metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

catena-Poly[[tetra­kis­(μ-3,4,5-tri­meth­­oxy­benzoato-κ2O:O′)diruthenium(II,III)(RuRu)]-μ-chlorido] with an unknown solvent

aDepartamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain, and bCentro de Asistencia a la Investigación Difracción de Rayos X, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain
*Correspondence e-mail: rodgonza@ucm.es, bermejo@quim.ucm.es

Edited by T. J. Prior, University of Hull, England (Received 20 December 2017; accepted 12 January 2018; online 23 January 2018)

[Ru2Cl{μ-O2CC6H2-3,4,5-(OMe)3}4]n was prepared by the reaction of [Ru2Cl(μ-O2CCH3]n with 3,4,5-tri­meth­oxy­benzoic acid. The complex shows a paddlewheel structure with pairs of Ru atoms bridged by four carboxyl­ate ligands. The axial positions are occupied by shared chloride ions giving zigzag chains. These chains are disposed parallel to each other to give a three-dimensional arrangement packed only by van der Waals forces. The final refinement shows high values of residual non-modelled electronic density. Therefore, the SQUEEZE utility [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18] was used to remove its contribution to the overal intensity data. The electron density modelled by SQUEEZE is consistent with around eight water mol­ecules per unit cell.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The asymmetric unit of the title compound [Ru2Cl{μ-O2CC6H2-3,4,5-(OMe)3}4]n contains a complete diruthenium unit (Fig. 1[link]). The complex adopts a paddlewheel arrangement with two ruthenium atoms supported by four carboxyl­ate bridging ligands. In this structure, each Ru atom shows a distorted octa­hedral environment, with the four equatorial positions occupied by the oxygen atoms of the carboxyl­ate ligands, one axial position is occupied by one chloride ligand and the other one by the second Ru atom of the dimetallic unit. The cationic units [Ru2(μ-O2CR)4]+ are bridged by chloride anions giving infinite zigzag chains (–Ru—Ru—Cl–)n with an Ru1—Cl—Ru2 angle of 118.43 (7)° (Fig. 2[link]). This angle has been related to the magnetic properties of this type of compounds (Estiú et al., 1999[Estiú, G., Cukiernik, F. D., Maldivi, P. & Poizat, O. (1999). Inorg. Chem. 38, 3030-3039.]; Barral et al., 2000[Barral, M. C., Jiménez-Aparicio, R., Pérez-Quintanilla, D., Priego, J. L., Royer, E. C., Torres, M. R. & Urbanos, F. A. (2000). Inorg. Chem. 39, 65-70.]). The magnetic moment at room temperature for this compound is 4.49 µB, which is consistent with the presence of three unpaired electrons per dimer unit and supports an electronic configuration of σ2π4δ2(π*δ*)3 proposed by Norman et al. (1979[Norman, J. G., Renzoni, G. E. & Case, D. A. (1979). J. Am. Chem. Soc. 101, 5256-5267.]). According to the Ru—Cl—Ru angle, a weak degree of anti­ferromagnetic coupling between the dimetallic units (zJ = −0.66 cm−1) through the halide ligand is observed. The magnetic behaviour is also in accordance with a large zero-field splitting (D = 74.01 cm−1) which is always observed in compounds containing Ru25+ units (Aquino, 2004[Aquino, M. A. S. (2004). Coord. Chem. Rev. 248, 1025-1045.]; Cotton et al., 2005[Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, Springer, New York, 3rd edn. pp. 377-430.]; Barral et al., 2000[Barral, M. C., Jiménez-Aparicio, R., Pérez-Quintanilla, D., Priego, J. L., Royer, E. C., Torres, M. R. & Urbanos, F. A. (2000). Inorg. Chem. 39, 65-70.], and Delgado-Martínez et al., 2014[Delgado-Martínez, P., González-Prieto, R., Gómez-García, C. J., Jiménez-Aparicio, R., Priego, J. L. & Torres, M. R. (2014). Dalton Trans. 43, 3227-3237.]).

