organic compounds
1-(2-Bromo-4-methylphenyl)-3,3-dimethylthiourea
aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, and cChemistry Department, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, PO Box 83, Al-Kharij 11942, Saudi Arabia
*Correspondence e-mail: gelhiti@ksu.edu.sa
The bromomethylphenyl and dimethylthiourea groups of the molecule of the title compound, C10H13BrN2S, are inclined to one another at an interplanar angle of 55.13 (6)°. In the crystal, molecules are stacked along the b axis and intermolecular N—H⋯S contacts form chains of molecules along [010].
Keywords: crystal structure; hydrogen bonding; thiourea; synthesis.
CCDC reference: 1815356
Structure description
Thioureas show various biological activities (Yao et al., 2012; Kocyigit-Kaymakcioglu et al., 2013; Korkmaz et al., 2015; Yang et al., 2015; Tahir et al., 2015; Shakeel et al., 2016) and therefore their syntheses are always of interest (Kong et al., 2015; Nguyen et al., 2014; Maki et al., 2014; Chau et al. 2014; Maddani & Prabhu, 2010). The X-ray crystal structures of some 1-(2-bromophenyl)-3,3-dimethylthiourea derivatives have been published recently (El-Hiti et al., 2014, 2017): as part of our ongoing studies in this area, we now describe the synthesis and structure of the title compound.
The ). The molecule is not planar, as indicated by an intramolecular interplanar angle of 55.13 (6) between the bromomethylphenyl and dimethylthiourea groups.
comprises one molecule of the title compound (Fig. 1In the crystal, molecules are stacked along the b-axis and N—H⋯S intermolecular contacts, Table 1, form chains of molecules along [010], Fig. 2.
Synthesis and crystallization
The title compound was synthesized by the reaction of equimolar quantities of 2-bromo-4-methylphenyl isothiocyanate and dimethylamine in dry dichloromethane at 20°C for 1 h. Water was added and the organic layer was separated, dried over anhydrous magnesium sulfate and evaporated under vacuum. The crude product was recrystallized using a solvent mixture of diethyl ether and hexane (1:2 by volume) to give colourless crystals of the title compound, m.p. 174–175°C (lit. 173–175°C; Smith et al., 1996).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1815356
https://doi.org/10.1107/S2414314618000457/sj4152sup1.cif
contains datablocks I, shelx. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618000457/sj4152Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618000457/sj4152Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).C10H13BrN2S | F(000) = 552 |
Mr = 273.19 | Dx = 1.566 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 12.2617 (7) Å | Cell parameters from 3751 reflections |
b = 8.0222 (4) Å | θ = 4.2–73.6° |
c = 12.7397 (7) Å | µ = 6.22 mm−1 |
β = 112.380 (6)° | T = 296 K |
V = 1158.76 (12) Å3 | Block, colourless |
Z = 4 | 0.22 × 0.12 × 0.05 mm |
Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer | 2035 reflections with I > 2σ(I) |
ω scans | Rint = 0.030 |
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014) | θmax = 74.1°, θmin = 4.3° |
Tmin = 0.926, Tmax = 0.976 | h = −14→15 |
7605 measured reflections | k = −9→9 |
2318 independent reflections | l = −12→15 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.115 | w = 1/[σ2(Fo2) + (0.072P)2 + 0.3056P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
2318 reflections | Δρmax = 0.54 e Å−3 |
