organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Chloro-4-nitro­pyridine N-oxide

aGeorgia Southern University, 11935 Abercorn St. Savanah GA 31419, USA
*Correspondence e-mail: clifford.padgett@armstrong.edu

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 17 December 2017; accepted 3 January 2018; online 9 January 2018)

In the title compound, C5H3ClN2O3 (systematic name: 2-chloro-4-nitro­pyridin-1-ium-1-olate), the nitro group is essentially coplanar with the aromatic ring, with a twist angle of 6.48 (8)°. The mol­ecular packing exhibits a herringbone pattern with the zigzag running along the b axis; here, there are no short contacts, hydrogen bonds, or ππ inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyridine N-oxide and related compounds have garnered much inter­est in organic chemistry since their preparation was first reported by Meisenheimer (1926[Meisenheimer, J. (1926). Ber. Dtsch. Chem. Ges. A/B, 59, 1848-1853.]). A number of recent publications have highlighted their utility in organic transformations such as reactions with Grignard reagents (Andersson et al., 2011[Andersson, H., Olsson, R. & Almqvist, F. (2011). Org. Biomol. Chem. 9, 337-346.]), aromatic ring substitutions (Shibata & Takano, 2015[Shibata, T. & Takano, H. (2015). Org. Chem. Front. 2, 383-387.]) and aromatic coupling reactions (Wang & Zhang, 2015[Wang, Y. & Zhang, L. (2015). Synthesis, 47, 289-305.]). Further, numerous uses in pharmaceutical applications have been realised throughout the years, such as the recent report of uses as an emerging class of therapeutic agents, including thrombin as a potential clotting inhibitor drug (Mfuh & Larionov, 2015[Mfuh, A. M. & Larionov, O. V. (2015). Curr. Med. Chem. 22, 2819-2857.]).

In the title compound (Fig. 1[link]), the nitro group is essentially coplanar with the aromatic ring, with a twist angle of 6.48 (8)°. The crystal structure (Fig. 2[link]) exhibits a herringbone pattern with the zigzag running along the b axis. The herringbone layer-to-layer distance is 2.947 (4) Å with a shift of 5.155 (5) Å. Neighboring mol­ecules of the herringbone are tilted at a 47.08 (10)° (ring-to-ring) angle to each other. The chloro group in one of herringbone chains points to the chloro group in the neighboring one, with a Cl⋯Cl inter­molecular distance of 3.708 (2) Å. In the bends of the chains, the N-oxide aligns with the nitro group with an O⋯O distance of 2.922 (3) Å. There are no other short contacts, hydrogen bonds, or ππ inter­actions.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Mol­ecular packing diagram of title compound viewed along the c axis.

This structure is similar to the previously reported structure of 2,6-di­chloro-4-nitro­pyridine N-oxide (Prichard et al., 2015[Prichard, A. M., Lynch, W. E. & Padgett, C. W. (2015). Acta Cryst. E71, o775.]).

Synthesis and crystallization

2-Chloro-4-nitro­pyridine N-oxide was purchased from Sigma–Aldrich and 0.10 g was dissolved in approximately 50 ml of chloro­form. Diffraction-quality crystals were obtained by slow evaporation of the solvent.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C5H3ClN2O3
Mr 174.54
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 176
a, b, c (Å) 5.9238 (14), 9.735 (2), 22.444 (8)
V3) 1294.3 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.54
Crystal size (mm) 0.34 × 0.18 × 0.08
 
