organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3,5-Di­bromo­benzo­nitrile

aDepartment of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN 55455, USA
*Correspondence e-mail: nolan001@umn.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 8 January 2018; accepted 9 January 2018; online 12 January 2018)

Mol­ecules of the title compound (I), C7H3Br2N, lie on a crystallographic mirror plane that bis­ects the benzene ring and the cyano group. In the crystal, no C≡N⋯Br or Br⋯Br short contacts are observed. Head-to-tail C(7) chains form based on weak hydrogen bonding between the the para H atom and the cyano N atom. Although mol­ecules of (I) pack differently than 3,5-di­fluoro­benzo­nitrile, both compounds have similarly distorted benzene rings. For (I), the endocyclic bond angles are 121.16 (16)° and 117.78 (16)° about the ipso and para C atoms, respectively.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Cyano–halo (C≡N⋯X) short contacts are commonly observed in crystals of halogenated benzo­nitriles, especially when X = Br or I. The strength of these contacts correlates with halogen polarizability (Desiraju & Harlow, 1989[Desiraju, G. R. & Harlow, R. L. (1989). J. Am. Chem. Soc. 111, 6757-6764.]). Depending on the nature of the 4-substituent, 2,6-di­bromo-3,5-unsubstituted benzo­nitriles usually form sheet structures based on each cyano group being bis­ected by two C≡N⋯Br contacts (Noland & Tritch, 2017[Noland, W. E. & Tritch, K. J. (2017). IUCrData, 2, x171617.]), or have Br⋯Br contacts as the primary supra­molecular inter­action (Noland et al., 2017[Noland, W. E., Shudy, J. E., Rieger, J. L., Tu, Z. H. & Tritch, K. J. (2017). Acta Cryst. E73, 1913-1916.]). As of the most recent update of the Cambridge Structural Database (Version 5.37, May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), 3,5-di­fluoro­benzo­nitrile is the only example with the X and H atoms transposed from the former arrangement (Britton, 2002[Britton, D. (2002). Acta Cryst. E58, o840-o841.]). Our objective was to determine whether the title nitrile (I) would be isomorphous with 3,5-di­fluoro­benzo­nitrile, or if a packing motif based on C≡N⋯Br or Br⋯Br inter­actions would be observed.

Although the planarity of mol­ecules of (I) (Fig. 1[link]) is not crystallographically imposed, the mean deviation of ring atoms (C1–C4) from the best-fit plane is less than 0.001 (1) Å. Inter­estingly, neither C≡N⋯Br nor Br⋯Br short contacts are observed in the crystal of (I). Instead, C(7) head-to-tail chains of weak C4—H4⋯N7 hydrogen bonds form (Table 1[link]). Chains of this type are commonly observed from 4-halobenzo­nitriles as C≡N⋯X contacts (Desiraju & Harlow, 1989[Desiraju, G. R. & Harlow, R. L. (1989). J. Am. Chem. Soc. 111, 6757-6764.]). In the title crystal, the C(7) chains form along [10[\overline{1}]] and align to form translationally stacked sheets parallel to (101) (Fig. 2[link]a). Adjacent chains within each sheet are anti­parallel (Fig. 3[link]), whereas corresponding chains in adjacent sheets are parallel. This differs greatly from the packing of 3,5-di­fluoro­benzo­nitrile (Fig. 2[link]b), in which a sheet structure forms based on cyano N atoms bis­ected by weak C—H⋯N hydrogen bonds with ortho H atoms. Weak F⋯F contacts were observed in the di­fluoro analog, adding to the surprise that (I) does not form Br⋯Br short contacts. Even though (I) and the di­fluoro analog pack differently, the benzene rings in both mol­ecules are similarly distorted (Fig. 2[link]), supporting Britton's hypothesis that these distortions are mainly due to intra­molecular substituent effects, rather than supra­molecular effects in the crystals (Britton, 2002[Britton, D. (2002). Acta Cryst. E58, o840-o841.]).