[Figure 1]
Figure 1
The structure of the dimeric unit of [Ru2Cl{μ-O2CC6H2-3,4,5-(OMe)3}4]n with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 2]
Figure 2
Zigzag chain of [Ru2Cl{μ-O2CC6H2-3,4,5-(OMe)3}4]n. Hydrogen atoms have been omitted for clarity.

The Ru—Ru bond length is 2.2930 (8) Å (Table 1[link]). This distance is very similar to those found in other analogous chlorido­tetra­carboxyl­atodiruthenium complexes (Thompson et al., 2015[Thompson, D. J., Barker Paredes, J. A., Villalobos, L., Ciclosi, M., Elsby, R. J., Liu, B., Fanwick, P. E. & Ren, T. (2015). Inorg. Chim. Acta, 424, 150-155.]; Delgado et al., 2012[Delgado, P., González-Prieto, R., Jiménez-Aparicio, R., Perles, J., Priego, J. L. & Torres, M. R. (2012). Dalton Trans. 41, 11866-11874.]) and in other diruthenium complexes containing the Ru25+ unit (Aquino, 2004[Aquino, M. A. S. (2004). Coord. Chem. Rev. 248, 1025-1045.]; Cotton et al., 2005[Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, Springer, New York, 3rd edn. pp. 377-430.]; Delgado-Martínez et al., 2014[Delgado-Martínez, P., González-Prieto, R., Gómez-García, C. J., Jiménez-Aparicio, R., Priego, J. L. & Torres, M. R. (2014). Dalton Trans. 43, 3227-3237.]). This distance is in accordance with the electronic configuration σ2π4δ2(π*δ*)3. The Ru—O and Ru—Cl distances are also similar to those in other [Ru2Cl(μ-O2CR)4]n complexes (Cotton et al., 2005[Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, Springer, New York, 3rd edn. pp. 377-430.]; Aquino, 2004[Aquino, M. A. S. (2004). Coord. Chem. Rev. 248, 1025-1045.]).

Table 1
Selected bond lengths (Å)

Ru1—Ru2 2.2930 (8)    
Ru1—Cl1 2.584 (2) Ru2—Cl1 2.561 (2)
Ru1—O1 2.015 (5) Ru2—O2 2.041 (5)
Ru1—O3 2.029 (5) Ru2—O4 1.996 (5)
Ru1—O5 2.035 (5) Ru2—O6 2.014 (5)
Ru1—O7 2.009 (5) Ru2—O8 2.026 (5)

In the packing of this compound, zigzag chains are disposed parallel to each other along the b axis, forming parallel layers (Fig. 3[link]). The shortest Ru⋯Ru distance between adjacent chains in the same layer is 12.144 Å (Ru2⋯Ru2). Every layer is displaced with respect to those above and below. The Ru2⋯Ru2 distances between different layers range from 14.450 to 18.472 Å. As a consequence of this arrangement, every chain is surrounded by six other chains (Fig. 3[link]). The presence of three bulky meth­oxy groups in the phenyl rings prevents the formation of ππ stacking inter­actions. Therefore, the packing of the chains in the solid state involves only van der Waals forces. Atoms O19, C29, O13 and C8 of each dimetallic unit are involved in the shortest distances between different chains. Hence, atoms O19 atom and C29 of each dimetallic unit are respectively connected (3.297 Å) with the C29 of another dimetallic unit belonging to the upper layer, and with atom O19 of another unit from the lower layer. Similarly, O13 and C8, are respectively connected with atoms C8 and O13 in two adjacent chains of the same layer (3.301 Å).

[Figure 3]
Figure 3
Crystal packing of zigzag chains of [Ru2Cl{μ-O2CC6H2-3,4,5-(OMe)3}4]n along b axis.

