organic compounds
5-(2-Chlorophenyl)-3-(2H-chromen-3-yl)-1,2,4-oxadiazole
aDepartment of Chemistry, Ravenshaw University, Cuttack, Odisha, India, and bP.G. Department of Chemistry, Utkal University, Bhubaneswar, Odisha, India
*Correspondence e-mail: snpal75@gmail.com
In the title compound, C17H11ClN2O2, the central oxadiazole ring carries 2H-chromene and 2-chlorophenyl substituents at the 3- and 5-positions, respectively. C—H⋯O and C—H⋯Cl hydrogen bonds form two-dimensional sheets parallel to (212), with each individual molecule involved in six of these weak interactions. The sheets are stacked perpendicular to (212) by offset π–π stacking interactions.
Keywords: crystal structure; C—H⋯Cl and C—H⋯O hydrogen bonding; two-dimensional sheet structure; π–π interactions.
CCDC reference: 1818314
Structure description
Oxadiazole derivatives have attracted considerable interest due to their unique chemical structures and wide variety of biological applications. These include use as antitumour (Maftei et al., 2013), antifungal, antibacterial and anti-inflammatory agents (Rakesh et al., 2009). Chromene (benzopyran) is also an important medicinal pharmacophore. It is an integral part of many natural and and is known to possess biological activities similar to the oxadiazoles, together with antivascular, antimicrobial and antioxidant properties (Gourdeau et al., 2004). Another important feature is its lipophilic nature which helps it to pass readily through cell membranes. We are interested in the design and synthesis of chromene-based oxadiazole derivatives and studies of their biological activity, and we report here the structure of the chromene–oxadiazole derivative 5-(2-chlorophenyl)-3-(2H-chromen-3-yl)-1,2,4-oxadiazole.
A perspective view of the molecule is shown in Fig. 1. The molecule is not completely planar. The plane of the central oxadiazole ring is inclined at 1.2 (1)° to the plane of the 2-chlorophenyl ring and 12.24 (9)° to the best-fit plane of the chromene ring system. The C—Cl distance [1.7221 (17) Å] is consistent with the reported values (Hathwar et al., 2010). The bond lengths and angles of the chromene and oxadiazole units are also similar to those reported in the literature (Devarajegowda et al., 2015; Du & Zhao, 2004). In the crystal, weak intermolecular C—H⋯Cl and C—H⋯O interactions (Desiraju et al., 1999) are found. C14—H14⋯Cl1 hydrogen bonds form inversion dimers enclosing R22(24) rings, while a second inversion dimer forms through C5—H5⋯O1 contacts with an R22(10) ring motif (Bernstein et al., 1995). A C2—H2⋯O2 interaction completes the hydrogen-bonding network, forming sheets of molecules parallel to (212), with each individual molecule in the sheet bound to four others through six nonclassical hydrogen-bonding interactions (Table 1 and Fig. 2). Adjacent sheets are linked by inversion related offset π–π stacking interactions (Table 2 and Fig. 3), forming a three-dimensional network.
