organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-(2-Chloro­phen­yl)-3-(2H-chromen-3-yl)-1,2,4-oxa­diazole

aDepartment of Chemistry, Ravenshaw University, Cuttack, Odisha, India, and bP.G. Department of Chemistry, Utkal University, Bhubaneswar, Odisha, India
*Correspondence e-mail: snpal75@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 17 January 2018; accepted 20 January 2018; online 26 January 2018)

In the title compound, C17H11ClN2O2, the central oxa­diazole ring carries 2H-chromene and 2-chloro­phenyl substituents at the 3- and 5-positions, respectively. C—H⋯O and C—H⋯Cl hydrogen bonds form two-dimensional sheets parallel to (212), with each individual mol­ecule involved in six of these weak inter­actions. The sheets are stacked perpendicular to (212) by offset ππ stacking inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Oxa­diazole derivatives have attracted considerable inter­est due to their unique chemical structures and wide variety of biological applications. These include use as anti­tumour (Maftei et al., 2013[Maftei, C. V., Fodor, E., Jones, P. G., Franz, M. H., Kelter, G., Fiebig, H. & Neda, I. (2013). Beilstein J. Org. Chem. 9, 2202-2215.]), anti­fungal, anti­bacterial and anti-inflammatory agents (Rakesh et al., 2009[Rakesh, D. S., Sun, D., Lee, R. B., Tangallapally, R. P. & Lee, R. E. (2009). Eur. J. Med. Chem. 44, 460-472.]). Chromene (benzo­pyran) is also an important medicinal pharmacophore. It is an integral part of many natural alkaloids and flavonoids and is known to possess biological activities similar to the oxa­diazo­les, together with anti­vascular, anti­microbial and anti­oxidant properties (Gourdeau et al., 2004[Gourdeau, H., Leblond, L., Hamelin, B., Desputeau, C., Dong, K., Kianicka, I., Custeau, D., Boudreau, C., Geerts, L., Cai, S. X., Drewe, J., Labrecque, D., Kasibhatla, S. & Tseng, B. (2004). Mol. Cancer Ther. 3, 1375-1384.]). Another important feature is its lipophilic nature which helps it to pass readily through cell membranes. We are inter­ested in the design and synthesis of chromene-based oxa­diazole derivatives and studies of their biological activity, and we report here the structure of the chromene–oxa­diazole derivative 5-(2-chloro­phen­yl)-3-(2H-chromen-3-yl)-1,2,4-oxa­diazole.

A perspective view of the mol­ecule is shown in Fig. 1[link]. The mol­ecule is not completely planar. The plane of the central oxa­diazole ring is inclined at 1.2 (1)° to the plane of the 2-chloro­phenyl ring and 12.24 (9)° to the best-fit plane of the chromene ring system. The C—Cl distance [1.7221 (17) Å] is consistent with the reported values (Hathwar et al., 2010[Hathwar, V., Roopan, S. M., Subashini, R., Khan, F. N. & Guru Row, T. N. (2010). J. Chem. Sci. 122, 677-685.]). The bond lengths and angles of the chromene and oxa­diazole units are also similar to those reported in the literature (Devarajegowda et al., 2015[Devarajegowda, H. C., Suchetan, P. A., Sreenivasa, S., Srinivasa, H. T. & Palakshamurthy, B. S. (2015). Acta Cryst. E71, o374-o375.]; Du & Zhao, 2004[Du, M. & Zhao, X.-J. (2004). Acta Cryst. C60, o54-o56.]). In the crystal, weak inter­molecular C—H⋯Cl and C—H⋯O inter­actions (Desiraju et al., 1999[Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.]) are found. C14—H14⋯Cl1 hydrogen bonds form inversion dimers enclosing R22(24) rings, while a second inversion dimer forms through C5—H5⋯O1 contacts with an R22(10) ring motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). A C2—H2⋯O2 inter­action completes the hydrogen-bonding network, forming sheets of mol­ecules parallel to (212), with each individual mol­ecule in the sheet bound to four others through six nonclassical hydrogen-bonding inter­actions (Table 1[link] and Fig. 2[link]). Adjacent sheets are linked by inversion related offset ππ stacking inter­actions (Table 2[link] and Fig. 3[link]), forming a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.62 3.389 (2) 140
C14—H14⋯Cl1ii 0.93 2.94 3.625 (2) 132
C2—H2⋯O2iii 0.93 2.67 3.550 (2) 158
Symmetry codes: (i) -x+1, -y+3, -z+2; (ii) -x+2, -y+1, -z+2; (iii) x-1, y, z+1.