Synthesis and crystallization

0.32 g of 3,4,5-tri­meth­oxy­benzoic acid (1.5 mmol) were added to a suspension of chlorido­tetra­(acetato)­diruthenium(II,III) (Mitchell et al., 1973[Mitchell, R. W., Spencer, A. & Wilkinson, G. (1973). J. Chem. Soc. Dalton Trans. pp. 846-854.]) in (0.12 g, 0.25 mmol) in 8 mL of EtOH placed in a 23 mL Teflon-lined autoclave and stirred for several minutes to become homogenized. The reactor was closed and heated under a three step program consisting of: 2 h heating ramp up to 130°C; 24 h isotherm; and 24 h cooling down to room temperature. The brown crystals obtained were filtered and washed with cold ethanol (2 × 10 mL). Yield: 81%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Ru2Cl(C10H11O5)4]
Mr 1082.34
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 296
a, b, c (Å) 30.369 (4), 12.8816 (15), 23.898 (3)
V3) 9348.9 (19)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.78
Crystal size (mm) 0.57 × 0.16 × 0.06
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.809, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 67660, 8248, 3955
Rint 0.110
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.146, 1.00
No. of reflections 8248
No. of parameters 568
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.13, −1.56
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Disordered solvent mol­ecules were not modelled and the disordered density was taken into account using the SQUEEZE routine (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) in PLATON procedure. The final refinement show high values of residual non-modelled electronic density. Therefore, the SQUEEZE program was used to remove its contribution to the overall intensity data. An improvement was observed in all refinement parameters and the residuals when this procedure was applied. The electron density modelled by SQUEEZE is consistent with around eight water mol­ecules per unit cell.

Structural data


Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-Poly[[tetrakis(µ-3,4,5-trimethoxybenzoato-κ2O:O')diruthenium(II,III)(RuRu)]-µ-chlorido] top
Crystal data top
[Ru2Cl(C10H11O5)4]Dx = 1.538 Mg m3
Mr = 1082.34Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 5919 reflections
a = 30.369 (4) Åθ = 2.2–28.8°
b = 12.8816 (15) ŵ = 0.78 mm1
c = 23.898 (3) ÅT = 296 K
V = 9348.9 (19) Å3Prismatic, brown
Z = 80.57 × 0.16 × 0.06 mm
F(000) = 4392
Data collection top
Bruker SMART CCD area detector
diffractometer
8248 independent reflections