Synthesis and crystallization
This compound was prepared by the treatment of N-hydroxy-2H-chromene-3-carboximidamide (1 equiv.) with 2-chlorobenzoic acid (0.8 equiv.) in the presence of ethylene dicarboimide (EDCI, 1.2 equiv) and N-hydroxybenzotriazole (HOBt, 1.2 equiv.) in dry DMF at 353 K for 6 h (Fig. 4). The reaction mixture was extracted with water and ethyl acetate. The pure compound was isolated by eluting with 2–5% ethyl acetate/hexane. The solvents were evaporated and dried to give the title compound in 75% yield (m.p. 478 K). Colourless rectangular crystals were obtained by slow evaporation of a solution of the compound in a dichloromethane/hexane mixture. 1H NMR (400 MHz, CDCl3): δ 8.01 (d, J = 8.0 Hz, 2H), 7.37–7.33 (m, 3H), 7.21–7.17 (m, 2H), 6.94 (t, J = 8.0 Hz, 1H), 6.89 (d, J = 8.0 Hz, 1H), 5.26 (s, 2H); 13C NMR (100 MHz, CDCl3): δ 173.9, 166.0, 154.7, 134.8, 131.9, 131.6, 131.1, 128.6, 128.5, 128.4, 127.2, 126.8, 121.9, 121.4, 119.2, 116.2, 64.2.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 3
|
Structural data
CCDC reference: 1818314
https://doi.org/10.1107/S2414314618001293/sj4155sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618001293/sj4155Isup2.hkl
Data collection: APEX2 (Bruker 2014); cell
SAINT (Bruker 2014; data reduction: SAINT (Bruker 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and PLATON (Spek 2009).C17H11ClN2O2 | Z = 2 |
Mr = 310.73 | F(000) = 320 |
Triclinic, P1 | Dx = 1.448 Mg m−3 |
a = 8.7208 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.7703 (3) Å | Cell parameters from 2986 reflections |
c = 9.6278 (4) Å | θ = 2.4–26.6° |
α = 86.035 (3)° | µ = 0.28 mm−1 |
β = 80.227 (3)° | T = 296 K |
γ = 79.352 (2)° | Rectangular block, colourless |
V = 712.65 (5) Å3 | 0.40 × 0.28 × 0.20 mm |
Bruker APEXII diffractometer | Rint = 0.028 |
Radiation source: sealed tube | θmax = 28.3°, θmin = 2.2° |
φ and ω scans | h = −11→11 |
11000 measured reflections | k = −11→11 |
3518 independent reflections | l = −12→12 |
2452 reflections with I > 2σ(I) |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.134 | w = 1/[σ2(Fo2) + (0.0629P)2 + 0.0537P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max < 0.001 |
3518 reflections | Δρmax = 0.38 e Å−3 |
199 parameters | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.52115 (6) | 0.91781 (6) | 1.30274 (6) | 0.0650 (2) | |
O1 | 0.61910 (15) | 1.27500 (14) | 0.95744 (13) | 0.0529 (3) | |
O2 | 1.09361 (16) | 0.89357 (16) | 0.61902 (13) | 0.0601 (4) | |
N1 | 0.69651 (16) | 1.03574 (15) | 1.03518 (15) | 0.0418 (3) | |
N2 | 0.75145 (19) | 1.21176 (18) | 0.86047 (16) | 0.0536 (4) | |
C3 | 0.2109 (2) | 1.3029 (2) | 1.3854 (2) | 0.0597 (5) | |
H3 | 0.1264 | 1.3352 | 1.4559 | 0.072* | |
C4 | 0.2528 (2) | 1.4042 (2) | 1.2754 (2) | 0.0602 (5) | |
H4 | 0.1969 | 1.5052 | 1.2720 | 0.072* | |
C5 | 0.3759 (2) | 1.3563 (2) | 1.1718 (2) | 0.0527 (5) | |
H5 | 0.4019 | 1.4259 | 1.0981 | 0.063* | |
