2) 2.769 (3) 155 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z]; (iii) [-x+2, y-{\script{1\over 2}}, -z]; (iv) x, y-1, z.
[Figure 2]
Figure 2
The mol­ecular packing of the title compound, viewed down the b axis. The hydrogen bonds are shown as blue lines.

Synthesis and crystallization

p-Toluene­sulfonic acid monohydrate (1.902 g, 0.0099 mol) and L-threonine (1.191 g, 0.0099 mol) were mixed in deionized water. The solution was stirred well using a magnetic stirrer for about 4 h to obtain a homogeneous solution. Then, the solution was filtered and left to evaporate slowly. The colourless blocks used for the analysis were harvested after three weeks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Owing to obstruction from the beam-stop, the (001) reflection was omitted from the final cycles of the refinement.

Table 2
Experimental details

Crystal data
Chemical formula C4H10NO3+·C7H7O3S·H2O
Mr 309.33
Crystal system, space group Monoclinic, P21
Temperature (K) 296
a, b, c (Å) 8.0762 (4), 6.2486 (4), 14.5096 (10)
β (°) 92.161 (2)
V3) 731.71 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.15 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.662, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 8712, 3347, 2705
Rint 0.028
(sin θ/λ)max−1) 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.081, 1.02
No. of reflections 3347
No. of parameters 203
No. of restraints 10
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.19
Absolute structure Flack x determined using 1035 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter 0.06 (4)
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018/1 (Sheldrick, 2015b), PLATON (Spek, 2009), and publCIF (Westrip, 2010).