Radiation source: fine-focus sealed tube3955 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
phi and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 3633
Tmin = 0.809, Tmax = 1.000k = 1515
67660 measured reflectionsl = 2628
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.060P)2]
where P = (Fo2 + 2Fc2)/3
8248 reflections(Δ/σ)max = 0.001
568 parametersΔρmax = 1.13 e Å3
1 restraintΔρmin = 1.56 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The paper reports that unspecified disordered solvent molecules were not modelled and the disordered density was taken into account using the SQUEEZE/PLATON procedure.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.18915 (6)0.25846 (13)0.32602 (9)0.0304 (4)
C10.2851 (3)0.4519 (6)0.4239 (3)0.0283 (19)
C20.3048 (2)0.4172 (6)0.4780 (3)0.0290 (18)
C30.3362 (2)0.4745 (6)0.5055 (3)0.0299 (19)
H30.34450.53940.49220.036*
C40.3552 (3)0.4344 (6)0.5532 (3)0.034 (2)
C50.3435 (3)0.3388 (6)0.5739 (3)0.035 (2)
C60.3125 (3)0.2799 (6)0.5439 (3)0.034 (2)
C70.2935 (2)0.3188 (6)0.4965 (3)0.035 (2)
H70.27310.27940.47670.042*
C80.4091 (3)0.5705 (7)0.5582 (4)0.058 (3)
H8A0.42140.55060.52280.087*
H8B0.43210.59480.58240.087*
H8C0.38790.62500.55260.087*
C90.3380 (3)0.2996 (8)0.6705 (3)0.064 (3)
H9A0.32210.36370.67380.096*
H9B0.35740.29200.70200.096*
H9C0.31760.24270.66970.096*
C100.2865 (3)0.1077 (6)0.5256 (4)0.046 (2)
H10A0.25610.12420.51890.069*
H10B0.28860.03940.54140.069*
H10C0.30240.11000.49090.069*
C110.2195 (2)0.5570 (5)0.2290 (3)0.0280 (19)
C120.1985 (2)0.5946 (5)0.1765 (3)0.0314 (19)
C130.1691 (3)0.5325 (6)0.1475 (3)0.035 (2)
H130.16260.46580.15990.042*
C140.1493 (3)0.5723 (6)0.0990 (3)0.037 (2)
C150.1614 (3)0.6701 (6)0.0797 (3)0.039 (2)
C160.1900 (2)0.7339 (5)0.1107 (3)0.0305 (19)
C170.2089 (3)0.6946 (6)0.1584 (3)0.031 (2)
H170.22860.73480.17870.038*
C180.0946 (3)0.4377 (6)0.0962 (4)0.061 (3)
H18A0.11470.38210.10410.092*
H18B0.07150.41290.07220.092*
H18C0.08210.46260.13050.092*
C190.1659 (3)0.7038 (7)0.0174 (4)0.062 (3)
H19A0.18940.75340.01460.094*
H19B0.14770.72050.04900.094*
H19C0.17800.63550.02210.094*
C200.2154 (3)0.9047 (6)0.1275 (3)0.045 (2)
H20A0.19630.91520.15900.068*
H20B0.21980.96940.10840.068*
H20C0.24330.87860.14030.068*
C210.3234 (2)0.4248 (6)0.2806 (3)0.0269 (17)
C220.3634 (3)0.3786 (6)0.2550 (3)0.032 (2)
C230.3957 (2)0.4457 (7)0.2339 (3)0.042 (2)
H230.39240.51720.23690.051*
C240.4331 (3)0.4035 (8)0.2081 (4)0.052 (3)
C250.4395 (3)0.2964 (8)0.2058 (4)0.051 (3)
C260.4074 (3)0.2308 (7)0.2298 (4)0.052 (3)
C270.3701 (3)0.2723 (6)0.2537 (3)0.039 (2)
