organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(2-Bromo-4-methyl­phen­yl)-3,3-di­methyl­thio­urea

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, and cChemistry Department, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, PO Box 83, Al-Kharij 11942, Saudi Arabia
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by J. Simpson, University of Otago, New Zealand (Received 3 January 2018; accepted 8 January 2018; online 12 January 2018)

The bromo­methyl­phenyl and di­methyl­thio­urea groups of the mol­ecule of the title compound, C10H13BrN2S, are inclined to one another at an inter­planar angle of 55.13 (6)°. In the crystal, mol­ecules are stacked along the b axis and inter­molecular N—H⋯S contacts form chains of mol­ecules along [010].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Thio­ureas show various biological activities (Yao et al., 2012[Yao, J., Chen, J., He, Z., Sun, W. & Xu, W. (2012). Bioorg. Med. Chem. 20, 2923-2929.]; Kocyigit-Kaymakcioglu et al., 2013[Kocyigit-Kaymakcioglu, B., Celen, A. O., Tabanca, N., Ali, A., Khan, S. I., Khan, I. A. & Wedge, D. E. (2013). Molecules, 18, 3562-3576.]; Korkmaz et al., 2015[Korkmaz, N., Obaidi, O. A., Senturk, M., Astley, D., Ekinci, D. & Supuran, C. T. (2015). J. Enzyme Inhib. Med. Chem. 30, 75-80.]; Yang et al., 2015[Yang, M., Pickard, A. J., Qiao, X., Gueble, M. J., Day, C. S., Kucera, G. L. & Bierbach, U. (2015). Inorg. Chem. 54, 3316-3324.]; Tahir et al., 2015[Tahir, S., Badshah, A., Hussain, R. A., Tahir, M. N., Tabassum, S., Patujo, J. A. & Rauf, M. K. (2015). J. Mol. Struct. 1099, 215-225.]; Shakeel et al., 2016[Shakeel, A., Altaf, A. A., Qureshi, A. M. & Badshan, A. (2016). J. Drug Des. Med. Chem. 2, 10-20.]) and therefore their syntheses are always of inter­est (Kong et al., 2015[Kong, X., Yao, Z., He, Z., Xu, W. & Yao, J. (2015). Med. Chem. Commun. 6, 867-870.]; Nguyen et al., 2014[Nguyen, T. B., Ermolenko, L. & Al-Mourabit, A. (2014). Synthesis, 46, 3172-3179.]; Maki et al., 2014[Maki, T., Tsuritani, T. & Yasukata, T. (2014). Org. Lett. 16, 1868-1871.]; Chau et al. 2014[Chau, C.-M., Chuan, T.-J. & Liu, K.-L. (2014). RSC Adv. 4, 1276-1282.]; Maddani & Prabhu, 2010[Maddani, M. R. & Prabhu, K. R. (2010). J. Org. Chem. 75, 2327-2332.]). The X-ray crystal structures of some 1-(2-bromo­phen­yl)-3,3-di­methyl­thio­urea derivatives have been published recently (El-Hiti et al., 2014[El-Hiti, G. A., Smith, K., Hegazy, A. S., Alotaibi, M. H. & Kariuki, B. M. (2014). Acta Cryst. E70, o704.], 2017[El-Hiti, G. A., Smith, K., Hegazy, A. S., Alotaibi, M. H. & Kariuki, B. M. (2017). Z. Kristallogr. New Cryst. Struct. 232, 31-32.]): as part of our ongoing studies in this area, we now describe the synthesis and structure of the title compound.

The asymmetric unit comprises one mol­ecule of the title compound (Fig. 1[link]). The mol­ecule is not planar, as indicated by an intra­molecular inter­planar angle of 55.13 (6) between the bromo­methyl­phenyl and di­methyl­thio­urea groups.

[Figure 1]
Figure 1
ORTEP representation (50% probability) of the asymmetric unit of C10H13BrN2S.

In the crystal, mol­ecules are stacked along the b-axis and N—H⋯S inter­molecular contacts, Table 1[link], form chains of mol­ecules along [010], Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.86 2.60 3.309 (2) 140
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing showing N—H⋯S contacts as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Synthesis and crystallization

The title compound was synthesized by the reaction of equimolar qu­anti­ties of 2-bromo-4-methyl­phenyl iso­thio­cyanate and di­methyl­amine in dry di­chloro­methane at 20°C for 1 h. Water was added and the organic layer was separated, dried over anhydrous magnesium sulfate and evaporated under vacuum. The crude product was recrystallized using a solvent mixture of diethyl ether and hexane (1:2 by volume) to give colourless crystals of the title compound, m.p. 174–175°C (lit. 173–175°C; Smith et al., 1996[Smith, K., Shukla, A. P. & Matthews, I. (1996). Sulfur Lett. 20, 121-137.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H13BrN2S
Mr 273.19
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 12.2617 (7), 8.0222 (4), 12.7397 (7)
β (°) 112.380 (6)
V3) 1158.76 (12)
Z 4
Radiation type Cu Kα
μ (mm−1) 6.22
Crystal size (mm) 0.22 × 0.12 × 0.05
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction Gaussian (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.926, 0.976
No. of measured, independent and observed [I > 2σ(I)] reflections 7605, 2318, 2035
Rint 0.030
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.115, 1.06
No. of reflections 2318
No. of parameters 130
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.54, −0.64
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