130 parameters | Δρmin = −0.64 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.26065 (3) | 0.22909 (5) | 0.48048 (3) | 0.06494 (17) | |
S1 | 0.18412 (6) | 0.22540 (8) | 0.06795 (5) | 0.0495 (2) | |
C2 | 0.1250 (2) | 0.1405 (3) | 0.3645 (2) | 0.0454 (5) | |
N1 | 0.24617 (18) | 0.0533 (3) | 0.26170 (17) | 0.0477 (5) | |
H1 | 0.2981 | −0.0043 | 0.3139 | 0.057* | |
C1 | 0.1340 (2) | 0.0699 (3) | 0.26865 (19) | 0.0416 (5) | |
N2 | 0.3930 (2) | 0.0961 (3) | 0.19709 (19) | 0.0511 (5) | |
C8 | 0.2794 (2) | 0.1197 (3) | 0.18062 (19) | 0.0422 (5) | |
C6 | 0.0329 (2) | 0.0058 (3) | 0.1861 (2) | 0.0473 (6) | |
H6 | 0.0372 | −0.0438 | 0.1218 | 0.057* | |
C10 | 0.4382 (3) | 0.1476 (5) | 0.1115 (3) | 0.0662 (8) | |
H10A | 0.3850 | 0.1113 | 0.0380 | 0.099* | |
H10B | 0.5144 | 0.0984 | 0.1281 | 0.099* | |
H10C | 0.4450 | 0.2668 | 0.1120 | 0.099* | |
C5 | −0.0743 (2) | 0.0146 (4) | 0.1981 (2) | 0.0495 (6) | |
H5 | −0.1414 | −0.0287 | 0.1415 | 0.059* | |
C3 | 0.0176 (3) | 0.1482 (4) | 0.3771 (2) | 0.0524 (6) | |
H3 | 0.0137 | 0.1948 | 0.4424 | 0.063* | |
C4 | −0.0834 (2) | 0.0873 (4) | 0.2936 (2) | 0.0509 (6) | |
C9 | 0.4791 (2) | 0.0276 (4) | 0.3016 (3) | 0.0614 (7) | |
H9A | 0.4670 | 0.0750 | 0.3655 | 0.092* | |
H9B | 0.5573 | 0.0538 | 0.3063 | 0.092* | |
H9C | 0.4699 | −0.0912 | 0.3019 | 0.092* | |
C7 | −0.2015 (3) | 0.0970 (5) | 0.3057 (4) | 0.0756 (9) | |
H7A | −0.1911 | 0.0734 | 0.3828 | 0.113* | |
H7B | −0.2545 | 0.0169 | 0.2562 | 0.113* | |
H7C | −0.2337 | 0.2069 | 0.2857 | 0.113* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0668 (3) | 0.0716 (3) | 0.0472 (2) | −0.01503 (14) | 0.01142 (17) | −0.00997 (12) |
S1 | 0.0580 (4) | 0.0512 (4) | 0.0351 (3) | −0.0007 (3) | 0.0132 (3) | 0.0014 (2) |
C2 | 0.0495 (13) | 0.0465 (13) | 0.0379 (11) | −0.0033 (10) | 0.0139 (10) | −0.0002 (9) |
N1 | 0.0414 (10) | 0.0630 (13) | 0.0398 (10) | 0.0077 (9) | 0.0166 (9) | 0.0107 (9) |
C1 | 0.0420 (11) | 0.0471 (12) | 0.0380 (11) | 0.0036 (9) | 0.0179 (9) | 0.0049 (9) |
N2 | 0.0460 (11) | 0.0609 (13) | 0.0501 (11) | −0.0049 (10) | 0.0226 (9) | 0.0027 (10) |
C8 | 0.0458 (12) | 0.0453 (12) | 0.0360 (11) | −0.0041 (9) | 0.0161 (9) | −0.0058 (9) |
C6 | 0.0494 (13) | 0.0545 (14) | 0.0372 (11) | 0.0016 (11) | 0.0155 (10) | −0.0024 (10) |
C10 | 0.0652 (17) | 0.081 (2) | 0.0662 (18) | −0.0097 (16) | 0.0408 (15) | −0.0004 (16) |
C5 | 0.0405 (12) | 0.0562 (14) | 0.0474 (13) | 0.0003 (10) | 0.0117 (10) | 0.0027 (11) |
C3 | 0.0627 (15) | 0.0547 (15) | 0.0486 (13) | 0.0032 (12) | 0.0311 (12) | −0.0037 (11) |
C4 | 0.0475 (13) | 0.0550 (15) | 0.0549 (14) | 0.0060 (11) | 0.0248 (11) | 0.0075 (11) |
C9 | 0.0436 (13) | 0.0743 (19) | 0.0638 (17) | −0.0032 (13) | 0.0178 (12) | 0.0084 (15) |
C7 | 0.0566 (17) | 0.091 (3) | 0.090 (2) | 0.0030 (16) | 0.0412 (17) | 0.000 (2) |
Br1—C2 | 1.893 (2) | C10—H10B | 0.9600 |
S1—C8 | 1.693 (2) | C10—H10C | 0.9600 |
C2—C3 | 1.388 (4) | C5—C4 | 1.392 (4) |
C2—C1 | 1.388 (3) | C5—H5 | 0.9300 |
N1—C8 | 1.355 (3) | C3—C4 | 1.379 (4) |
N1—C1 | 1.418 (3) | C3—H3 | 0.9300 |
N1—H1 | 0.8600 | C4—C7 | 1.515 (4) |
C1—C6 | 1.383 (4) | C9—H9A | 0.9600 |
N2—C8 | 1.340 (3) | C9—H9B | 0.9600 |
N2—C9 | 1.456 (4) | C9—H9C | 0.9600 |
N2—C10 | 1.459 (3) | C7—H7A | 0.9600 |
C6—C5 | 1.382 (4) | C7—H7B | 0.9600 |
C6—H6 | 0.9300 | C7—H7C | 0.9600 |
C10—H10A | 0.9600 | ||
C3—C2—C1 | 121.1 (2) | H10B—C10—H10C | 109.5 |
