metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tetra­phenyl­phospho­nium tetra­kis­(tri­methyl­silanolato)ferrate(III)

aPenn State Beaver, 100 University Drive, Monaca, PA 15061, USA, and bThe Pennsylvania State University, Dept. Biochemistry and Molecular Biology, University Park, PA 16802, USA
*Correspondence e-mail: mth7@psu.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 18 December 2017; accepted 20 December 2017; online January 2018)

The structure of tetra­phenyl­phospho­nium tetrakis­(tri­methyl­silanolato)ferrate(III), [(C6H5)4P][Fe(OSi(CH3)3)4], has tetra­gonal (I-4) symmetry, and was refined as an inversion twin. It is an ionic compound consisting of a tetra­phenyl­phospho­nium cation and a tetra­kis­(tri­methyl­silanolato)ferrate(III) anion. The crystal structure comprises the two ionic species each centered on a -4 symmetry element and contributing a fourth of its structure to the asymmetric unit. Each is surrounded by counter-ions on all sides. The cation contains a central phospho­rous atom bound to four phenyl groups in a tetra­hedral arrangement, while the anion contains a central iron(III) atom tetra­hedrally coordinated by four tri­methyl­silanolato ligands.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Previously, Hay et al. (2012[Hay, M., Staples, R. & Lee, A. (2012). Acta Cryst. E68, m1186.]) reported on the structural characterization of tetra­butyl­ammonium tetra­kis(tri­methyl­silanolato)ferrate(III) in order to make structural comparison with other tetra­butyl­ammonium iron(III)-containing silsesquioxane compounds (Hay & Geib, 2007[Hay, M. T. & Geib, S. J. (2007). Acta Cryst. E63, m445-m446.]; Hay et al., 2003[Hay, M. T., Hainaut, B. J. & Geib, S. J. (2003). Inorg. Chem. Commun. 6, 431-434.], 2009[Hay, M. T., Geib, S. J. & Pettner, D. A. (2009). Polyhedron, 28, 2183-2186.]). As we continue our work in the area of iron(III) silsesquioxane compounds, we have found that it would be useful to report the structural data of the analogous tetra­phenyl­phospho­nium iron(III) silanolate salt – the title compound.

The title compound contains a tetra­phenyl­phospho­nium cation and a tetrakis(trimethylsinalolato)ferrate(III) anion (Fig. 1[link]). Each ionic species is centered on a [\overline{4}] symmetry element and contributes a fourth of its structure to the asymmetric unit. The tetra­phenyl­phospho­nium cation, (C6H5)4P1+, consists of a tetra­hedrally surrounded phospho­rous atom, with P—C bond lengths that are all 1.789 (3) Å and with C—P—C bond angles in the range 107.1 (2)–110.69 (9)°. The complex anion, [Fe(OSi(CH3)3)4], contains a four-coordinate iron(III) atom with a tetra­hedral arrangement of four tri­methyl­silanolate ligands coordinating to it. The O—Fe—O bond angles are in the range 108.84 (9)–110.8 (2)°, while the Fe—O bond lengths are all 1.846 (2) Å.

[Figure 1]
Figure 1
The molecular entities in the title salt showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The crystal structure comprises the two ionic species, each of which is surrounded by four counter-ions (Fig. 2[link]). A C—H⋯O hydrogen bond stabilizes the lattice (Table 1[link]). The phenyl rings of the tetra­phenyl­phospho­nium ions are not sufficiently close to their symmetry-related neighbors to be involved in ππ-type inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.94 2.47 3.359 (4) 158
Symmetry code: (i) -y+1, x, -z+1.
[Figure 2]
Figure 2
A packing diagram showing the ferrate anion surrounded by four phospho­nium cations.

A survey of the database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) returned two similar compounds, both with the tetrakis(trimethylsinalolato)ferrate(III) anion but with different cations. The first contained the tetra­methyl­stibonium cation (CH3)4Sb+ (Schmidbaur, 1964[Schmidbaur, H. (1964). Chem. Ber. 97, 842-848.]) that crystallizes in an ortho­rhom­bic (Pmmn) space group. The second compound crystallizes in a triclinic (P[\overline{1}]) space group with a tetra­butyl­ammonium cation [(C4H9)4N+; Hay et al., 2012[Hay, M., Staples, R. & Lee, A. (2012). Acta Cryst. E68, m1186.]). The Fe—O bond lengths in the second ferrate are slightly longer than in the title compound and range from 1.8515 (14)–1.8608 (13) Å, while the O—Fe—O bond angles span a wider range from 105.17 (6)–112.58 (6)° when compared to the title compound.