Table 2
π–π inter­action details (Å, °)

Cg1 and Cg2 are the centroids of the C7/N1/C8/N2/O2 and C11–C16 rings, respectively

Centroid (Cg) Centroid (Cg) CgCg distance Dihedral angle Slippage distance
Cg1 Cg2i 3.9370 (11) 14.57 (10) 1.69
Cg2 Cg1i 3.9370 (11) 14.57 (10) 2.318
Symmetry code: (i) −x, −y, −z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
A view of two-dimensional sheet structure formed from C—H⋯O and C—H⋯Cl hydrogen bonds (cyan dotted lines).
[Figure 3]
Figure 3
Packing of the title compound, showing the ππ inter­actions stacking adjacent mol­ecular sheets (dark blue dotted lines show the ππ inter­actions and cyan dotted lines indicate hydrogen bonds).

Synthesis and crystallization

This compound was prepared by the treatment of N-hy­droxy-2H-chromene-3-carboximidamide (1 equiv.) with 2-chloro­benzoic acid (0.8 equiv.) in the presence of ethyl­ene dicarbo­imide (EDCI, 1.2 equiv) and N-hy­droxy­benzotriazole (HOBt, 1.2 equiv.) in dry DMF at 353 K for 6 h (Fig. 4[link]). The reaction mixture was extracted with water and ethyl acetate. The pure compound was isolated by column chromatography, eluting with 2–5% ethyl acetate/hexane. The solvents were evaporated and dried to give the title compound in 75% yield (m.p. 478 K). Colourless rectangular crystals were obtained by slow evaporation of a solution of the compound in a di­chloro­methane/hexane mixture. 1H NMR (400 MHz, CDCl3): δ 8.01 (d, J = 8.0 Hz, 2H), 7.37–7.33 (m, 3H), 7.21–7.17 (m, 2H), 6.94 (t, J = 8.0 Hz, 1H), 6.89 (d, J = 8.0 Hz, 1H), 5.26 (s, 2H); 13C NMR (100 MHz, CDCl3): δ 173.9, 166.0, 154.7, 134.8, 131.9, 131.6, 131.1, 128.6, 128.5, 128.4, 127.2, 126.8, 121.9, 121.4, 119.2, 116.2, 64.2.

[Figure 4]
Figure 4
The synthetic scheme for the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula C17H11ClN2O2
Mr 310.73
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.7208 (4), 8.7703 (3), 9.6278 (4)
α, β, γ (°) 86.035 (3), 80.227 (3), 79.352 (2)
V3) 712.65 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.40 × 0.28 × 0.20
 
Data collection
Diffractometer Bruker APEXII
No. of measured, independent and observed [I > 2σ(I)] reflections 11000, 3518, 2452
Rint 0.028
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.134, 1.11
No. of reflections 3518
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.26
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker 2014); cell refinement: SAINT (Bruker 2014; data reduction: SAINT (Bruker 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and PLATON (Spek 2009).