Data collection
Diffractometer Rigaku XtalLab mini CCD
Absorption correction Multi-scan (REQAB;Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.741, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11029, 1485, 1088
Rint 0.111
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.132, 1.06
No. of reflections 1484
No. of parameters 100
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.33
Computer programs: CrystalClear (Rigaku, 2009[Rigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 2009); cell refinement: CrystalClear (Rigaku, 2009); data reduction: CrystalClear (Rigaku, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-Chloro-4-nitropyridine N-oxide top
Crystal data top
C5H3ClN2O3Dx = 1.791 Mg m3
Mr = 174.54Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 2672 reflections
a = 5.9238 (14) Åθ = 2.1–27.5°
b = 9.735 (2) ŵ = 0.54 mm1
c = 22.444 (8) ÅT = 176 K
V = 1294.3 (5) Å3Prism, colorless
Z = 80.34 × 0.18 × 0.08 mm
F(000) = 704
Data collection top
Rigaku XtalLab mini CCD
diffractometer
1088 reflections with I > 2σ(I)
ω scansRint = 0.111
Absorption correction: multi-scan
(REQAB;Rigaku, 1998)
θmax = 27.5°, θmin = 1.8°
Tmin = 0.741, Tmax = 1.000h = 77
11029 measured reflectionsk = 1212
1485 independent reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.056P)2 + 0.245P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1484 reflectionsΔρmax = 0.33 e Å3
100 parametersΔρmin = 0.33 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding model approximation,with Uiso(H) set to 1.2Uequiv(C)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.84970 (12)0.41241 (8)0.70078 (3)0.0328 (3)
O11.0061 (3)0.4471 (2)0.58347 (8)0.0308 (5)
O20.1310 (3)0.7204 (2)0.67343 (9)0.0394 (6)
O30.1031 (3)0.7656 (2)0.57923 (8)0.0327 (5)
N10.8139 (3)0.5062 (2)0.59237 (9)0.0230 (5)
N20.2001 (4)0.7138 (2)0.62205 (9)0.0272 (5)
C10.7126 (4)0.5030 (3)0.64730 (10)0.0241 (6)
C20.5117 (4)0.5703 (3)0.65747 (11)0.0249 (6)
H20.4453460.5691680.6950200.030*
C30.4116 (4)0.6391 (3)0.61119 (11)0.0244 (6)
C40.5083 (4)0.6418 (3)0.55541 (11)0.0252 (6)
H40.4385170.6880580.5241750.030*
C50.7094 (4)0.5752 (3)0.54681 (11)0.0257 (6)
H50.7763040.5767160.5093290.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0334 (4)0.0350 (4)0.0301 (4)0.0086 (3)0.0052 (3)0.0017 (3)
O10.0223 (10)0.0284 (11)0.0418 (12)0.0070 (9)0.0068 (8)0.0018 (8)
O20.0331 (12)0.0453 (14)0.0397 (12)0.0094 (10)0.0090 (9)0.0013 (10)
O30.0255 (10)0.0300 (11)0.0425 (12)0.0013 (9)0.0069 (8)0.0048 (9)
N10.0210 (12)0.0174 (11)0.0307 (11)0.0014 (10)0.0032 (8)0.0024 (9)
N20.0209 (12)0.0248 (12)0.0360 (13)0.0017 (10)0.0012 (9)0.0006 (10)
C10.0261 (14)0.0212 (13)0.0249 (12)0.0009 (12)0.0037 (10)0.0013 (10)
C20.0235 (14)0.0258 (14)0.0255 (13)0.0027 (12)0.0021 (10)0.0012 (10)
C30.0198 (13)0.0225 (13)0.0308 (14)0.0016 (11)0.0006 (11)0.0030 (10)
C40.0253 (14)0.0247 (14)0.0257 (14)0.0017 (11)0.0033 (10)0.0017 (10)
C50.0279 (14)0.0269 (14)0.0224 (13)0.0050 (12)0.0026 (10)0.0003 (11)
Geometric parameters (Å, º) top
Cl1—C11.697 (3)C1—C21.378 (4)
O1—N11.291 (3)C2—H20.9300
O2—N21.225 (3)C2—C31.371 (4)
O3—N21.228 (3)C3—C41.377 (4)
N1—C11.372 (4)C4—H40.9300
N1—C51.371 (3)C4—C51.370 (4)
N2—C31.469 (4)C5—H50.9300
O1—N1—C1121.0 (2)C3—C2—H2120.6
O1—N1—C5120.1 (2)C2—C3—N2119.0 (2)
C5—N1—C1118.9 (2)C2—C3—C4121.2 (3)
O2—N2—O3124.0 (3)C4—C3—N2119.7 (2)
O2—N2—C3117.9 (2)C3—C4—H4120.6
O3—N2—C3118.2 (2)C5—C4—C3118.7 (2)
N1—C1—Cl1116.0 (2)C5—C4—H4120.6
N1—C1—C2121.1 (2)N1—C5—H5119.4
C2—C1—Cl1122.9 (2)C4—C5—N1121.3 (2)
C1—C2—H2120.6C4—C5—H5119.4
C3—C2—C1118.7 (2)
 

Funding information

The authors acknowledge financial support from Armstrong State University.

References

First citationAndersson, H., Olsson, R. & Almqvist, F. (2011). Org. Biomol. Chem. 9, 337–346.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeisenheimer, J. (1926). Ber. Dtsch. Chem. Ges. A/B, 59, 1848–1853.  CrossRef Google Scholar
First citationMfuh, A. M. & Larionov, O. V. (2015). Curr. Med. Chem. 22, 2819–2857.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPrichard, A. M., Lynch, W. E. & Padgett, C. W. (2015). Acta Cryst. E71, o775.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShibata, T. & Takano, H. (2015). Org. Chem. Front. 2, 383–387.  Web of Science CrossRef CAS Google Scholar
First citationWang, Y. & Zhang, L. (2015). Synthesis, 47, 289–305.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]