metal-organic compounds
Tetraphenylphosphonium tetrakis(trimethylsilanolato)ferrate(III)
aPenn State Beaver, 100 University Drive, Monaca, PA 15061, USA, and bThe Pennsylvania State University, Dept. Biochemistry and Molecular Biology, University Park, PA 16802, USA
*Correspondence e-mail: mth7@psu.edu
The structure of tetraphenylphosphonium tetrakis(trimethylsilanolato)ferrate(III), [(C6H5)4P][Fe(OSi(CH3)3)4], has tetragonal (I-4) symmetry, and was refined as an It is an ionic compound consisting of a tetraphenylphosphonium cation and a tetrakis(trimethylsilanolato)ferrate(III) anion. The comprises the two ionic species each centered on a -4 and contributing a fourth of its structure to the Each is surrounded by counter-ions on all sides. The cation contains a central phosphorous atom bound to four phenyl groups in a tetrahedral arrangement, while the anion contains a central iron(III) atom tetrahedrally coordinated by four trimethylsilanolato ligands.
Keywords: crystal structure; iron (III) complex; phosphonium salt.
CCDC reference: 1812775
Structure description
Previously, Hay et al. (2012) reported on the structural characterization of tetrabutylammonium tetrakis(trimethylsilanolato)ferrate(III) in order to make structural comparison with other tetrabutylammonium iron(III)-containing silsesquioxane compounds (Hay & Geib, 2007; Hay et al., 2003, 2009). As we continue our work in the area of iron(III) silsesquioxane compounds, we have found that it would be useful to report the structural data of the analogous tetraphenylphosphonium iron(III) silanolate salt – the title compound.
The title compound contains a tetraphenylphosphonium cation and a tetrakis(trimethylsinalolato)ferrate(III) anion (Fig. 1). Each ionic species is centered on a and contributes a fourth of its structure to the The tetraphenylphosphonium cation, (C6H5)4P1+, consists of a tetrahedrally surrounded phosphorous atom, with P—C bond lengths that are all 1.789 (3) Å and with C—P—C bond angles in the range 107.1 (2)–110.69 (9)°. The complex anion, [Fe(OSi(CH3)3)4]−, contains a four-coordinate iron(III) atom with a tetrahedral arrangement of four trimethylsilanolate ligands coordinating to it. The O—Fe—O bond angles are in the range 108.84 (9)–110.8 (2)°, while the Fe—O bond lengths are all 1.846 (2) Å.
The ). A C—H⋯O hydrogen bond stabilizes the lattice (Table 1). The phenyl rings of the tetraphenylphosphonium ions are not sufficiently close to their symmetry-related neighbors to be involved in π–π-type interactions.
comprises the two ionic species, each of which is surrounded by four counter-ions (Fig. 2A survey of the database (CSD; Groom et al., 2016) returned two similar compounds, both with the tetrakis(trimethylsinalolato)ferrate(III) anion but with different cations. The first contained the tetramethylstibonium cation (CH3)4Sb+ (Schmidbaur, 1964) that crystallizes in an orthorhombic (Pmmn) The second compound crystallizes in a triclinic (P) with a tetrabutylammonium cation [(C4H9)4N+; Hay et al., 2012). The Fe—O bond lengths in the second ferrate are slightly longer than in the title compound and range from 1.8515 (14)–1.8608 (13) Å, while the O—Fe—O bond angles span a wider range from 105.17 (6)–112.58 (6)° when compared to the title compound.
Synthesis and crystallization
A yellow solution of [(C6H5)4P][FeCl4] (0.372 mmol, 0.200 g, Jana et al., 2009) in dichloromethane (2–3 ml) was treated with four equivalents of sodium trimethlysilanate (1.49 mmol, 0.167 g) dissolved in dichloromethane (2–3 ml). Immediately, the yellow color of the solution began to dissipate, as a white precipitate formed. The reaction mixture was stirred for 2–3 h before the precipitate was removed by filtration through celite, giving a clear colorless filtrate. The filtrate was concentrated under reduced pressure to give an oily residue, and the oil was then extracted with diethyl ether and filtered to remove any insoluble material. Hexanes were added to the diethyl ether filtrate and the sample was stored at 240 K until colorless block-like crystals formed. IR (cm−1): 3061w, 2948w, 2889w, 1438m, 1235m, 1108m, 1059m, 934s, 824s, 745m, 720s, 688s, 667m, 624w. Analysis calculated for C36H56FeSi4PO4 (751.98): C, 57.50; H, 7.51. Found: C, 57.38; H, 7.42.