Table 1
Contact geometry (Å, °)

D—H⋯A D—H H⋯A D⋯A D—H⋯A
C4—H4⋯N7i 0.95 2.51 3.443 (3) 168
Symmetry code: (i) 1 + x, y, −1 + z.
[Figure 1]
Figure 1
The mol­ecular structure of (I), showing the atomic numbering and displacement ellipsoids at the 50% probability level. Unlabelled atoms are related by the (x, [{1\over 2}] − y, z) symmetry operation.
[Figure 2]
Figure 2
The sheet structures in crystals of (a) compound (I), viewed along [301]; (b) 3,5-di­fluoro­benzo­nitrile, viewed roughly along [100]. Bond angles about the ortho and meta C atoms are denoted in light blue. Dashed magenta lines represent short contacts.
[Figure 3]
Figure 3
The arrangement of C(7) chains in the crystal of (I), viewed roughly along [101]. Dashed magenta lines represent short contacts.

Synthesis and crystallization

3,5-Di­bromo­benzo­nitrile (I): 3,5-Di­bromo­benzamide [(II), Fig. 4[link]] (Sigma–Aldrich, Inc. No. 680389; 962 mg), di­chloro­methane (30 ml), and tri­ethyl­amine (1.4 ml) were combined in a round-bottomed flask. The resulting mixture was stirred at 290 K. POCl3 (320 µL) was added dropwise. After 4 h, the reaction mixture was washed with hydro­chloric acid (1 M, 2 × 25 ml), and then NaHCO3 solution (0.5 M, 50 ml). The organic portion was filtered through basic alumina (4 cm × 2 cm, length × diameter). The filter was washed with di­chloro­methane (20 ml). The combined filtrate was concentrated in a rotary evaporator, giving an off-white powder (750 mg, 83%). Crystals suitable for X-ray diffraction (colourless needles) were prepared by slow evaporation of a solution in chloroform and cyclohexane, followed by decantation, and then washing with pentane. M.p. 367–368 K (lit. 368–369 K; Ishii et al., 2013[Ishii, G., Harigae, R., Moriyama, K. & Togo, H. (2013). Tetrahedron, 69, 1462-1469.]); 1H NMR (500 MHz, CDCl3) δ 7.917 (t, J = 1.8 Hz, 1H, H4), 7.739 (d, J = 1.8 Hz, 2H, H2); 13C NMR (126 MHz, CDCl3) δ 139.0 (1 C, C4), 133.6 (2 C, C2), 123.7 (2 C, C3), 116.0 (1 C, C7), 115.6 (1 C, C1); IR (KBr, cm−1) 3072, 2961, 2922, 2236, 1551, 1418, 1198, 1109, 864, 759, 666; MS (EI, m/z) M+ calculated for C7H381Br79BrN 260.8606, found 260.8605.

[Figure 4]
Figure 4
The synthesis of (I).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C7H3Br2N
Mr 260.92
Crystal system, space group Monoclinic, P21/m
Temperature (K) 100
a, b, c (Å) 4.0047 (2), 13.2585 (8), 7.3356 (4)
β (°) 97.440 (3)
V3) 386.21 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 10.41
Crystal size (mm) 0.20 × 0.07 × 0.05
 
Data collection
Diffractometer Bruker AXS VENTURE PHOTON-II
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.231, 0.625
No. of measured, independent and observed [I > 2σ(I)] reflections 8873, 1945, 1696
Rint 0.036
(sin θ/λ)max−1) 0.834
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.058, 1.07
No. of reflections 1945
No. of parameters 53
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.98, −0.49
Computer programs: APEX3 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS, Inc., Madison, WI, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

3,5-Dibromobenzonitrile top
Crystal data top
C7H3Br2NDx = 2.244 Mg m3
Mr = 260.92Melting point: 367 K
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 4.0047 (2) ÅCell parameters from 2765 reflections
b = 13.2585 (8) Åθ = 2.8–36.4°
c = 7.3356 (4) ŵ = 10.41 mm1
β = 97.440 (3)°T = 100 K
V = 386.21 (4) Å3Needle, colourless
Z = 20.20 × 0.07 × 0.05 mm
F(000) = 244
Data collection top
Bruker AXS VENTURE PHOTON-II
diffractometer
1696 reflections with I > 2σ(I)
Radiation source: micro-focusRint = 0.036
φ and ω scansθmax = 36.4°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 66
Tmin = 0.231, Tmax = 0.625k = 2022
8873 measured reflectionsl = 1212
1945 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0202P)2 + 0.2462P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.058(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.98 e Å3
1945 reflectionsΔρmin = 0.49 e Å3
53 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0102 (18)
Special details top