C6 | 0.4649 (2) | 1.20576 (19) | 1.17225 (18) | 0.0409 (4) | |
C7 | 0.5951 (2) | 1.16306 (19) | 1.05849 (18) | 0.0401 (4) | |
C8 | 0.7906 (2) | 1.07079 (19) | 0.91245 (17) | 0.0410 (4) | |
C9 | 0.9241 (2) | 0.9627 (2) | 0.84305 (17) | 0.0408 (4) | |
C17 | 0.9677 (2) | 0.81924 (19) | 0.89577 (18) | 0.0421 (4) | |
H17 | 0.9143 | 0.7866 | 0.9814 | 0.051* | |
C16 | 1.09781 (19) | 0.71486 (19) | 0.81982 (18) | 0.0426 (4) | |
C11 | 1.1551 (2) | 0.7555 (2) | 0.6807 (2) | 0.0492 (4) | |
C12 | 1.2678 (3) | 0.6539 (3) | 0.5981 (2) | 0.0649 (6) | |
H12 | 1.3036 | 0.6817 | 0.5048 | 0.078* | |
C13 | 1.3268 (3) | 0.5112 (3) | 0.6547 (3) | 0.0706 (6) | |
H13 | 1.4018 | 0.4422 | 0.5987 | 0.085* | |
C15 | 1.1619 (2) | 0.5702 (2) | 0.8749 (2) | 0.0526 (5) | |
H15 | 1.1270 | 0.5414 | 0.9680 | 0.063* | |
C14 | 1.2766 (3) | 0.4691 (2) | 0.7928 (2) | 0.0634 (6) | |
H14 | 1.3194 | 0.3734 | 0.8306 | 0.076* | |
C10 | 1.0205 (2) | 1.0176 (2) | 0.7108 (2) | 0.0544 (5) | |
H10A | 0.9526 | 1.0945 | 0.6607 | 0.065* | |
H10B | 1.1017 | 1.0674 | 0.7362 | 0.065* | |
C1 | 0.4216 (2) | 1.1052 (2) | 1.28580 (19) | 0.0448 (4) | |
C2 | 0.2945 (2) | 1.1539 (2) | 1.3905 (2) | 0.0550 (5) | |
H2 | 0.2658 | 1.0855 | 1.4643 | 0.066* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0698 (4) | 0.0491 (3) | 0.0657 (3) | 0.0012 (2) | −0.0008 (3) | 0.0144 (2) |
O1 | 0.0564 (8) | 0.0409 (7) | 0.0530 (7) | 0.0005 (6) | 0.0021 (6) | 0.0062 (6) |
O2 | 0.0636 (9) | 0.0618 (8) | 0.0435 (7) | 0.0030 (7) | 0.0058 (6) | 0.0027 (6) |
N1 | 0.0400 (8) | 0.0382 (7) | 0.0443 (8) | −0.0025 (6) | −0.0040 (6) | 0.0007 (6) |
N2 | 0.0542 (10) | 0.0472 (8) | 0.0510 (9) | 0.0000 (7) | 0.0033 (7) | 0.0038 (7) |
C3 | 0.0527 (12) | 0.0641 (13) | 0.0588 (12) | −0.0051 (10) | 0.0000 (10) | −0.0152 (10) |
C4 | 0.0564 (12) | 0.0483 (11) | 0.0706 (14) | 0.0004 (9) | −0.0031 (11) | −0.0086 (10) |
C5 | 0.0533 (11) | 0.0406 (10) | 0.0595 (12) | −0.0028 (8) | −0.0022 (9) | −0.0016 (8) |
C6 | 0.0390 (9) | 0.0390 (9) | 0.0457 (9) | −0.0064 (7) | −0.0090 (8) | −0.0040 (7) |
C7 | 0.0424 (9) | 0.0374 (8) | 0.0418 (9) | −0.0083 (7) | −0.0102 (7) | 0.0014 (7) |
C8 | 0.0399 (9) | 0.0423 (9) | 0.0408 (9) | −0.0074 (7) | −0.0080 (7) | 0.0018 (7) |
C9 | 0.0382 (9) | 0.0446 (9) | 0.0387 (9) | −0.0061 (7) | −0.0045 (7) | −0.0033 (7) |
C17 | 0.0415 (9) | 0.0453 (9) | 0.0383 (9) | −0.0077 (8) | −0.0034 (7) | −0.0001 (7) |
C16 | 0.0365 (9) | 0.0454 (9) | 0.0455 (9) | −0.0065 (7) | −0.0045 (7) | −0.0055 (7) |
C11 | 0.0433 (10) | 0.0538 (11) | 0.0479 (10) | −0.0055 (8) | −0.0036 (8) | −0.0017 (8) |
C12 | 0.0573 (13) | 0.0732 (14) | 0.0548 (12) | −0.0021 (11) | 0.0098 (10) | −0.0084 (10) |
C13 | 0.0588 (13) | 0.0673 (14) | 0.0755 (15) | 0.0068 (11) | 0.0050 (12) | −0.0180 (12) |
C15 | 0.0502 (11) | 0.0470 (10) | 0.0565 (11) | −0.0026 (8) | −0.0045 (9) | −0.0004 (8) |
C14 | 0.0574 (13) | 0.0497 (11) | 0.0767 (15) | 0.0034 (9) | −0.0046 (11) | −0.0071 (10) |
C10 | 0.0570 (12) | 0.0520 (11) | 0.0474 (10) | −0.0034 (9) | 0.0016 (9) | 0.0047 (8) |
C1 | 0.0434 (10) | 0.0444 (9) | 0.0468 (10) | −0.0065 (8) | −0.0095 (8) | −0.0021 (8) |
C2 | 0.0557 (12) | 0.0625 (12) | 0.0458 (10) | −0.0125 (10) | −0.0030 (9) | −0.0012 (9) |
Cl1—C1 | 1.7221 (17) | C9—C17 | 1.337 (2) |
O1—C7 | 1.352 (2) | C9—C10 | 1.504 (3) |
O1—N2 | 1.407 (2) | C17—C16 | 1.445 (2) |
O2—C11 | 1.370 (2) | C17—H17 | 0.9300 |
O2—C10 | 1.434 (2) | C16—C11 | 1.394 (3) |
N1—C7 | 1.297 (2) | C16—C15 | 1.396 (2) |
N1—C8 | 1.370 (2) | C11—C12 | 1.379 (3) |
N2—C8 | 1.308 (2) | C12—C13 | 1.375 (3) |
C3—C2 | 1.375 (3) | C12—H12 | 0.9300 |
C3—C4 | 1.379 (3) | C13—C14 | 1.375 (3) |
C3—H3 | 0.9300 | C13—H13 | 0.9300 |
C4—C5 | 1.360 (3) | C15—C14 | 1.383 (3) |
C4—H4 | 0.9300 | C15—H15 | 0.9300 |
C5—C6 | 1.403 (2) | C14—H14 | 0.9300 |
C5—H5 | 0.9300 | C10—H10A | 0.9700 |
C6—C1 | 1.402 (3) | C10—H10B | 0.9700 |
C6—C7 | 1.452 (2) | C1—C2 | 1.390 (3) |
C8—C9 | 1.454 (2) | C2—H2 | 0.9300 |
C7—O1—N2 | 106.58 (12) | C11—C16—C17 | 118.38 (16) |
C11—O2—C10 | 117.19 (14) | C15—C16—C17 | 123.41 (17) |
C7—N1—C8 | 103.21 (14) | O2—C11—C12 | 117.82 (17) |
C8—N2—O1 | 103.13 (13) | O2—C11—C16 | 120.90 (16) |
C2—C3—C4 | 119.87 (19) | C12—C11—C16 | 121.14 (18) |
C2—C3—H3 | 120.1 | C13—C12—C11 | 119.4 (2) |
C4—C3—H3 | 120.1 | C13—C12—H12 | 120.3 |
C5—C4—C3 | 119.97 (18) | C11—C12—H12 | 120.3 |
C5—C4—H4 | 120.0 | C14—C13—C12 | 121.0 (2) |
C3—C4—H4 | 120.0 | C14—C13—H13 | 119.5 |
C4—C5—C6 | 122.36 (19) | C12—C13—H13 | 119.5 |
C4—C5—H5 | 118.8 | C14—C15—C16 | 120.9 (2) |
C6—C5—H5 | 118.8 | C14—C15—H15 | 119.6 |
C1—C6—C5 | 116.77 (17) | C16—C15—H15 | 119.6 |
C1—C6—C7 | 123.92 (15) | C13—C14—C15 | 119.4 (2) |
C5—C6—C7 | 119.31 (16) | C13—C14—H14 | 120.3 |
N1—C7—O1 | 112.46 (15) | C15—C14—H14 | 120.3 |
N1—C7—C6 | 131.83 (16) | O2—C10—C9 | 112.57 (15) |
O1—C7—C6 | 115.70 (14) | O2—C10—H10A | 109.1 |
N2—C8—N1 | 114.61 (15) | C9—C10—H10A | 109.1 |
N2—C8—C9 | 121.46 (16) | O2—C10—H10B | 109.1 |
N1—C8—C9 | 123.93 (15) | C9—C10—H10B | 109.1 |
C17—C9—C8 | 122.38 (16) | H10A—C10—H10B | 107.8 |
C17—C9—C10 | 119.06 (16) | C2—C1—C6 | 120.70 (17) |
C8—C9—C10 | 118.51 (15) | C2—C1—Cl1 | 117.01 (15) |
C9—C17—C16 | 120.03 (16) | C6—C1—Cl1 | 122.29 (14) |
C9—C17—H17 | 120.0 | C3—C2—C1 | 120.32 (19) |
C16—C17—H17 | 120.0 | C3—C2—H2 | 119.8 |
C11—C16—C15 | 118.04 (17) | C1—C2—H2 | 119.8 |
C7—O1—N2—C8 | 0.60 (18) | C9—C17—C16—C15 | 172.52 (17) |
C2—C3—C4—C5 | 0.4 (3) | C10—O2—C11—C12 | −159.35 (17) |
C3—C4—C5—C6 | −0.5 (3) | C10—O2—C11—C16 | 24.9 (3) |
C4—C5—C6—C1 | −0.2 (3) | C15—C16—C11—O2 | 177.84 (16) |
C4—C5—C6—C7 | −179.70 (17) | C17—C16—C11—O2 | 2.3 (3) |
C8—N1—C7—O1 | 0.53 (18) | C15—C16—C11—C12 | 2.2 (3) |
C8—N1—C7—C6 | −178.65 (17) | C17—C16—C11—C12 | −173.26 (17) |
N2—O1—C7—N1 | −0.73 (19) | O2—C11—C12—C13 | −176.98 (19) |
N2—O1—C7—C6 | 178.58 (14) | C16—C11—C12—C13 | −1.2 (3) |
C1—C6—C7—N1 | −1.2 (3) | C11—C12—C13—C14 | −0.8 (4) |