Infrared spectra were recorded on a Shimadzu IRAffinity-1 FTIR Spectrometer using a Pike MIRacle ATR. Elemental analysis was performed by Galbraith Laboratories, Inc. (Knoxville, TN) using a CE-440 Elemental Analyzer.
Refinement
Crystal data, data collection and structure . The structure was refined as an using the [ 0 0, 0 0, 0 0 ] and BASF 0.02 (2).
details are summarized in Table 2Structural data
CCDC reference: 1812775
https://doi.org/10.1107/S2414314617018235/sj4151sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617018235/sj4151Isup2.hkl
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).(C24H20P)[Fe(C3H9OSi)4] | Dx = 1.151 Mg m−3 |
Mr = 751.98 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I4 | Cell parameters from 3702 reflections |
a = 12.589 (7) Å | θ = 2.2–27.0° |
c = 13.689 (7) Å | µ = 0.53 mm−1 |
V = 2169 (3) Å3 | T = 223 K |
Z = 2 | Block, colorless |
F(000) = 802 | 0.29 × 0.2 × 0.18 mm |
Bruker CCD area detector diffractometer | 2258 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
phi and ω scans | θmax = 28.7°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −16→16 |
Tmin = 0.600, Tmax = 0.9 | k = −14→17 |
9779 measured reflections | l = −18→17 |
2712 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.0402P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.078 | (Δ/σ)max < 0.001 |
S = 0.92 | Δρmax = 0.23 e Å−3 |
2712 reflections | Δρmin = −0.23 e Å−3 |
108 parameters | Absolute structure: Refined as an inversion twin |
0 restraints | Absolute structure parameter: 0.02 (2) |
Primary atom site location: structure-invariant direct methods |
Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (5 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.500000 | 0.500000 | 0.500000 | 0.0378 (2) | |
Si1 | 0.51036 (7) | 0.69112 (7) | 0.66037 (7) | 0.0502 (2) | |
O1 | 0.46530 (18) | 0.61557 (19) | 0.57663 (19) | 0.0664 (7) | |
C1 | 0.4457 (4) | 0.6596 (4) | 0.7790 (3) | 0.0926 (15) | |
H1A | 0.459608 | 0.586046 | 0.795930 | 0.139* | |
H1B | 0.369713 | 0.670651 | 0.773541 | 0.139* | |
H1C | 0.474156 | 0.705574 | 0.829510 | 0.139* | |
C2 | 0.6566 (3) | 0.6722 (3) | 0.6754 (3) | 0.0760 (11) | |
H2A | 0.690117 | 0.670147 | 0.611577 | 0.114* | |
H2B | 0.669970 | 0.605935 | 0.709348 | 0.114* | |
H2C | 0.685677 | 0.730715 | 0.712920 | 0.114* | |
C3 | 0.4793 (4) | 0.8315 (3) | 0.6294 (4) | 0.0920 (15) | |
H3A | 0.403010 | 0.842243 | 0.631577 | 0.138* | |
H3B | 0.505192 | 0.847271 | 0.564214 | 0.138* | |
H3C | 0.513406 | 0.878315 | 0.676095 | 0.138* | |
P1 | 0.500000 | 0.000000 | 0.250000 | 0.0395 (3) | |
C4 | 0.4007 (2) | 0.0565 (2) | 0.3277 (2) | 0.0419 (7) | |
C5 | 0.4021 (2) | 0.1634 (2) | 0.3516 (2) | 0.0478 (7) | |