5-(2-Chlorophenyl)-3-(2H-chromen-3-yl)-1,2,4-oxadiazole top
Crystal data top
C17H11ClN2O2Z = 2
Mr = 310.73F(000) = 320
Triclinic, P1Dx = 1.448 Mg m3
a = 8.7208 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7703 (3) ÅCell parameters from 2986 reflections
c = 9.6278 (4) Åθ = 2.4–26.6°
α = 86.035 (3)°µ = 0.28 mm1
β = 80.227 (3)°T = 296 K
γ = 79.352 (2)°Rectangular block, colourless
V = 712.65 (5) Å30.40 × 0.28 × 0.20 mm
Data collection top
Bruker APEXII
diffractometer
Rint = 0.028
Radiation source: sealed tubeθmax = 28.3°, θmin = 2.2°
φ and ω scansh = 1111
11000 measured reflectionsk = 1111
3518 independent reflectionsl = 1212
2452 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0629P)2 + 0.0537P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
3518 reflectionsΔρmax = 0.38 e Å3
199 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.52115 (6)0.91781 (6)1.30274 (6)0.0650 (2)
O10.61910 (15)1.27500 (14)0.95744 (13)0.0529 (3)
O21.09361 (16)0.89357 (16)0.61902 (13)0.0601 (4)
N10.69651 (16)1.03574 (15)1.03518 (15)0.0418 (3)
N20.75145 (19)1.21176 (18)0.86047 (16)0.0536 (4)
C30.2109 (2)1.3029 (2)1.3854 (2)0.0597 (5)
H30.12641.33521.45590.072*
C40.2528 (2)1.4042 (2)1.2754 (2)0.0602 (5)
H40.19691.50521.27200.072*
C50.3759 (2)1.3563 (2)1.1718 (2)0.0527 (5)
H50.40191.42591.09810.063*
C60.4649 (2)1.20576 (19)1.17225 (18)0.0409 (4)
C70.5951 (2)1.16306 (19)1.05849 (18)0.0401 (4)
C80.7906 (2)1.07079 (19)0.91245 (17)0.0410 (4)
C90.9241 (2)0.9627 (2)0.84305 (17)0.0408 (4)
C170.9677 (2)0.81924 (19)0.89577 (18)0.0421 (4)
H170.91430.78660.98140.051*
C161.09781 (19)0.71486 (19)0.81982 (18)0.0426 (4)
C111.1551 (2)0.7555 (2)0.6807 (2)0.0492 (4)
C121.2678 (3)0.6539 (3)0.5981 (2)0.0649 (6)
H121.30360.68170.50480.078*
C131.3268 (3)0.5112 (3)0.6547 (3)0.0706 (6)
H131.40180.44220.59870.085*
C151.1619 (2)0.5702 (2)0.8749 (2)0.0526 (5)
H151.12700.54140.96800.063*
C141.2766 (3)0.4691 (2)0.7928 (2)0.0634 (6)
H141.31940.37340.83060.076*
C101.0205 (2)1.0176 (2)0.7108 (2)0.0544 (5)
H10A0.95261.09450.66070.065*
H10B1.10171.06740.73620.065*
C10.4216 (2)1.1052 (2)1.28580 (19)0.0448 (4)
C20.2945 (2)1.1539 (2)1.3905 (2)0.0550 (5)
H20.26581.08551.46430.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0698 (4)0.0491 (3)0.0657 (3)0.0012 (2)0.0008 (3)0.0144 (2)
O10.0564 (8)0.0409 (7)0.0530 (7)0.0005 (6)0.0021 (6)0.0062 (6)
O20.0636 (9)0.0618 (8)0.0435 (7)0.0030 (7)0.0058 (6)0.0027 (6)
N10.0400 (8)0.0382 (7)0.0443 (8)0.0025 (6)0.0040 (6)0.0007 (6)
N20.0542 (10)0.0472 (8)0.0510 (9)0.0000 (7)0.0033 (7)0.0038 (7)
C30.0527 (12)0.0641 (13)0.0588 (12)0.0051 (10)0.0000 (10)0.0152 (10)
C40.0564 (12)0.0483 (11)0.0706 (14)0.0004 (9)0.0031 (11)0.0086 (10)
C50.0533 (11)0.0406 (10)0.0595 (12)0.0028 (8)0.0022 (9)0.0016 (8)
C60.0390 (9)0.0390 (9)0.0457 (9)0.0064 (7)0.0090 (8)0.0040 (7)
C70.0424 (9)0.0374 (8)0.0418 (9)0.0083 (7)0.0102 (7)0.0014 (7)
C80.0399 (9)0.0423 (9)0.0408 (9)0.0074 (7)0.0080 (7)0.0018 (7)
C90.0382 (9)0.0446 (9)0.0387 (9)0.0061 (7)0.0045 (7)0.0033 (7)
C170.0415 (9)0.0453 (9)0.0383 (9)0.0077 (8)0.0034 (7)0.0001 (7)
C160.0365 (9)0.0454 (9)0.0455 (9)0.0065 (7)0.0045 (7)0.0055 (7)
C110.0433 (10)0.0538 (11)0.0479 (10)0.0055 (8)0.0036 (8)0.0017 (8)
C120.0573 (13)0.0732 (14)0.0548 (12)0.0021 (11)0.0098 (10)0.0084 (10)
C130.0588 (13)0.0673 (14)0.0755 (15)0.0068 (11)0.0050 (12)0.0180 (12)
C150.0502 (11)0.0470 (10)0.0565 (11)0.0026 (8)0.0045 (9)0.0004 (8)