H270.34910.22830.26930.047*
C280.4613 (3)0.5706 (7)0.1853 (4)0.067 (3)
H28A0.43370.58930.16850.101*
H28B0.48500.60120.16430.101*
H28C0.46220.59550.22310.101*
C290.4717 (4)0.1919 (11)0.1365 (6)0.139 (6)
H29A0.44280.16170.13700.209*
H29B0.49350.13800.13880.209*
H29C0.47570.23020.10240.209*
C300.4201 (7)0.0684 (10)0.2756 (4)0.210 (11)
H30A0.43050.11290.30500.315*
H30B0.44130.01430.26910.315*
H30C0.39250.03820.28630.315*
C310.1826 (2)0.5890 (5)0.3726 (3)0.0251 (17)
C320.1425 (2)0.6304 (5)0.3984 (3)0.0291 (19)
C330.1124 (2)0.5638 (6)0.4209 (3)0.0309 (19)
H330.11740.49260.41930.037*
C340.0751 (2)0.5995 (6)0.4457 (3)0.037 (2)
C350.0677 (3)0.7063 (6)0.4503 (4)0.040 (2)
C360.0969 (3)0.7746 (7)0.4256 (4)0.042 (2)
C370.1348 (3)0.7361 (6)0.4004 (3)0.034 (2)
H370.15500.78180.38470.040*
C380.0480 (3)0.4276 (7)0.4637 (4)0.066 (3)
H38A0.05100.40950.42490.099*
H38B0.02250.39380.47890.099*
H38C0.07370.40570.48380.099*
C390.0340 (3)0.8084 (8)0.5231 (4)0.083 (4)
H39A0.06100.79410.54250.125*
H39B0.00960.79740.54780.125*
H39C0.03400.87910.51050.125*
C400.0666 (6)0.9225 (9)0.3840 (5)0.151 (7)
H40A0.07820.89780.34900.227*
H40B0.06920.99670.38550.227*
H40C0.03610.90340.38700.227*
O10.25943 (15)0.3916 (3)0.39925 (19)0.0250 (12)
O20.29430 (16)0.5435 (4)0.4056 (2)0.0304 (13)
O30.21139 (16)0.4668 (4)0.24674 (19)0.0299 (12)
O40.24580 (16)0.6197 (4)0.25375 (19)0.0283 (12)
O50.29024 (17)0.3650 (3)0.2874 (2)0.0307 (13)
O60.32388 (16)0.5200 (4)0.2931 (2)0.0318 (13)
O70.18248 (15)0.4935 (4)0.3587 (2)0.0291 (13)
O80.21573 (16)0.6462 (3)0.3643 (2)0.0299 (13)
O90.3877 (2)0.4821 (4)0.5834 (2)0.0535 (17)
O100.36295 (18)0.3004 (4)0.6205 (2)0.0468 (16)
O110.30471 (19)0.1809 (4)0.5634 (2)0.0489 (16)
O120.1180 (2)0.5214 (4)0.0687 (2)0.0524 (17)
O140.19586 (18)0.8311 (4)0.0900 (2)0.0422 (15)
O130.14050 (18)0.7068 (4)0.0317 (2)0.0453 (16)
O150.4659 (2)0.4608 (6)0.1850 (3)0.073 (2)
O160.4764 (2)0.2591 (6)0.1823 (4)0.097 (3)
O170.4146 (2)0.1260 (5)0.2271 (3)0.084 (2)
O180.04302 (18)0.5388 (4)0.4688 (2)0.0522 (17)
O190.03024 (18)0.7414 (5)0.4766 (3)0.0655 (19)
O200.0890 (2)0.8806 (5)0.4259 (3)0.065 (2)
Ru10.235314 (18)0.42687 (4)0.32304 (2)0.02245 (17)
Ru20.270333 (18)0.58420 (4)0.32884 (2)0.02336 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0342 (10)0.0132 (8)0.0437 (11)0.0025 (8)0.0027 (10)0.0003 (9)
C10.042 (5)0.019 (4)0.024 (5)0.013 (4)0.001 (4)0.003 (3)
C20.036 (5)0.033 (4)0.018 (4)0.011 (4)0.001 (4)0.000 (4)
C30.038 (5)0.031 (4)0.021 (5)0.016 (4)0.001 (4)0.001 (4)
C40.042 (5)0.036 (5)0.024 (5)0.001 (4)0.000 (4)0.002 (4)