Experimental. Dr. K. J. Tritch / Prof. W. E. Noland

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br30.84613 (4)0.46259 (2)0.21614 (2)0.02026 (6)
N70.2774 (5)0.25000.8775 (3)0.0261 (4)
C10.5455 (5)0.25000.5751 (2)0.0136 (3)
C20.6134 (3)0.34183 (11)0.49387 (18)0.0148 (2)
H20.56640.40410.54950.018*
C30.7512 (3)0.33975 (11)0.32980 (18)0.0143 (2)
C40.8227 (5)0.25000.2449 (3)0.0150 (3)
H40.91720.25000.13260.018*
C70.3995 (5)0.25000.7444 (3)0.0175 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br30.02244 (8)0.01753 (8)0.02213 (8)0.00043 (5)0.00792 (5)0.00604 (5)
N70.0229 (9)0.0394 (12)0.0169 (8)0.0000.0062 (7)0.000
C10.0129 (7)0.0181 (8)0.0105 (6)0.0000.0039 (5)0.000
C20.0148 (5)0.0158 (6)0.0141 (5)0.0004 (4)0.0036 (4)0.0005 (4)
C30.0139 (5)0.0159 (6)0.0136 (5)0.0001 (4)0.0035 (4)0.0021 (4)
C40.0151 (7)0.0180 (8)0.0123 (7)0.0000.0036 (6)0.000
C70.0167 (8)0.0213 (9)0.0147 (8)0.0000.0031 (6)0.000
Geometric parameters (Å, º) top
Br3—C31.8906 (13)C2—C31.3878 (18)
N7—C71.147 (3)C2—H20.9500
C1—C2i1.3977 (16)C3—C41.3898 (17)
C1—C21.3977 (16)C4—C3i1.3898 (17)
C1—C71.439 (3)C4—H40.9500
C2i—C1—C2121.16 (16)C2—C3—Br3119.38 (11)
C2i—C1—C7119.42 (8)C4—C3—Br3118.37 (10)
C2—C1—C7119.42 (8)C3i—C4—C3117.78 (16)
C3—C2—C1118.28 (13)C3i—C4—H4121.1
C3—C2—H2120.9C3—C4—H4121.1
C1—C2—H2120.9N7—C7—C1178.8 (2)
C2—C3—C4122.25 (13)
C2i—C1—C2—C30.1 (3)C1—C2—C3—Br3180.00 (12)
C7—C1—C2—C3179.38 (17)C2—C3—C4—C3i0.1 (3)
C1—C2—C3—C40.0 (2)Br3—C3—C4—C3i179.91 (9)
Symmetry code: (i) x, y+1/2, z.
Contact geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N7i0.952.513.443 (3)168
Symmetry code: (i) 1 + x, y, -1 + z.
 

Acknowledgements

The authors thank Victor G. Young, Jr. (X-Ray Crystallographic Laboratory, University of Minnesota) for assistance with the crystallographic determination, the Wayland E. Noland Research Fellowship Fund at the University of Minnesota Foundation for generous financial support of this project, and Doyle Britton (deceased July 7, 2015) for providing the basis of this project.

References

First citationBritton, D. (2002). Acta Cryst. E58, o840–o841.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS, Inc., Madison, WI, USA.  Google Scholar
First citationDesiraju, G. R. & Harlow, R. L. (1989). J. Am. Chem. Soc. 111, 6757–6764.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIshii, G., Harigae, R., Moriyama, K. & Togo, H. (2013). Tetrahedron, 69, 1462–1469.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNoland, W. E., Shudy, J. E., Rieger, J. L., Tu, Z. H. & Tritch, K. J. (2017). Acta Cryst. E73, 1913–1916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNoland, W. E. & Tritch, K. J. (2017). IUCrData, 2, x171617.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds