organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Methyl N-(2-bromo-4-chloro­phen­yl)carbamate

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, and cChemistry Department, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, PO Box 83, Al-Kharij 11942, Saudi Arabia
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by J. Simpson, University of Otago, New Zealand (Received 5 January 2018; accepted 9 January 2018; online 12 January 2018)

In the title mol­ecule, C8H7BrClNO2, the bromo­chloro­phenyl ring is inclined to the methyl­carbamate unit by 32.73 (7)°. In the crystal, N—H⋯O hydrogen bonds form chains of mol­ecules parallel to [100].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Carbamate derivatives show a variety of biological activities (Krátký et al., 2014[Krátký, M., Volková, M., Novotná, E., Trejtnar, E., Stolaříková, J. & Vinšová, J. (2014). Bioorg. Med. Chem. 22, 4073-4082.]; Smith et al., 2014[Smith, K., El-Hiti, G. A. & Alshammari, M. B. (2014). Synthesis, 46, 394-402.]; Yang et al., 2012[Yang, Y. H., Voak, A., Wilkinson, S. R. & Hu, L. Q. (2012). Bioorg. Med. Chem. Lett. 22, 6583-6586.]). They can be synthesized using a variety of convenient processes (Blaser et al., 2012[Blaser, A., Palmer, B. D., Sutherland, H. S., Kmentova, I., Franzblau, S. G., Wan, B., Wang, Y., Ma, Z., Thompson, A. M. & Denny, W. A. (2012). J. Med. Chem. 55, 312-326.]; Smith et al., 2012[Smith, K., El-Hiti, G. A. & Alshammari, M. B. (2012). J. Org. Chem. 77, 11210-11215.]; Ibrahim et al., 2011[Ibrahim, T., Tala, S. R., El-Feky, S. A., Abdel-Samii, Z. K. & Katritzky, A. R. (2011). Synlett, pp. 2013-2016.]; Porzelle et al., 2009[Porzelle, A., Woodrow, M. D. & Tomkinson, N. C. O. (2009). Synlett, pp. 798-802.]; Lee et al., 2009[Lee, H.-G., Kim, M.-J., Park, S.-E., Kim, J.-J., Kim, B., Lee, S. & Yoon, Y. (2009). Synlett, pp. 2809-2814.]; Lebel & Leogane, 2006[Lebel, H. & Leogane, O. (2006). Org. Lett. 8, 5717-5720.]; Caddick et al., 2003[Caddick, S., Judd, D. B., Lewis, A. K. de K., Reich, M. T. & Williams, M. R. V. (2003). Tetrahedron, 59, 5417-5423.]). The X-ray crystal structure of the related tert-butyl 2-phenyl­ethyl­carbamate was published recently (El-Hiti et al., 2016[El-Hiti, G. A., Smith, K., Alshammari, M. B., Ajarim, M. D. & Kariuki, M. B. (2016). Z. Kristallogr. New Cryst. Struct. 231, 1105-1107.]).

In the title mol­ecule (Fig. 1[link]), the dihedral angle between the bromo­chloro­phenyl and methyl­carbamate groups is 32.73 (7)°. In the crystal, N—H⋯O hydrogen bonds, Table 1[link], form chains parallel to [100], (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.19 2.885 (2) 135
Symmetry code: (i) x+1, y, z.
[Figure 1]
Figure 1
An ORTEP representation (50% probability level) of the title mol­ecule.
[Figure 2]
Figure 2
A segment of the crystal structure, viewed along b, showing the N—H⋯O hydrogen bonds as dotted lines.

Synthesis and crystallization

The title compound was synthesized from the reaction of 2-bromo-4-chloro­aniline and dimethyl dicarbonate in di­chloro­methane in the presence of tri­ethyl­amine. Recrystallization of the crude product from diethyl ether solution gave the title compound as colourless crystals, m.p. 88–89°C (lit. 86–89 °C; Moghaddam et al., 2016[Moghaddam, F. M., Tavakoli, G., Saeednia, B., Langer, P. & Jafari, B. (2016). J. Org. Chem. 81, 3868-3876.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H7BrClNO2
Mr 264.51
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 4.6637 (3), 9.4598 (6), 11.9898 (7)
α, β, γ (°) 111.639 (5), 101.035 (5), 93.712 (5)
V3) 477.25 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 8.19
Crystal size (mm) 0.31 × 0.20 × 0.15
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction Gaussian (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.776, 0.891
No. of measured, independent and observed [I > 2σ(I)] reflections 2938, 1847, 1777
Rint 0.019
(sin θ/λ)max−1) 0.623
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.063, 1.08
No. of reflections 1847
No. of parameters 119
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.61
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Methyl N-(2-bromo-4-chlorophenyl)carbamate top
Crystal data top
C8H7BrClNO2Z = 2
Mr = 264.51F(000) = 260
Triclinic, P1Dx = 1.841 Mg m3
a = 4.6637 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.4598 (6) ÅCell parameters from 2127 reflections
c = 11.9898 (7) Åθ = 5.1–74.1°
α = 111.639 (5)°µ = 8.19 mm1
β = 101.035 (5)°T = 150 K
γ = 93.712 (5)°Block, colourless
V = 477.25 (5) Å30.31 × 0.20 × 0.15 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
1777 reflections with I > 2σ(I)
ω scansRint = 0.019
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
θmax = 74.0°, θmin = 4.1°
Tmin = 0.776, Tmax = 0.891h = 55
2938 measured reflectionsk = 1011
1847 independent reflectionsl = 1411
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.040P)2 + 0.157P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1847 reflectionsΔρmax = 0.30 e Å3
119 parametersΔρmin = 0.61 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5832 (4)0.2508 (2)0.08977 (18)0.0178 (4)
C20.7774 (4)0.3658 (2)0.19208 (19)0.0189 (4)
C30.7777 (5)0.3806 (2)0.31131 (19)0.0226 (4)
H30.91150.45850.37960.027*
C40.5803 (5)0.2806 (3)0.3295 (2)0.0242 (4)
C50.3866 (5)0.1654 (2)0.2315 (2)0.0230 (4)
H50.25250.09730.24550.028*
C60.3903 (5)0.1504 (2)0.1125 (2)0.0210 (4)
H60.25920.07040.04490.025*
C70.3560 (5)0.1832 (2)0.12754 (19)0.0194 (4)
C80.2102 (6)0.1130 (3)0.3419 (2)0.0324 (5)
H8A0.14010.00580.35810.049*
H8B0.28820.11740.41100.049*
H8C0.04590.17260.33230.049*
N10.5916 (4)0.2373 (2)0.02987 (16)0.0204 (3)
H10.76180.26610.04240.024*
O10.1036 (3)0.14673 (18)0.12501 (14)0.0242 (3)
O20.4400 (3)0.17650 (19)0.23043 (14)0.0264 (3)
Cl10.57621 (15)0.30115 (7)0.47984 (5)0.03750 (16)
Br11.04171 (4)0.50705 (2)0.16904 (2)0.02356 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0170 (9)0.0181 (9)0.0196 (10)0.0047 (7)0.0063 (7)0.0075 (7)
C20.0177 (9)0.0181 (9)0.0223 (10)0.0019 (7)0.0058 (8)0.0091 (8)
C30.0241 (10)0.0215 (9)0.0200 (10)0.0003 (8)0.0033 (8)0.0070 (8)
C40.0310 (11)0.0269 (11)0.0194 (10)0.0054 (9)0.0097 (8)0.0121 (8)
C50.0239 (10)0.0219 (10)0.0264 (11)0.0013 (8)0.0099 (8)0.0115 (8)
C60.0202 (10)0.0197 (9)0.0222 (10)0.0002 (7)0.0058 (8)0.0072 (8)
C70.0208 (10)0.0194 (9)0.0194 (10)0.0048 (7)0.0066 (8)0.0079 (8)
C80.0341 (12)0.0413 (13)0.0194 (10)0.0026 (10)0.0017 (9)0.0117 (10)
N10.0157 (8)0.0256 (9)0.0198 (8)0.0002 (6)0.0058 (6)0.0084 (7)
O10.0159 (7)0.0315 (8)0.0243 (8)0.0010 (6)0.0052 (6)0.0101 (6)
O20.0219 (8)0.0402 (9)0.0198 (7)0.0013 (6)0.0049 (6)0.0152 (7)
Cl10.0549 (4)0.0381 (3)0.0208 (3)0.0052 (3)0.0122 (2)0.0132 (2)
Br10.02532 (14)0.02146 (14)0.02454 (14)0.00329 (9)0.00644 (9)0.01045 (10)
Geometric parameters (Å, º) top
C1—C61.400 (3)C5—H50.9500
C1—N11.401 (3)C6—H60.9500
C1—C21.404 (3)C7—O11.214 (3)
C2—C31.384 (3)C7—O21.345 (2)
C2—Br11.890 (2)C7—N11.354 (3)
C3—C41.381 (3)C8—O21.439 (3)
C3—H30.9500C8—H8A0.9800
C4—C51.381 (3)C8—H8B0.9800
C4—Cl11.744 (2)C8—H8C0.9800
C5—C61.384 (3)N1—H10.8800
C6—C1—N1122.34 (18)C5—C6—H6119.3
C6—C1—C2117.59 (19)C1—C6—H6119.3
N1—C1—C2120.06 (18)O1—C7—O2123.82 (19)
C3—C2—C1121.46 (19)O1—C7—N1126.17 (19)
C3—C2—Br1118.43 (15)O2—C7—N1110.00 (17)
C1—C2—Br1120.11 (15)O2—C8—H8A109.5
C4—C3—C2119.0 (2)O2—C8—H8B109.5
C4—C3—H3120.5H8A—C8—H8B109.5
C2—C3—H3120.5O2—C8—H8C109.5
C5—C4—C3121.44 (19)H8A—C8—H8C109.5
C5—C4—Cl1119.54 (17)H8B—C8—H8C109.5
C3—C4—Cl1119.02 (17)C7—N1—C1124.53 (17)
C4—C5—C6119.14 (19)C7—N1—H1117.7
C4—C5—H5120.4C1—N1—H1117.7
C6—C5—H5120.4C7—O2—C8115.05 (17)
C5—C6—C1121.39 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.192.885 (2)135
Symmetry code: (i) x+1, y, z.
 

Footnotes

Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.

Funding information

This project was supported by King Saud University, Deanship of Scientific Research, Research Chairs and Cardiff University.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBlaser, A., Palmer, B. D., Sutherland, H. S., Kmentova, I., Franzblau, S. G., Wan, B., Wang, Y., Ma, Z., Thompson, A. M. & Denny, W. A. (2012). J. Med. Chem. 55, 312–326.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCaddick, S., Judd, D. B., Lewis, A. K. de K., Reich, M. T. & Williams, M. R. V. (2003). Tetrahedron, 59, 5417–5423.  Web of Science CrossRef CAS Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationEl-Hiti, G. A., Smith, K., Alshammari, M. B., Ajarim, M. D. & Kariuki, M. B. (2016). Z. Kristallogr. New Cryst. Struct. 231, 1105–1107.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIbrahim, T., Tala, S. R., El-Feky, S. A., Abdel-Samii, Z. K. & Katritzky, A. R. (2011). Synlett, pp. 2013–2016.  Google Scholar
First citationKrátký, M., Volková, M., Novotná, E., Trejtnar, E., Stolaříková, J. & Vinšová, J. (2014). Bioorg. Med. Chem. 22, 4073–4082.  Web of Science PubMed Google Scholar
First citationLebel, H. & Leogane, O. (2006). Org. Lett. 8, 5717–5720.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, H.-G., Kim, M.-J., Park, S.-E., Kim, J.-J., Kim, B., Lee, S. & Yoon, Y. (2009). Synlett, pp. 2809–2814.  Google Scholar
First citationMoghaddam, F. M., Tavakoli, G., Saeednia, B., Langer, P. & Jafari, B. (2016). J. Org. Chem. 81, 3868–3876.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPorzelle, A., Woodrow, M. D. & Tomkinson, N. C. O. (2009). Synlett, pp. 798–802.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, K., El-Hiti, G. A. & Alshammari, M. B. (2012). J. Org. Chem. 77, 11210–11215.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSmith, K., El-Hiti, G. A. & Alshammari, M. B. (2014). Synthesis, 46, 394–402.  Web of Science CSD CrossRef Google Scholar
First citationYang, Y. H., Voak, A., Wilkinson, S. R. & Hu, L. Q. (2012). Bioorg. Med. Chem. Lett. 22, 6583–6586.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]