C3—C2—Br1 | 118.91 (19) | C6—C5—C4 | 121.0 (2) |
C1—C2—Br1 | 119.99 (19) | C6—C5—H5 | 119.5 |
C8—N1—C1 | 126.2 (2) | C4—C5—H5 | 119.5 |
C8—N1—H1 | 116.9 | C4—C3—C2 | 120.5 (2) |
C1—N1—H1 | 116.9 | C4—C3—H3 | 119.7 |
C6—C1—C2 | 118.2 (2) | C2—C3—H3 | 119.7 |
C6—C1—N1 | 121.8 (2) | C3—C4—C5 | 118.4 (2) |
C2—C1—N1 | 119.8 (2) | C3—C4—C7 | 121.0 (3) |
C8—N2—C9 | 123.0 (2) | C5—C4—C7 | 120.5 (3) |
C8—N2—C10 | 120.7 (2) | N2—C9—H9A | 109.5 |
C9—N2—C10 | 116.1 (2) | N2—C9—H9B | 109.5 |
N2—C8—N1 | 114.9 (2) | H9A—C9—H9B | 109.5 |
N2—C8—S1 | 122.94 (19) | N2—C9—H9C | 109.5 |
N1—C8—S1 | 122.14 (19) | H9A—C9—H9C | 109.5 |
C5—C6—C1 | 120.7 (2) | H9B—C9—H9C | 109.5 |
C5—C6—H6 | 119.6 | C4—C7—H7A | 109.5 |
C1—C6—H6 | 119.6 | C4—C7—H7B | 109.5 |
N2—C10—H10A | 109.5 | H7A—C7—H7B | 109.5 |
N2—C10—H10B | 109.5 | C4—C7—H7C | 109.5 |
H10A—C10—H10B | 109.5 | H7A—C7—H7C | 109.5 |
N2—C10—H10C | 109.5 | H7B—C7—H7C | 109.5 |
H10A—C10—H10C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.86 | 2.60 | 3.309 (2) | 140 |
Symmetry code: (i) −x+1/2, y−1/2, −z+1/2. |
Footnotes
‡Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.
Funding information
The project was supported by King Saud University, Deanship of Scientific Research, Research Chairs and Cardiff University.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA. Google Scholar
Chau, C.-M., Chuan, T.-J. & Liu, K.-L. (2014). RSC Adv. 4, 1276–1282. Web of Science CrossRef CAS Google Scholar
El-Hiti, G. A., Smith, K., Hegazy, A. S., Alotaibi, M. H. & Kariuki, B. M. (2014). Acta Cryst. E70, o704. CSD CrossRef IUCr Journals Google Scholar
El-Hiti, G. A., Smith, K., Hegazy, A. S., Alotaibi, M. H. & Kariuki, B. M. (2017). Z. Kristallogr. New Cryst. Struct. 232, 31–32. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kocyigit-Kaymakcioglu, B., Celen, A. O., Tabanca, N., Ali, A., Khan, S. I., Khan, I. A. & Wedge, D. E. (2013). Molecules, 18, 3562–3576. Web of Science CAS PubMed Google Scholar
Kong, X., Yao, Z., He, Z., Xu, W. & Yao, J. (2015). Med. Chem. Commun. 6, 867–870. Web of Science CrossRef CAS Google Scholar
Korkmaz, N., Obaidi, O. A., Senturk, M., Astley, D., Ekinci, D. & Supuran, C. T. (2015). J. Enzyme Inhib. Med. Chem. 30, 75–80. Web of Science CrossRef CAS PubMed Google Scholar
Maddani, M. R. & Prabhu, K. R. (2010). J. Org. Chem. 75, 2327–2332. Web of Science CrossRef CAS PubMed Google Scholar
Maki, T., Tsuritani, T. & Yasukata, T. (2014). Org. Lett. 16, 1868–1871. Web of Science CrossRef CAS PubMed Google Scholar
Nguyen, T. B., Ermolenko, L. & Al-Mourabit, A. (2014). Synthesis, 46, 3172–3179. Web of Science CrossRef CAS Google Scholar
Shakeel, A., Altaf, A. A., Qureshi, A. M. & Badshan, A. (2016). J. Drug Des. Med. Chem. 2, 10–20. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, K., Shukla, A. P. & Matthews, I. (1996). Sulfur Lett. 20, 121–137. CAS Google Scholar
Tahir, S., Badshah, A., Hussain, R. A., Tahir, M. N., Tabassum, S., Patujo, J. A. & Rauf, M. K. (2015). J. Mol. Struct. 1099, 215–225. Web of Science CrossRef CAS Google Scholar
Yang, M., Pickard, A. J., Qiao, X., Gueble, M. J., Day, C. S., Kucera, G. L. & Bierbach, U. (2015). Inorg. Chem. 54, 3316–3324. Web of Science CSD CrossRef CAS PubMed Google Scholar
Yao, J., Chen, J., He, Z., Sun, W. & Xu, W. (2012). Bioorg. Med. Chem. 20, 2923–2929. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.