1-(2-Bromo-4-methylphenyl)-3,3-dimethylthiourea top
Crystal data top
C10H13BrN2SF(000) = 552
Mr = 273.19Dx = 1.566 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 12.2617 (7) ÅCell parameters from 3751 reflections
b = 8.0222 (4) Åθ = 4.2–73.6°
c = 12.7397 (7) ŵ = 6.22 mm1
β = 112.380 (6)°T = 296 K
V = 1158.76 (12) Å3Block, colourless
Z = 40.22 × 0.12 × 0.05 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
2035 reflections with I > 2σ(I)
ω scansRint = 0.030
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
θmax = 74.1°, θmin = 4.3°
Tmin = 0.926, Tmax = 0.976h = 1415
7605 measured reflectionsk = 99
2318 independent reflectionsl = 1215
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.072P)2 + 0.3056P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2318 reflectionsΔρmax = 0.54 e Å3
130 parametersΔρmin = 0.64 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.26065 (3)0.22909 (5)0.48048 (3)0.06494 (17)
S10.18412 (6)0.22540 (8)0.06795 (5)0.0495 (2)
C20.1250 (2)0.1405 (3)0.3645 (2)0.0454 (5)
N10.24617 (18)0.0533 (3)0.26170 (17)0.0477 (5)
H10.29810.00430.31390.057*
C10.1340 (2)0.0699 (3)0.26865 (19)0.0416 (5)
N20.3930 (2)0.0961 (3)0.19709 (19)0.0511 (5)
C80.2794 (2)0.1197 (3)0.18062 (19)0.0422 (5)
C60.0329 (2)0.0058 (3)0.1861 (2)0.0473 (6)
H60.03720.04380.12180.057*
C100.4382 (3)0.1476 (5)0.1115 (3)0.0662 (8)
H10A0.38500.11130.03800.099*
H10B0.51440.09840.12810.099*
H10C0.44500.26680.11200.099*
C50.0743 (2)0.0146 (4)0.1981 (2)0.0495 (6)
H50.14140.02870.14150.059*
C30.0176 (3)0.1482 (4)0.3771 (2)0.0524 (6)
H30.01370.19480.44240.063*
C40.0834 (2)0.0873 (4)0.2936 (2)0.0509 (6)
C90.4791 (2)0.0276 (4)0.3016 (3)0.0614 (7)
H9A0.46700.07500.36550.092*
H9B0.55730.05380.30630.092*
H9C0.46990.09120.30190.092*
C70.2015 (3)0.0970 (5)0.3057 (4)0.0756 (9)
H7A0.19110.07340.38280.113*
H7B0.25450.01690.25620.113*
H7C0.23370.20690.28570.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0668 (3)0.0716 (3)0.0472 (2)0.01503 (14)0.01142 (17)0.00997 (12)
S10.0580 (4)0.0512 (4)0.0351 (3)0.0007 (3)0.0132 (3)0.0014 (2)
C20.0495 (13)0.0465 (13)0.0379 (11)0.0033 (10)0.0139 (10)0.0002 (9)
N10.0414 (10)0.0630 (13)0.0398 (10)0.0077 (9)0.0166 (9)0.0107 (9)
C10.0420 (11)0.0471 (12)0.0380 (11)0.0036 (9)0.0179 (9)0.0049 (9)
N20.0460 (11)0.0609 (13)0.0501 (11)0.0049 (10)0.0226 (9)0.0027 (10)
C80.0458 (12)0.0453 (12)0.0360 (11)0.0041 (9)0.0161 (9)0.0058 (9)
C60.0494 (13)0.0545 (14)0.0372 (11)0.0016 (11)0.0155 (10)0.0024 (10)
C100.0652 (17)0.081 (2)0.0662 (18)0.0097 (16)0.0408 (15)0.0004 (16)
C50.0405 (12)0.0562 (14)0.0474 (13)0.0003 (10)0.0117 (10)0.0027 (11)
C30.0627 (15)0.0547 (15)0.0486 (13)0.0032 (12)0.0311 (12)0.0037 (11)
C40.0475 (13)0.0550 (15)0.0549 (14)0.0060 (11)0.0248 (11)0.0075 (11)
C90.0436 (13)0.0743 (19)0.0638 (17)0.0032 (13)0.0178 (12)0.0084 (15)
C70.0566 (17)0.091 (3)0.090 (2)0.0030 (16)0.0412 (17)0.000 (2)
Geometric parameters (Å, º) top
Br1—C21.893 (2)C10—H10B0.9600
S1—C81.693 (2)C10—H10C0.9600
C2—C31.388 (4)C5—C41.392 (4)
C2—C11.388 (3)C5—H50.9300
N1—C81.355 (3)C3—C41.379 (4)
N1—C11.418 (3)C3—H30.9300
N1—H10.8600C4—C71.515 (4)
C1—C61.383 (4)C9—H9A0.9600
N2—C81.340 (3)C9—H9B0.9600
N2—C91.456 (4)C9—H9C0.9600
N2—C101.459 (3)C7—H7A0.9600
C6—C51.382 (4)C7—H7B0.9600
C6—H60.9300C7—H7C0.9600
C10—H10A0.9600
C3—C2—C1121.1 (2)H10B—C10—H10C109.5
C3—C2—Br1118.91 (19)C6—C5—C4121.0 (2)
C1—C2—Br1119.99 (19)C6—C5—H5119.5
C8—N1—C1126.2 (2)C4—C5—H5119.5
C8—N1—H1116.9C4—C3—C2120.5 (2)
C1—N1—H1116.9C4—C3—H3119.7
C6—C1—C2118.2 (2)C2—C3—H3119.7
C6—C1—N1121.8 (2)C3—C4—C5118.4 (2)
C2—C1—N1119.8 (2)C3—C4—C7121.0 (3)
C8—N2—C9123.0 (2)C5—C4—C7120.5 (3)
C8—N2—C10120.7 (2)N2—C9—H9A109.5
C9—N2—C10116.1 (2)N2—C9—H9B109.5
N2—C8—N1114.9 (2)H9A—C9—H9B109.5
N2—C8—S1122.94 (19)N2—C9—H9C109.5
N1—C8—S1122.14 (19)H9A—C9—H9C109.5
C5—C6—C1120.7 (2)H9B—C9—H9C109.5
C5—C6—H6119.6C4—C7—H7A109.5
C1—C6—H6119.6C4—C7—H7B109.5
N2—C10—H10A109.5H7A—C7—H7B109.5
N2—C10—H10B109.5C4—C7—H7C109.5
H10A—C10—H10B109.5H7A—C7—H7C109.5
N2—C10—H10C109.5H7B—C7—H7C109.5
H10A—C10—H10C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.603.309 (2)140
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Footnotes

Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.

Funding information

The project was supported by King Saud University, Deanship of Scientific Research, Research Chairs and Cardiff University.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationChau, C.-M., Chuan, T.-J. & Liu, K.-L. (2014). RSC Adv. 4, 1276–1282.  Web of Science CrossRef CAS Google Scholar
First citationEl-Hiti, G. A., Smith, K., Hegazy, A. S., Alotaibi, M. H. & Kariuki, B. M. (2014). Acta Cryst. E70, o704.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Hiti, G. A., Smith, K., Hegazy, A. S., Alotaibi, M. H. & Kariuki, B. M. (2017). Z. Kristallogr. New Cryst. Struct. 232, 31–32.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKocyigit-Kaymakcioglu, B., Celen, A. O., Tabanca, N., Ali, A., Khan, S. I., Khan, I. A. & Wedge, D. E. (2013). Molecules, 18, 3562–3576.  Web of Science CAS PubMed Google Scholar
First citationKong, X., Yao, Z., He, Z., Xu, W. & Yao, J. (2015). Med. Chem. Commun. 6, 867–870.  Web of Science CrossRef CAS Google Scholar
First citationKorkmaz, N., Obaidi, O. A., Senturk, M., Astley, D., Ekinci, D. & Supuran, C. T. (2015). J. Enzyme Inhib. Med. Chem. 30, 75–80.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMaddani, M. R. & Prabhu, K. R. (2010). J. Org. Chem. 75, 2327–2332.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMaki, T., Tsuritani, T. & Yasukata, T. (2014). Org. Lett. 16, 1868–1871.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNguyen, T. B., Ermolenko, L. & Al-Mourabit, A. (2014). Synthesis, 46, 3172–3179.  Web of Science CrossRef CAS Google Scholar
First citationShakeel, A., Altaf, A. A., Qureshi, A. M. & Badshan, A. (2016). J. Drug Des. Med. Chem. 2, 10–20.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, K., Shukla, A. P. & Matthews, I. (1996). Sulfur Lett. 20, 121–137.  CAS Google Scholar
First citationTahir, S., Badshah, A., Hussain, R. A., Tahir, M. N., Tabassum, S., Patujo, J. A. & Rauf, M. K. (2015). J. Mol. Struct. 1099, 215–225.  Web of Science CrossRef CAS Google Scholar
First citationYang, M., Pickard, A. J., Qiao, X., Gueble, M. J., Day, C. S., Kucera, G. L. & Bierbach, U. (2015). Inorg. Chem. 54, 3316–3324.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYao, J., Chen, J., He, Z., Sun, W. & Xu, W. (2012). Bioorg. Med. Chem. 20, 2923–2929.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]