C5—C6—C7—N1 | 178.26 (17) | C11—C16—C15—C14 | −1.3 (3) |
C1—C6—C7—O1 | 179.69 (15) | C17—C16—C15—C14 | 173.99 (18) |
C5—C6—C7—O1 | −0.9 (2) | C12—C13—C14—C15 | 1.7 (4) |
O1—N2—C8—N1 | −0.3 (2) | C16—C15—C14—C13 | −0.7 (3) |
O1—N2—C8—C9 | 179.76 (15) | C11—O2—C10—C9 | −40.1 (2) |
C7—N1—C8—N2 | −0.1 (2) | C17—C9—C10—O2 | 30.5 (2) |
C7—N1—C8—C9 | 179.81 (16) | C8—C9—C10—O2 | −152.22 (15) |
N2—C8—C9—C17 | 178.75 (16) | C5—C6—C1—C2 | 1.1 (3) |
N1—C8—C9—C17 | −1.2 (3) | C7—C6—C1—C2 | −179.50 (16) |
N2—C8—C9—C10 | 1.6 (3) | C5—C6—C1—Cl1 | −179.00 (13) |
N1—C8—C9—C10 | −178.30 (16) | C7—C6—C1—Cl1 | 0.4 (2) |
C8—C9—C17—C16 | 177.80 (15) | C4—C3—C2—C1 | 0.4 (3) |
C10—C9—C17—C16 | −5.1 (3) | C6—C1—C2—C3 | −1.2 (3) |
C9—C17—C16—C11 | −12.2 (3) | Cl1—C1—C2—C3 | 178.89 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O1i | 0.93 | 2.62 | 3.389 (2) | 140 |
C14—H14···Cl1ii | 0.93 | 2.94 | 3.625 (2) | 132 |
C2—H2···O2iii | 0.93 | 2.67 | 3.550 (2) | 158 |
Symmetry codes: (i) −x+1, −y+3, −z+2; (ii) −x+2, −y+1, −z+2; (iii) x−1, y, z+1. |
Cg1 and Cg2 are the centroid of the C7/N1/C8/N2/O2 and C11–C16 rings, respectively |
Centroid (Cg) | Centroid (Cg) | Cg···Cg distance | Dihedral angle (°) | Slippage distance |
Cg1 | Cg2i | 3.9370 (11) | 14.57 (10) | 1.69 |
Cg2 | Cg1i | 3.9370 (11) | 14.57 (10) | 2.318 |
Symmetry code: (i) -x, -y, -z. |
Acknowledgements
We thank the School of Chemistry, University of Hyderabad for the single-crystal X-ray data collection.
Funding information
Funding for this research was provided by: Council of Scientific and Industrial Research (grant No. 02(0218)/14/EMR-II to SM; Fast Track grant No. SB/FT/CS-87/2012 to SM); Council of Scientific and Industrial Research (grant No. 02(0134)/13/EMR-II to SN); Defence Research and Development Organisation (grant no. ERIP/ER/1203083/M/01/1643 to SM and SN).
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc. Google Scholar
Devarajegowda, H. C., Suchetan, P. A., Sreenivasa, S., Srinivasa, H. T. & Palakshamurthy, B. S. (2015). Acta Cryst. E71, o374–o375. CSD CrossRef IUCr Journals Google Scholar
Du, M. & Zhao, X.-J. (2004). Acta Cryst. C60, o54–o56. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gourdeau, H., Leblond, L., Hamelin, B., Desputeau, C., Dong, K., Kianicka, I., Custeau, D., Boudreau, C., Geerts, L., Cai, S. X., Drewe, J., Labrecque, D., Kasibhatla, S. & Tseng, B. (2004). Mol. Cancer Ther. 3, 1375–1384. Web of Science PubMed CAS Google Scholar
Hathwar, V., Roopan, S. M., Subashini, R., Khan, F. N. & Guru Row, T. N. (2010). J. Chem. Sci. 122, 677–685. CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Maftei, C. V., Fodor, E., Jones, P. G., Franz, M. H., Kelter, G., Fiebig, H. & Neda, I. (2013). Beilstein J. Org. Chem. 9, 2202–2215. CSD CrossRef PubMed Google Scholar
Rakesh, D. S., Sun, D., Lee, R. B., Tangallapally, R. P. & Lee, R. E. (2009). Eur. J. Med. Chem. 44, 460–472. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.