Synthesis and crystallization

A yellow solution of [(C6H5)4P][FeCl4] (0.372 mmol, 0.200 g, Jana et al., 2009[Jana, T. K., Kumar, D. P., Pradhan, R., Dinda, S., Ghosh, P. N., Simonnet, C., Marrot, J., Imaz, I., Wattiaux, A., Fournès, L., Sutter, J., Sécheresse, F. & Bhattacharyya, R. (2009). Inorg. Chim. Acta, 362, 3583-3594.]) in di­chloro­methane (2–3 ml) was treated with four equivalents of sodium trimethlysilanate (1.49 mmol, 0.167 g) dissolved in di­chloro­methane (2–3 ml). Immediately, the yellow color of the solution began to dissipate, as a white precipitate formed. The reaction mixture was stirred for 2–3 h before the precipitate was removed by filtration through celite, giving a clear colorless filtrate. The filtrate was concentrated under reduced pressure to give an oily residue, and the oil was then extracted with diethyl ether and filtered to remove any insoluble material. Hexanes were added to the diethyl ether filtrate and the sample was stored at 240 K until colorless block-like crystals formed. IR (cm−1): 3061w, 2948w, 2889w, 1438m, 1235m, 1108m, 1059m, 934s, 824s, 745m, 720s, 688s, 667m, 624w. Analysis calculated for C36H56FeSi4PO4 (751.98): C, 57.50; H, 7.51. Found: C, 57.38; H, 7.42.

Infrared spectra were recorded on a Shimadzu IRAffinity-1 FTIR Spectrometer using a Pike MIRacle ATR. Elemental analysis was performed by Galbraith Laboratories, Inc. (Knoxville, TN) using a CE-440 Elemental Analyzer.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The structure was refined as an inversion twin using the twin law [[\overline{1}] 0 0, 0 [\overline{1}] 0, 0 0 [\overline{1}]] and BASF 0.02 (2).

Table 2
Experimental details

Crystal data
Chemical formula (C24H20P)[Fe(C3H9OSi)4]
Mr 751.98
Crystal system, space group Tetragonal, I[\overline{4}]
Temperature (K) 223
a, c (Å) 12.589 (7), 13.689 (7)
V3) 2169 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.53
Crystal size (mm) 0.29 × 0.2 × 0.18
 