1-Carboxy-2-hydroxypropan-1-aminium 4-methylbenzenesulfonate monohydrate top
Crystal data top
C4H10NO3+·C7H7O3S·H2ODx = 1.404 Mg m3
Mr = 309.33Melting point: 356 K
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.0762 (4) ÅCell parameters from 3667 reflections
b = 6.2486 (4) Åθ = 2.8–26.3°
c = 14.5096 (10) ŵ = 0.25 mm1
β = 92.161 (2)°T = 296 K
V = 731.71 (8) Å3Block, colourless
Z = 20.15 × 0.15 × 0.10 mm
F(000) = 328
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3347 independent reflections
Radiation source: fine-focus sealed tube2705 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and φ scanθmax = 27.9°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.662, Tmax = 0.746k = 88
8712 measured reflectionsl = 1918
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0332P)2 + 0.1196P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.19 e Å3
3347 reflectionsΔρmin = 0.19 e Å3
203 parametersAbsolute structure: Flack x determined using 1035 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
10 restraintsAbsolute structure parameter: 0.06 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C). The oxygen-bound H-atoms were either fixed with O—H = 0.82 or refined with a distance restraint of O—H = 0.82±0.02 Å, and with Uiso(H) set to 1.5Uequiv(O). The nitrogen-bound H-atoms were refined with a distance restraint of N—H = 0.90±0.02 Å, and with Uiso(H) set to 1.2Uequiv(N).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1902 (4)0.2622 (5)0.3298 (2)0.0322 (7)
C20.1609 (5)0.1904 (6)0.4177 (2)0.0482 (9)
H20.1163750.0549610.4263540.058*
C30.1979 (5)0.3202 (7)0.4928 (3)0.0586 (11)
H30.1761110.2711760.5516250.070*
C40.2667 (5)0.5213 (6)0.4826 (3)0.0498 (10)
C50.2923 (4)0.5914 (7)0.3942 (2)0.0488 (9)
H50.3366030.7269710.3855690.059*
C60.2539 (4)0.4652 (6)0.3181 (2)0.0428 (8)
H60.2709230.5169310.2591310.051*
C70.3102 (7)0.6609 (7)0.5653 (3)0.0764 (14)
H7A0.2998960.8087490.5480360.115*
H7B0.4220380.6322500.5863850.115*
H7C0.2361180.6301360.6137670.115*
C80.5860 (4)0.2830 (5)0.1146 (2)0.0267 (7)
C90.7313 (3)0.4344 (5)0.1101 (2)0.0241 (6)
H90.8277480.3702610.1425080.029*
C100.6941 (4)0.6526 (4)0.1541 (2)0.0287 (7)
H100.5836730.6992330.1321620.034*
C110.6977 (5)0.6436 (6)0.2586 (2)0.0496 (10)
H11A0.8048570.5959750.2810040.074*
H11B0.6145600.5457140.2782360.074*
H11C0.6761080.7835590.2826730.074*
O10.1064 (3)0.2289 (4)0.15625 (16)0.0479 (6)
O20.0228 (3)0.0530 (5)0.25880 (16)0.0517 (7)
O30.3066 (3)0.0201 (3)0.21803 (16)0.0404 (6)
O40.4950 (3)0.2474 (4)0.04880 (15)0.0439 (6)
O50.5713 (3)0.2015 (4)0.19660 (15)0.0410 (6)
H5A0.4838040.1352860.1983170.061*
O60.8126 (3)0.8011 (3)0.12263 (15)0.0414 (6)
H6A0.8770610.8333420.1654260.062*
O70.8692 (3)1.0534 (3)0.02744 (18)0.0394 (6)
S10.15216 (9)0.09312 (13)0.23372 (5)0.0331 (2)
N10.7689 (3)0.4662 (4)0.01176 (17)0.0268 (6)
H1B0.865 (3)0.542 (4)0.007 (2)0.033 (9)*
H1C0.683 (3)0.535 (5)0.013 (2)0.060 (13)*
H1A0.782 (4)0.338 (4)0.016 (2)0.050 (11)*
H7E0.848 (4)0.980 (5)0.0782 (17)0.048 (11)*
H7D0.836 (5)0.983 (7)0.0212 (19)0.088 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0281 (16)0.0385 (17)0.0298 (17)0.0019 (14)0.0013 (13)0.0071 (14)
C20.072 (3)0.0402 (19)0.0329 (19)0.0149 (19)0.0013 (17)0.0055 (17)
C30.089 (3)0.059 (3)0.027 (2)0.008 (2)0.001 (2)0.0055 (19)
C40.065 (2)0.045 (2)0.039 (2)0.0006 (18)0.0045 (18)0.0046 (17)
C50.063 (2)0.0364 (18)0.047 (2)0.010 (2)0.0043 (17)0.001 (2)
C60.055 (2)0.0408 (19)0.0325 (19)0.0082 (18)0.0049 (16)0.0056 (16)
C70.113 (4)0.067 (3)0.048 (3)0.013 (3)0.007 (2)0.016 (2)
C80.0254 (15)0.0237 (15)0.0310 (17)0.0018 (13)0.0013 (13)0.0007 (13)
C90.0197 (14)0.0263 (14)0.0263 (16)0.0000 (12)0.0005 (12)0.0022 (13)
C100.0295 (16)0.0270 (16)0.0296 (16)0.0069 (12)0.0021 (12)0.0037 (12)
C110.064 (2)0.052 (2)0.0335 (18)0.0228 (19)0.0100 (16)0.0100 (16)
O10.0577 (15)0.0567 (15)0.0288 (13)0.0011 (13)0.0049 (11)0.0106 (12)