C50.050 (6)0.038 (5)0.017 (5)0.006 (4)0.015 (4)0.004 (4)
C60.056 (6)0.039 (5)0.007 (4)0.004 (4)0.001 (4)0.001 (4)
C70.034 (5)0.046 (5)0.024 (5)0.001 (4)0.003 (4)0.003 (4)
C80.056 (6)0.047 (6)0.070 (7)0.007 (5)0.029 (5)0.003 (6)
C90.085 (8)0.081 (7)0.025 (6)0.002 (6)0.001 (6)0.003 (5)
C100.042 (5)0.045 (5)0.052 (6)0.033 (4)0.015 (5)0.003 (5)
C110.038 (5)0.023 (4)0.023 (4)0.002 (4)0.010 (4)0.009 (4)
C120.043 (5)0.018 (4)0.033 (5)0.004 (3)0.000 (4)0.012 (4)
C130.049 (5)0.030 (4)0.025 (5)0.005 (4)0.014 (4)0.003 (4)
C140.044 (5)0.033 (5)0.034 (5)0.006 (4)0.011 (4)0.003 (4)
C150.045 (6)0.044 (5)0.029 (5)0.005 (5)0.005 (4)0.005 (4)
C160.036 (5)0.026 (4)0.030 (5)0.003 (4)0.004 (4)0.007 (4)
C170.043 (5)0.027 (4)0.024 (5)0.006 (4)0.006 (4)0.007 (4)
C180.071 (7)0.039 (6)0.074 (7)0.026 (5)0.028 (6)0.006 (5)
C190.077 (7)0.075 (7)0.035 (6)0.005 (6)0.007 (6)0.022 (5)
C200.071 (6)0.036 (5)0.028 (5)0.009 (5)0.000 (5)0.005 (4)
C210.031 (4)0.026 (4)0.024 (4)0.004 (4)0.001 (4)0.007 (4)
C220.031 (5)0.040 (5)0.025 (5)0.002 (4)0.001 (4)0.009 (4)
C230.030 (5)0.047 (5)0.051 (6)0.001 (4)0.005 (4)0.005 (5)
C240.044 (6)0.063 (7)0.049 (6)0.008 (5)0.005 (5)0.003 (5)
C250.028 (5)0.067 (7)0.059 (7)0.011 (5)0.016 (5)0.011 (6)
C260.063 (7)0.049 (6)0.044 (6)0.018 (5)0.003 (5)0.020 (5)
C270.046 (5)0.043 (6)0.029 (5)0.009 (4)0.003 (4)0.004 (4)
C280.053 (6)0.069 (7)0.080 (8)0.017 (6)0.015 (6)0.003 (6)
C290.154 (14)0.142 (13)0.121 (13)0.039 (11)0.080 (11)0.044 (11)
C300.47 (3)0.091 (11)0.074 (11)0.098 (16)0.056 (16)0.028 (9)
C310.035 (5)0.023 (4)0.018 (4)0.000 (4)0.003 (4)0.002 (3)
C320.029 (5)0.024 (4)0.034 (5)0.002 (4)0.001 (4)0.000 (4)
C330.023 (4)0.032 (5)0.038 (5)0.005 (4)0.001 (4)0.002 (4)
C340.029 (5)0.041 (5)0.041 (5)0.009 (4)0.005 (4)0.001 (4)
C350.030 (5)0.038 (5)0.054 (6)0.008 (4)0.003 (4)0.009 (5)
C360.037 (5)0.042 (6)0.046 (6)0.012 (4)0.019 (5)0.007 (4)
C370.033 (5)0.033 (5)0.035 (5)0.000 (4)0.003 (4)0.002 (4)
C380.066 (7)0.044 (6)0.089 (9)0.025 (5)0.024 (6)0.009 (6)
C390.089 (9)0.078 (8)0.083 (9)0.006 (7)0.037 (7)0.040 (7)
C400.31 (2)0.076 (9)0.073 (10)0.082 (12)0.025 (12)0.013 (8)
O10.035 (3)0.020 (3)0.020 (3)0.007 (2)0.001 (2)0.002 (2)
O20.040 (3)0.029 (3)0.023 (3)0.001 (3)0.011 (3)0.004 (2)
O30.040 (3)0.029 (3)0.020 (3)0.006 (3)0.001 (2)0.007 (2)
O40.035 (3)0.026 (3)0.023 (3)0.007 (2)0.009 (3)0.005 (2)
O50.040 (3)0.020 (3)0.033 (3)0.003 (3)0.005 (3)0.007 (2)
O60.039 (3)0.022 (3)0.034 (3)0.004 (3)0.007 (3)0.001 (3)
O70.026 (3)0.028 (3)0.033 (3)0.002 (2)0.002 (2)0.010 (2)