H5 | 0.452136 | 0.208548 | 0.322114 | 0.057* | |
C6 | 0.3310 (3) | 0.2040 (3) | 0.4180 (3) | 0.0563 (8) | |
H6 | 0.332071 | 0.276789 | 0.433195 | 0.068* | |
C7 | 0.2587 (3) | 0.1384 (3) | 0.4618 (3) | 0.0613 (9) | |
H7 | 0.210478 | 0.165992 | 0.507764 | 0.074* | |
C8 | 0.2565 (3) | 0.0320 (3) | 0.4387 (3) | 0.0704 (11) | |
H8 | 0.205930 | −0.012627 | 0.468087 | 0.085* | |
C9 | 0.3276 (3) | −0.0094 (3) | 0.3731 (3) | 0.0566 (9) | |
H9 | 0.326798 | −0.082433 | 0.359003 | 0.068* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0392 (3) | 0.0392 (3) | 0.0351 (4) | 0.000 | 0.000 | 0.000 |
Si1 | 0.0453 (5) | 0.0561 (5) | 0.0490 (5) | 0.0033 (4) | 0.0000 (4) | −0.0151 (5) |
O1 | 0.0480 (13) | 0.0818 (17) | 0.0693 (16) | 0.0123 (12) | −0.0067 (12) | −0.0366 (14) |
C1 | 0.095 (3) | 0.115 (4) | 0.068 (3) | 0.008 (3) | 0.021 (3) | −0.010 (3) |
C2 | 0.054 (2) | 0.102 (3) | 0.071 (3) | −0.0019 (19) | −0.014 (2) | 0.001 (2) |
C3 | 0.091 (3) | 0.069 (3) | 0.116 (4) | 0.014 (2) | 0.006 (3) | −0.007 (3) |
P1 | 0.0383 (5) | 0.0383 (5) | 0.0420 (8) | 0.000 | 0.000 | 0.000 |
C4 | 0.0460 (16) | 0.0404 (15) | 0.0394 (16) | −0.0011 (12) | 0.0003 (13) | −0.0013 (13) |
C5 | 0.0525 (18) | 0.0429 (16) | 0.0480 (19) | −0.0070 (13) | 0.0036 (15) | 0.0001 (14) |
C6 | 0.068 (2) | 0.0463 (18) | 0.055 (2) | 0.0029 (16) | 0.0059 (18) | −0.0105 (16) |
C7 | 0.062 (2) | 0.061 (2) | 0.061 (2) | 0.0000 (17) | 0.0169 (18) | −0.0111 (17) |
C8 | 0.076 (3) | 0.062 (2) | 0.073 (3) | −0.0213 (19) | 0.033 (2) | −0.009 (2) |
C9 | 0.070 (2) | 0.0410 (17) | 0.059 (2) | −0.0106 (15) | 0.0186 (17) | −0.0051 (15) |
Fe1—O1i | 1.846 (2) | C3—H3C | 0.9700 |
Fe1—O1 | 1.846 (2) | P1—C4iv | 1.789 (3) |
Fe1—O1ii | 1.846 (2) | P1—C4v | 1.789 (3) |
Fe1—O1iii | 1.846 (2) | P1—C4 | 1.789 (3) |
Si1—O1 | 1.594 (3) | P1—C4vi | 1.789 (3) |
Si1—C1 | 1.860 (4) | C4—C5 | 1.385 (4) |
Si1—C2 | 1.868 (4) | C4—C9 | 1.386 (4) |
Si1—C3 | 1.860 (4) | C5—H5 | 0.9400 |
C1—H1A | 0.9700 | C5—C6 | 1.374 (4) |
C1—H1B | 0.9700 | C6—H6 | 0.9400 |
C1—H1C | 0.9700 | C6—C7 | 1.368 (5) |
C2—H2A | 0.9700 | C7—H7 | 0.9400 |
C2—H2B | 0.9700 | C7—C8 | 1.377 (5) |
C2—H2C | 0.9700 | C8—H8 | 0.9400 |
C3—H3A | 0.9700 | C8—C9 | 1.370 (5) |
C3—H3B | 0.9700 | C9—H9 | 0.9400 |
O1i—Fe1—O1ii | 108.84 (9) | H3A—C3—H3B | 109.5 |
O1ii—Fe1—O1 | 110.75 (17) | H3A—C3—H3C | 109.5 |
O1i—Fe1—O1 | 108.84 (9) | H3B—C3—H3C | 109.5 |
O1i—Fe1—O1iii | 110.75 (17) | C4iv—P1—C4vi | 110.69 (9) |
O1iii—Fe1—O1 | 108.84 (9) | C4vi—P1—C4v | 110.69 (9) |
O1ii—Fe1—O1iii | 108.84 (9) | C4—P1—C4v | 110.69 (9) |
O1—Si1—C1 | 110.19 (17) | C4—P1—C4iv | 110.69 (9) |
O1—Si1—C2 | 110.71 (16) | C4—P1—C4vi | 107.06 (19) |