Data collection
Diffractometer Bruker CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.600, 0.9
No. of measured, independent and observed [I > 2σ(I)] reflections 9779, 2712, 2258
Rint 0.050
(sin θ/λ)max−1) 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.078, 0.92
No. of reflections 2712
No. of parameters 108
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.23
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.02 (2)
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Tetraphenylphosphonium tetrakis(trimethylsilanolato)ferrate(III) top
Crystal data top
(C24H20P)[Fe(C3H9OSi)4]Dx = 1.151 Mg m3
Mr = 751.98Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4Cell parameters from 3702 reflections
a = 12.589 (7) Åθ = 2.2–27.0°
c = 13.689 (7) ŵ = 0.53 mm1
V = 2169 (3) Å3T = 223 K
Z = 2Block, colorless
F(000) = 8020.29 × 0.2 × 0.18 mm
Data collection top
Bruker CCD area detector
diffractometer
2258 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
phi and ω scansθmax = 28.7°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1616
Tmin = 0.600, Tmax = 0.9k = 1417
9779 measured reflectionsl = 1817
2712 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0402P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max < 0.001
S = 0.92Δρmax = 0.23 e Å3
2712 reflectionsΔρmin = 0.23 e Å3
108 parametersAbsolute structure: Refined as an inversion twin
0 restraintsAbsolute structure parameter: 0.02 (2)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (5 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.5000000.5000000.5000000.0378 (2)
Si10.51036 (7)0.69112 (7)0.66037 (7)0.0502 (2)
O10.46530 (18)0.61557 (19)0.57663 (19)0.0664 (7)
C10.4457 (4)0.6596 (4)0.7790 (3)0.0926 (15)
H1A0.4596080.5860460.7959300.139*
H1B0.3697130.6706510.7735410.139*
H1C0.4741560.7055740.8295100.139*
C20.6566 (3)0.6722 (3)0.6754 (3)0.0760 (11)
H2A0.6901170.6701470.6115770.114*
H2B0.6699700.6059350.7093480.114*
H2C0.6856770.7307150.7129200.114*
C30.4793 (4)0.8315 (3)0.6294 (4)0.0920 (15)
H3A0.4030100.8422430.6315770.138*
H3B0.5051920.8472710.5642140.138*
H3C0.5134060.8783150.6760950.138*
P10.5000000.0000000.2500000.0395 (3)
C40.4007 (2)0.0565 (2)0.3277 (2)0.0419 (7)
C50.4021 (2)0.1634 (2)0.3516 (2)0.0478 (7)
H50.4521360.2085480.3221140.057*
C60.3310 (3)0.2040 (3)0.4180 (3)0.0563 (8)
H60.3320710.2767890.4331950.068*
C70.2587 (3)0.1384 (3)0.4618 (3)0.0613 (9)
H70.2104780.1659920.5077640.074*
C80.2565 (3)0.0320 (3)0.4387 (3)0.0704 (11)
H80.2059300.0126270.4680870.085*
C90.3276 (3)0.0094 (3)0.3731 (3)0.0566 (9)
H90.3267980.0824330.3590030.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0392 (3)0.0392 (3)0.0351 (4)0.0000.0000.000
Si10.0453 (5)0.0561 (5)0.0490 (5)0.0033 (4)0.0000 (4)0.0151 (5)
O10.0480 (13)0.0818 (17)0.0693 (16)0.0123 (12)0.0067 (12)0.0366 (14)
C10.095 (3)0.115 (4)0.068 (3)0.008 (3)0.021 (3)0.010 (3)
C20.054 (2)0.102 (3)0.071 (3)0.0019 (19)0.014 (2)0.001 (2)
C30.091 (3)0.069 (3)0.116 (4)0.014 (2)0.006 (3)0.007 (3)
P10.0383 (5)0.0383 (5)0.0420 (8)0.0000.0000.000
C40.0460 (16)0.0404 (15)0.0394 (16)0.0011 (12)0.0003 (13)0.0013 (13)
C50.0525 (18)0.0429 (16)0.0480 (19)0.0070 (13)0.0036 (15)0.0001 (14)
C60.068 (2)0.0463 (18)0.055 (2)0.0029 (16)0.0059 (18)0.0105 (16)
C70.062 (2)0.061 (2)0.061 (2)0.0000 (17)0.0169 (18)0.0111 (17)