O80.031 (3)0.021 (3)0.037 (3)0.004 (2)0.005 (3)0.005 (2)
O90.068 (4)0.047 (4)0.045 (4)0.006 (3)0.025 (4)0.000 (3)
O100.054 (4)0.056 (4)0.030 (4)0.006 (3)0.015 (3)0.009 (3)
O110.060 (4)0.048 (4)0.039 (4)0.008 (3)0.009 (3)0.013 (3)
O120.074 (4)0.047 (4)0.036 (4)0.019 (3)0.026 (3)0.005 (3)
O140.063 (4)0.033 (3)0.031 (3)0.011 (3)0.015 (3)0.017 (3)
O130.056 (4)0.053 (4)0.028 (4)0.004 (3)0.014 (3)0.011 (3)
O150.045 (4)0.094 (6)0.081 (5)0.006 (4)0.026 (4)0.014 (5)
O160.072 (5)0.110 (7)0.110 (7)0.030 (5)0.037 (5)0.027 (6)
O170.100 (6)0.049 (4)0.104 (7)0.033 (4)0.004 (5)0.023 (4)
O180.034 (3)0.051 (4)0.071 (5)0.005 (3)0.022 (3)0.004 (4)
O190.034 (4)0.078 (5)0.085 (5)0.012 (4)0.006 (4)0.035 (4)
O200.075 (5)0.029 (4)0.091 (6)0.020 (3)0.025 (4)0.030 (4)
Ru10.0298 (3)0.0166 (3)0.0210 (3)0.0012 (3)0.0000 (3)0.0018 (3)
Ru20.0297 (4)0.0187 (3)0.0217 (4)0.0012 (3)0.0000 (3)0.0025 (3)
Geometric parameters (Å, º) top
Ru1—Ru22.2930 (8)C21—O61.263 (8)
Ru2—Cl1i2.5608 (18)C22—C231.400 (10)
Cl1—Ru12.5838 (18)C22—C271.384 (10)
Cl1—Ru2ii2.5607 (18)C23—H230.9300
C1—C21.493 (10)C23—C241.401 (11)
C1—O11.249 (8)C24—C251.395 (12)
C1—O21.289 (8)C24—O151.357 (10)
C2—C31.375 (10)C25—C261.411 (12)
C2—C71.384 (10)C25—O161.341 (10)
C3—H30.9300C26—C271.378 (11)
C3—C41.378 (10)C26—O171.369 (10)
C4—C51.374 (10)C27—H270.9300
C4—O91.367 (9)C28—H28A0.9600
C5—C61.405 (10)C28—H28B0.9600
C5—O101.354 (8)C28—H28C0.9600
C6—C71.366 (10)C28—O151.421 (11)
C6—O111.378 (9)C29—H29A0.9600
C7—H70.9300C29—H29B0.9600
C8—H8A0.9600C29—H29C0.9600
C8—H8B0.9600C29—O161.402 (13)
C8—H8C0.9600C30—H30A0.9600
C8—O91.444 (9)C30—H30B0.9600
C9—H9A0.9600C30—H30C0.9600
C9—H9B0.9600C30—O171.386 (5)
C9—H9C0.9600C31—C321.465 (10)
C9—O101.416 (9)C31—O71.275 (8)
C10—H10A0.9600C31—O81.263 (8)
C10—H10B0.9600C32—C331.366 (10)
C10—H10C0.9600C32—C371.382 (9)
C10—O111.417 (9)C33—H330.9300
C11—C121.488 (10)C33—C341.357 (10)
C11—O31.261 (8)C34—C351.398 (11)
C11—O41.281 (8)C34—O181.366 (9)
C12—C131.386 (10)C35—C361.380 (11)
C12—C171.395 (9)C35—O191.376 (9)
C13—H130.9300C36—C371.391 (10)
C13—C141.402 (10)C36—O201.387 (9)
C14—C151.392 (11)C37—H370.9300
C14—O121.364 (9)C38—H38A0.9600
C15—C161.406 (10)C38—H38B0.9600
C15—O131.393 (9)C38—H38C0.9600
C16—C171.373 (9)C38—O181.446 (9)
C16—O141.357 (8)C39—H39A0.9600
C17—H170.9300C39—H39B0.9600
C18—H18A0.9600C39—H39C0.9600
C18—H18B0.9600C39—O191.411 (10)
C18—H18C0.9600C40—H40A0.9600
C18—O121.448 (9)C40—H40B0.9600
C19—H19A0.9600C40—H40C0.9600
C19—H19B0.9600C40—O201.328 (12)
C19—H19C0.9600O1—Ru12.015 (5)