C140.0574 (13)0.0497 (11)0.0767 (15)0.0034 (9)0.0046 (11)0.0071 (10)
C100.0570 (12)0.0520 (11)0.0474 (10)0.0034 (9)0.0016 (9)0.0047 (8)
C10.0434 (10)0.0444 (9)0.0468 (10)0.0065 (8)0.0095 (8)0.0021 (8)
C20.0557 (12)0.0625 (12)0.0458 (10)0.0125 (10)0.0030 (9)0.0012 (9)
Geometric parameters (Å, º) top
Cl1—C11.7221 (17)C9—C171.337 (2)
O1—C71.352 (2)C9—C101.504 (3)
O1—N21.407 (2)C17—C161.445 (2)
O2—C111.370 (2)C17—H170.9300
O2—C101.434 (2)C16—C111.394 (3)
N1—C71.297 (2)C16—C151.396 (2)
N1—C81.370 (2)C11—C121.379 (3)
N2—C81.308 (2)C12—C131.375 (3)
C3—C21.375 (3)C12—H120.9300
C3—C41.379 (3)C13—C141.375 (3)
C3—H30.9300C13—H130.9300
C4—C51.360 (3)C15—C141.383 (3)
C4—H40.9300C15—H150.9300
C5—C61.403 (2)C14—H140.9300
C5—H50.9300C10—H10A0.9700
C6—C11.402 (3)C10—H10B0.9700
C6—C71.452 (2)C1—C21.390 (3)
C8—C91.454 (2)C2—H20.9300
C7—O1—N2106.58 (12)C11—C16—C17118.38 (16)
C11—O2—C10117.19 (14)C15—C16—C17123.41 (17)
C7—N1—C8103.21 (14)O2—C11—C12117.82 (17)
C8—N2—O1103.13 (13)O2—C11—C16120.90 (16)
C2—C3—C4119.87 (19)C12—C11—C16121.14 (18)
C2—C3—H3120.1C13—C12—C11119.4 (2)
C4—C3—H3120.1C13—C12—H12120.3
C5—C4—C3119.97 (18)C11—C12—H12120.3
C5—C4—H4120.0C14—C13—C12121.0 (2)
C3—C4—H4120.0C14—C13—H13119.5
C4—C5—C6122.36 (19)C12—C13—H13119.5
C4—C5—H5118.8C14—C15—C16120.9 (2)
C6—C5—H5118.8C14—C15—H15119.6
C1—C6—C5116.77 (17)C16—C15—H15119.6
C1—C6—C7123.92 (15)C13—C14—C15119.4 (2)
C5—C6—C7119.31 (16)C13—C14—H14120.3
N1—C7—O1112.46 (15)C15—C14—H14120.3
N1—C7—C6131.83 (16)O2—C10—C9112.57 (15)
O1—C7—C6115.70 (14)O2—C10—H10A109.1
N2—C8—N1114.61 (15)C9—C10—H10A109.1
N2—C8—C9121.46 (16)O2—C10—H10B109.1
N1—C8—C9123.93 (15)C9—C10—H10B109.1
C17—C9—C8122.38 (16)H10A—C10—H10B107.8
C17—C9—C10119.06 (16)C2—C1—C6120.70 (17)
C8—C9—C10118.51 (15)C2—C1—Cl1117.01 (15)
C9—C17—C16120.03 (16)C6—C1—Cl1122.29 (14)
C9—C17—H17120.0C3—C2—C1120.32 (19)
C16—C17—H17120.0C3—C2—H2119.8
C11—C16—C15118.04 (17)C1—C2—H2119.8
C7—O1—N2—C80.60 (18)C9—C17—C16—C15172.52 (17)
C2—C3—C4—C50.4 (3)C10—O2—C11—C12159.35 (17)
C3—C4—C5—C60.5 (3)C10—O2—C11—C1624.9 (3)
C4—C5—C6—C10.2 (3)C15—C16—C11—O2177.84 (16)
C4—C5—C6—C7179.70 (17)C17—C16—C11—O22.3 (3)
C8—N1—C7—O10.53 (18)C15—C16—C11—C122.2 (3)
C8—N1—C7—C6178.65 (17)C17—C16—C11—C12173.26 (17)
N2—O1—C7—N10.73 (19)O2—C11—C12—C13176.98 (19)
N2—O1—C7—C6178.58 (14)C16—C11—C12—C131.2 (3)
C1—C6—C7—N11.2 (3)C11—C12—C13—C140.8 (4)
C5—C6—C7—N1178.26 (17)C11—C16—C15—C141.3 (3)
C1—C6—C7—O1179.69 (15)C17—C16—C15—C14173.99 (18)
C5—C6—C7—O10.9 (2)C12—C13—C14—C151.7 (4)
O1—N2—C8—N10.3 (2)C16—C15—C14—C130.7 (3)
O1—N2—C8—C9179.76 (15)C11—O2—C10—C940.1 (2)
C7—N1—C8—N20.1 (2)C17—C9—C10—O230.5 (2)
C7—N1—C8—C9179.81 (16)C8—C9—C10—O2152.22 (15)
N2—C8—C9—C17178.75 (16)C5—C6—C1—C21.1 (3)
N1—C8—C9—C171.2 (3)C7—C6—C1—C2179.50 (16)
N2—C8—C9—C101.6 (3)C5—C6—C1—Cl1179.00 (13)
N1—C8—C9—C10178.30 (16)C7—C6—C1—Cl10.4 (2)
C8—C9—C17—C16177.80 (15)C4—C3—C2—C10.4 (3)
C10—C9—C17—C165.1 (3)C6—C1—C2—C31.2 (3)
C9—C17—C16—C1112.2 (3)Cl1—C1—C2—C3178.89 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.623.389 (2)140
C14—H14···Cl1ii0.932.943.625 (2)132
C2—H2···O2iii0.932.673.550 (2)158
Symmetry codes: (i) x+1, y+3, z+2; (ii) x+2, y+1, z+2; (iii) x1, y, z+1.
ππ interaction details (Å) top
Cg1 and Cg2 are the centroid of the C7/N1/C8/N2/O2 and C11–C16 rings, respectively
Centroid (Cg)Centroid (Cg)Cg···Cg distanceDihedral angle (°)Slippage distance
Cg1Cg2i3.9370 (11)14.57 (10)1.69
Cg2Cg1i3.9370 (11)14.57 (10)2.318
Symmetry code: (i) -x, -y, -z.
 