O1—Si1—C3 | 109.15 (19) | C4iv—P1—C4v | 107.06 (19) |
C1—Si1—C2 | 107.9 (2) | C5—C4—P1 | 121.2 (2) |
C1—Si1—C3 | 108.1 (2) | C5—C4—C9 | 118.9 (3) |
C3—Si1—C2 | 110.72 (18) | C9—C4—P1 | 119.6 (2) |
Si1—O1—Fe1 | 142.63 (14) | C4—C5—H5 | 119.7 |
Si1—C1—H1A | 109.5 | C6—C5—C4 | 120.6 (3) |
Si1—C1—H1B | 109.5 | C6—C5—H5 | 119.7 |
Si1—C1—H1C | 109.5 | C5—C6—H6 | 120.0 |
H1A—C1—H1B | 109.5 | C7—C6—C5 | 120.0 (3) |
H1A—C1—H1C | 109.5 | C7—C6—H6 | 120.0 |
H1B—C1—H1C | 109.5 | C6—C7—H7 | 120.0 |
Si1—C2—H2A | 109.5 | C6—C7—C8 | 119.9 (3) |
Si1—C2—H2B | 109.5 | C8—C7—H7 | 120.0 |
Si1—C2—H2C | 109.5 | C7—C8—H8 | 119.7 |
H2A—C2—H2B | 109.5 | C9—C8—C7 | 120.5 (3) |
H2A—C2—H2C | 109.5 | C9—C8—H8 | 119.7 |
H2B—C2—H2C | 109.5 | C4—C9—H9 | 120.0 |
Si1—C3—H3A | 109.5 | C8—C9—C4 | 120.0 (3) |
Si1—C3—H3B | 109.5 | C8—C9—H9 | 120.0 |
Si1—C3—H3C | 109.5 | ||
O1i—Fe1—O1—Si1 | −62.0 (2) | C4vi—P1—C4—C5 | 96.0 (3) |
O1ii—Fe1—O1—Si1 | 57.6 (3) | C4iv—P1—C4—C9 | 43.6 (2) |
O1iii—Fe1—O1—Si1 | 177.2 (3) | C4vi—P1—C4—C9 | −77.1 (3) |
C1—Si1—O1—Fe1 | −106.0 (3) | C4v—P1—C4—C9 | 162.2 (3) |
C2—Si1—O1—Fe1 | 13.3 (4) | C4—C5—C6—C7 | 0.7 (5) |
C3—Si1—O1—Fe1 | 135.4 (3) | C5—C4—C9—C8 | 1.6 (5) |
P1—C4—C5—C6 | −174.3 (2) | C5—C6—C7—C8 | −0.6 (6) |
P1—C4—C9—C8 | 174.9 (3) | C6—C7—C8—C9 | 1.1 (6) |
C4v—P1—C4—C5 | −24.8 (2) | C7—C8—C9—C4 | −1.6 (6) |
C4iv—P1—C4—C5 | −143.3 (3) | C9—C4—C5—C6 | −1.2 (5) |
Symmetry codes: (i) y, −x+1, −z+1; (ii) −x+1, −y+1, z; (iii) −y+1, x, −z+1; (iv) −y+1/2, x−1/2, −z+1/2; (v) y+1/2, −x+1/2, −z+1/2; (vi) −x+1, −y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O1iii | 0.94 | 2.47 | 3.359 (4) | 158 |
Symmetry code: (iii) −y+1, x, −z+1. |
Funding information
Funding for this research was provided by: University College of Pennsylvania State University (grant to Michael T. Hay).
References
Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hay, M. T. & Geib, S. J. (2007). Acta Cryst. E63, m445–m446. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hay, M. T., Geib, S. J. & Pettner, D. A. (2009). Polyhedron, 28, 2183–2186. Web of Science CSD CrossRef CAS Google Scholar
Hay, M. T., Hainaut, B. J. & Geib, S. J. (2003). Inorg. Chem. Commun. 6, 431–434. Web of Science CSD CrossRef CAS Google Scholar
Hay, M., Staples, R. & Lee, A. (2012). Acta Cryst. E68, m1186. CSD CrossRef IUCr Journals Google Scholar
Jana, T. K., Kumar, D. P., Pradhan, R., Dinda, S., Ghosh, P. N., Simonnet, C., Marrot, J., Imaz, I., Wattiaux, A., Fournès, L., Sutter, J., Sécheresse, F. & Bhattacharyya, R. (2009). Inorg. Chim. Acta, 362, 3583–3594. Web of Science CSD CrossRef CAS Google Scholar
Schmidbaur, H. (1964). Chem. Ber. 97, 842–848. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.