C80.076 (3)0.062 (2)0.073 (3)0.0213 (19)0.033 (2)0.009 (2)
C90.070 (2)0.0410 (17)0.059 (2)0.0106 (15)0.0186 (17)0.0051 (15)
Geometric parameters (Å, º) top
Fe1—O1i1.846 (2)C3—H3C0.9700
Fe1—O11.846 (2)P1—C4iv1.789 (3)
Fe1—O1ii1.846 (2)P1—C4v1.789 (3)
Fe1—O1iii1.846 (2)P1—C41.789 (3)
Si1—O11.594 (3)P1—C4vi1.789 (3)
Si1—C11.860 (4)C4—C51.385 (4)
Si1—C21.868 (4)C4—C91.386 (4)
Si1—C31.860 (4)C5—H50.9400
C1—H1A0.9700C5—C61.374 (4)
C1—H1B0.9700C6—H60.9400
C1—H1C0.9700C6—C71.368 (5)
C2—H2A0.9700C7—H70.9400
C2—H2B0.9700C7—C81.377 (5)
C2—H2C0.9700C8—H80.9400
C3—H3A0.9700C8—C91.370 (5)
C3—H3B0.9700C9—H90.9400
O1i—Fe1—O1ii108.84 (9)H3A—C3—H3B109.5
O1ii—Fe1—O1110.75 (17)H3A—C3—H3C109.5
O1i—Fe1—O1108.84 (9)H3B—C3—H3C109.5
O1i—Fe1—O1iii110.75 (17)C4iv—P1—C4vi110.69 (9)
O1iii—Fe1—O1108.84 (9)C4vi—P1—C4v110.69 (9)
O1ii—Fe1—O1iii108.84 (9)C4—P1—C4v110.69 (9)
O1—Si1—C1110.19 (17)C4—P1—C4iv110.69 (9)
O1—Si1—C2110.71 (16)C4—P1—C4vi107.06 (19)
O1—Si1—C3109.15 (19)C4iv—P1—C4v107.06 (19)
C1—Si1—C2107.9 (2)C5—C4—P1121.2 (2)
C1—Si1—C3108.1 (2)C5—C4—C9118.9 (3)
C3—Si1—C2110.72 (18)C9—C4—P1119.6 (2)
Si1—O1—Fe1142.63 (14)C4—C5—H5119.7
Si1—C1—H1A109.5C6—C5—C4120.6 (3)
Si1—C1—H1B109.5C6—C5—H5119.7
Si1—C1—H1C109.5C5—C6—H6120.0
H1A—C1—H1B109.5C7—C6—C5120.0 (3)
H1A—C1—H1C109.5C7—C6—H6120.0
H1B—C1—H1C109.5C6—C7—H7120.0
Si1—C2—H2A109.5C6—C7—C8119.9 (3)
Si1—C2—H2B109.5C8—C7—H7120.0
Si1—C2—H2C109.5C7—C8—H8119.7
H2A—C2—H2B109.5C9—C8—C7120.5 (3)
H2A—C2—H2C109.5C9—C8—H8119.7
H2B—C2—H2C109.5C4—C9—H9120.0
Si1—C3—H3A109.5C8—C9—C4120.0 (3)
Si1—C3—H3B109.5C8—C9—H9120.0
Si1—C3—H3C109.5
O1i—Fe1—O1—Si162.0 (2)C4vi—P1—C4—C596.0 (3)
O1ii—Fe1—O1—Si157.6 (3)C4iv—P1—C4—C943.6 (2)
O1iii—Fe1—O1—Si1177.2 (3)C4vi—P1—C4—C977.1 (3)
C1—Si1—O1—Fe1106.0 (3)C4v—P1—C4—C9162.2 (3)
C2—Si1—O1—Fe113.3 (4)C4—C5—C6—C70.7 (5)
C3—Si1—O1—Fe1135.4 (3)C5—C4—C9—C81.6 (5)
P1—C4—C5—C6174.3 (2)C5—C6—C7—C80.6 (6)
P1—C4—C9—C8174.9 (3)C6—C7—C8—C91.1 (6)
C4v—P1—C4—C524.8 (2)C7—C8—C9—C41.6 (6)
C4iv—P1—C4—C5143.3 (3)C9—C4—C5—C61.2 (5)
Symmetry codes: (i) y, x+1, z+1; (ii) x+1, y+1, z; (iii) y+1, x, z+1; (iv) y+1/2, x1/2, z+1/2; (v) y+1/2, x+1/2, z+1/2; (vi) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1iii0.942.473.359 (4)158
Symmetry code: (iii) y+1, x, z+1.
 

Funding information

Funding for this research was provided by: University College of Pennsylvania State University (grant to Michael T. Hay).

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHay, M. T. & Geib, S. J. (2007). Acta Cryst. E63, m445–m446.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHay, M. T., Geib, S. J. & Pettner, D. A. (2009). Polyhedron, 28, 2183–2186.  Web of Science CSD CrossRef CAS Google Scholar
First citationHay, M. T., Hainaut, B. J. & Geib, S. J. (2003). Inorg. Chem. Commun. 6, 431–434.  Web of Science CSD CrossRef CAS Google Scholar
First citationHay, M., Staples, R. & Lee, A. (2012). Acta Cryst. E68, m1186.  CSD CrossRef IUCr Journals Google Scholar
First citationJana, T. K., Kumar, D. P., Pradhan, R., Dinda, S., Ghosh, P. N., Simonnet, C., Marrot, J., Imaz, I., Wattiaux, A., Fournès, L., Sutter, J., Sécheresse, F. & Bhattacharyya, R. (2009). Inorg. Chim. Acta, 362, 3583–3594.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchmidbaur, H. (1964). Chem. Ber. 97, 842–848.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]