Acknowledgements

We thank the School of Chemistry, University of Hyderabad for the single-crystal X-ray data collection.

Funding information

Funding for this research was provided by: Council of Scientific and Industrial Research (grant No. 02(0218)/14/EMR-II to SM; Fast Track grant No. SB/FT/CS-87/2012 to SM); Council of Scientific and Industrial Research (grant No. 02(0134)/13/EMR-II to SN); Defence Research and Development Organisation (grant no. ERIP/ER/1203083/M/01/1643 to SM and SN).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.  Google Scholar
First citationDevarajegowda, H. C., Suchetan, P. A., Sreenivasa, S., Srinivasa, H. T. & Palakshamurthy, B. S. (2015). Acta Cryst. E71, o374–o375.  CSD CrossRef IUCr Journals Google Scholar
First citationDu, M. & Zhao, X.-J. (2004). Acta Cryst. C60, o54–o56.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGourdeau, H., Leblond, L., Hamelin, B., Desputeau, C., Dong, K., Kianicka, I., Custeau, D., Boudreau, C., Geerts, L., Cai, S. X., Drewe, J., Labrecque, D., Kasibhatla, S. & Tseng, B. (2004). Mol. Cancer Ther. 3, 1375–1384.  Web of Science PubMed CAS Google Scholar
First citationHathwar, V., Roopan, S. M., Subashini, R., Khan, F. N. & Guru Row, T. N. (2010). J. Chem. Sci. 122, 677–685.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaftei, C. V., Fodor, E., Jones, P. G., Franz, M. H., Kelter, G., Fiebig, H. & Neda, I. (2013). Beilstein J. Org. Chem. 9, 2202–2215.  CSD CrossRef PubMed Google Scholar
First citationRakesh, D. S., Sun, D., Lee, R. B., Tangallapally, R. P. & Lee, R. E. (2009). Eur. J. Med. Chem. 44, 460–472.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]