O20.0422 (13)0.0725 (17)0.0404 (14)0.0327 (13)0.0031 (11)0.0002 (14)
O30.0371 (12)0.0332 (12)0.0513 (15)0.0043 (11)0.0068 (11)0.0016 (11)
O40.0415 (13)0.0551 (15)0.0346 (13)0.0247 (12)0.0061 (11)0.0012 (11)
O50.0400 (13)0.0454 (13)0.0374 (13)0.0153 (11)0.0015 (10)0.0100 (11)
O60.0561 (15)0.0369 (13)0.0311 (13)0.0210 (12)0.0001 (11)0.0012 (11)
O70.0497 (14)0.0287 (13)0.0400 (14)0.0014 (11)0.0068 (11)0.0032 (12)
S10.0304 (4)0.0405 (4)0.0281 (4)0.0097 (4)0.0003 (3)0.0048 (4)
N10.0252 (14)0.0244 (13)0.0310 (14)0.0014 (12)0.0036 (11)0.0016 (12)
Geometric parameters (Å, º) top
C1—C21.381 (4)C9—C101.539 (4)
C1—C61.381 (5)C9—H90.9800
C1—S11.767 (3)C10—O61.420 (3)
C2—C31.382 (5)C10—C111.517 (4)
C2—H20.9300C10—H100.9800
C3—C41.384 (5)C11—H11A0.9600
C3—H30.9300C11—H11B0.9600
C4—C51.378 (5)C11—H11C0.9600
C4—C71.513 (5)O1—S11.445 (2)
C5—C61.383 (5)O2—S11.445 (2)
C5—H50.9300O3—S11.459 (2)
C6—H60.9300O5—H5A0.8200
C7—H7A0.9600O6—H6A0.8200
C7—H7B0.9600O7—H7E0.88 (2)
C7—H7C0.9600O7—H7D0.88 (2)
C8—O41.204 (3)N1—H1B0.913 (19)
C8—O51.304 (3)N1—H1C0.88 (2)
C8—C91.511 (4)N1—H1A0.90 (2)
C9—N11.484 (4)
C2—C1—C6119.3 (3)N1—C9—H9109.1
C2—C1—S1120.2 (3)C8—C9—H9109.1
C6—C1—S1120.5 (2)C10—C9—H9109.1
C1—C2—C3119.9 (3)O6—C10—C11110.9 (2)
C1—C2—H2120.1O6—C10—C9107.5 (2)
C3—C2—H2120.1C11—C10—C9112.6 (3)
C2—C3—C4121.6 (3)O6—C10—H10108.6
C2—C3—H3119.2C11—C10—H10108.6
C4—C3—H3119.2C9—C10—H10108.6
C5—C4—C3117.5 (4)C10—C11—H11A109.5
C5—C4—C7121.1 (4)C10—C11—H11B109.5
C3—C4—C7121.4 (4)H11A—C11—H11B109.5
C4—C5—C6121.7 (4)C10—C11—H11C109.5
C4—C5—H5119.2H11A—C11—H11C109.5
C6—C5—H5119.2H11B—C11—H11C109.5
C1—C6—C5119.9 (3)C8—O5—H5A109.5
C1—C6—H6120.0C10—O6—H6A109.5
C5—C6—H6120.0H7E—O7—H7D111 (3)
C4—C7—H7A109.5O2—S1—O1113.63 (15)
C4—C7—H7B109.5O2—S1—O3111.30 (15)
H7A—C7—H7B109.5O1—S1—O3111.00 (14)
C4—C7—H7C109.5O2—S1—C1106.57 (15)
H7A—C7—H7C109.5O1—S1—C1107.12 (16)
H7B—C7—H7C109.5O3—S1—C1106.79 (14)
O4—C8—O5125.3 (3)C9—N1—H1B109.9 (19)
O4—C8—C9122.3 (3)C9—N1—H1C106 (2)
O5—C8—C9112.4 (3)H1B—N1—H1C112 (2)
N1—C9—C8108.2 (2)C9—N1—H1A110 (2)
N1—C9—C10109.3 (2)H1B—N1—H1A108 (2)
C8—C9—C10111.9 (2)H1C—N1—H1A110 (3)
C6—C1—C2—C31.1 (5)O4—C8—C9—C10102.5 (3)
S1—C1—C2—C3177.1 (3)O5—C8—C9—C1076.5 (3)
C1—C2—C3—C41.0 (6)N1—C9—C10—O642.8 (3)
C2—C3—C4—C52.0 (6)C8—C9—C10—O6162.6 (2)
C2—C3—C4—C7178.7 (4)N1—C9—C10—C11165.3 (2)
C3—C4—C5—C61.1 (6)C8—C9—C10—C1174.9 (3)
C7—C4—C5—C6179.7 (4)C2—C1—S1—O227.8 (3)
C2—C1—C6—C52.0 (5)C6—C1—S1—O2154.0 (3)
S1—C1—C6—C5176.2 (3)C2—C1—S1—O1149.7 (3)
C4—C5—C6—C10.9 (5)C6—C1—S1—O132.1 (3)
O4—C8—C9—N117.9 (4)C2—C1—S1—O391.3 (3)
O5—C8—C9—N1163.1 (2)C6—C1—S1—O386.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O50.962.473.068 (4)120
O5—H5A···O30.821.762.576 (3)172
O6—H6A···O2i0.821.902.713 (3)172
O7—H7E···O1ii0.88 (2)1.98 (3)2.770 (3)149 (3)
O7—H7D···O60.88 (2)1.88 (3)2.741 (3)166 (4)
N1—H1B···O7iii0.91 (2)2.16 (2)2.973 (3)149 (2)
N1—H1C···O4ii0.88 (2)2.01 (2)2.874 (3)166 (3)
N1—H1A···O7iv0.90 (2)1.92 (2)2.769 (3)155 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1/2, z; (iii) x+2, y1/2, z; (iv) x, y1, z.
 

Footnotes

Additional correspondence author, e-mail: crraja_phy@yahoo.com.

Acknowledgements

The authors are grateful to the Sophisticated Analytical Instrument Facility (SAIF) in IITM, Chennai, India, for the single-crystal X-ray diffraction data.

Funding information

The funding for this research work was provided by the Council of Scientific and Industrial Research (CSIR), New Delhi, India (Scheme No. 03(1301)/13/EMR II to author CRR).

References

First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C. & Huang, K. S. (1992). Chem. Mater. 4, 824–827.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSarma, J. A. R. P., Dhurjati, M. S. K., Ravikumar, K. & Bhanuprakash, K. (1994). Chem. Mater. 6, 1369–1377.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]