C19—O131.405 (9)O2—Ru22.041 (5)
C20—H20A0.9600O3—Ru12.029 (5)
C20—H20B0.9600O4—Ru21.996 (5)
C20—H20C0.9600O5—Ru12.035 (5)
C20—O141.435 (8)O6—Ru22.014 (5)
C21—C221.487 (10)O7—Ru12.009 (5)
C21—O51.277 (8)O8—Ru22.026 (5)
Ru2ii—Cl1—Ru1118.43 (7)O15—C28—H28B109.5
O1—C1—C2118.1 (7)O15—C28—H28C109.5
O2—C1—C2118.8 (7)H29A—C29—H29B109.5
O2—C1—O1123.0 (7)H29A—C29—H29C109.5
C3—C2—C1122.1 (7)H29B—C29—H29C109.5
C3—C2—C7120.6 (7)O16—C29—H29A109.5
C7—C2—C1116.9 (7)O16—C29—H29B109.5
C2—C3—H3120.5O16—C29—H29C109.5
C2—C3—C4119.0 (7)H30A—C30—H30B109.5
C4—C3—H3120.5H30A—C30—H30C109.5
C5—C4—C3121.7 (8)H30B—C30—H30C109.5
O9—C4—C3124.7 (7)O17—C30—H30A109.5
O9—C4—C5113.6 (7)O17—C30—H30B109.5
C4—C5—C6118.3 (7)O17—C30—H30C109.5
O10—C5—C4120.7 (7)O7—C31—C32117.3 (7)
O10—C5—C6120.9 (7)O8—C31—C32121.0 (6)
C7—C6—C5120.5 (7)O8—C31—O7121.6 (7)
O11—C6—C5116.3 (7)C33—C32—C31119.6 (7)
O11—C6—C7123.2 (7)C33—C32—C37119.4 (7)
C2—C7—H7120.1C37—C32—C31121.0 (7)
C6—C7—C2119.8 (8)C32—C33—H33119.4
C6—C7—H7120.1C32—C33—C34121.2 (7)
H8A—C8—H8B109.5C34—C33—H33119.4
H8A—C8—H8C109.5C33—C34—C35120.1 (8)
H8B—C8—H8C109.5O18—C34—C33125.3 (7)
O9—C8—H8A109.5O18—C34—C35114.6 (7)
O9—C8—H8B109.5C36—C35—C34119.4 (8)
O9—C8—H8C109.5C36—C35—O19121.1 (8)
H9A—C9—H9B109.5O19—C35—C34119.4 (8)
H9A—C9—H9C109.5C35—C36—C37119.3 (8)
H9B—C9—H9C109.5C35—C36—O20121.0 (8)
O10—C9—H9A109.5C37—C36—O20119.7 (8)
O10—C9—H9B109.5C32—C37—H37119.8
O10—C9—H9C109.5C36—C37—C32120.4 (8)
H10A—C10—H10B109.5C36—C37—H37119.8
H10A—C10—H10C109.5H38A—C38—H38B109.5
H10B—C10—H10C109.5H38A—C38—H38C109.5
O11—C10—H10A109.5H38B—C38—H38C109.5
O11—C10—H10B109.5O18—C38—H38A109.5
O11—C10—H10C109.5O18—C38—H38B109.5
O3—C11—C12120.0 (7)O18—C38—H38C109.5
O3—C11—O4123.2 (7)H39A—C39—H39B109.5
O4—C11—C12116.8 (6)H39A—C39—H39C109.5
C13—C12—C11120.7 (6)H39B—C39—H39C109.5
C17—C12—C11117.8 (7)O19—C39—H39A109.5
C17—C12—C13121.5 (7)O19—C39—H39B109.5
C12—C13—H13120.7O19—C39—H39C109.5
C12—C13—C14118.7 (7)H40A—C40—H40B109.5
C14—C13—H13120.7H40A—C40—H40C109.5
C15—C14—C13119.4 (8)H40B—C40—H40C109.5
O12—C14—C13124.2 (7)O20—C40—H40A109.5
O12—C14—C15116.3 (7)O20—C40—H40B109.5
C14—C15—C16121.2 (7)O20—C40—H40C109.5
C14—C15—O13117.3 (7)C1—O1—Ru1120.9 (4)
O13—C15—C16121.1 (7)C1—O2—Ru2117.6 (5)
C17—C16—C15118.7 (7)C11—O3—Ru1117.7 (5)
O14—C16—C15115.3 (7)C11—O4—Ru2120.2 (4)
O14—C16—C17126.0 (7)C21—O5—Ru1117.6 (4)
C12—C17—C16120.3 (8)C21—O6—Ru2119.3 (5)
C12—C17—H17119.8C31—O7—Ru1121.4 (5)
C16—C17—H17119.8C31—O8—Ru2119.2 (4)
H18A—C18—H18B109.5C4—O9—C8117.3 (6)
H18A—C18—H18C109.5C5—O10—C9117.6 (7)
H18B—C18—H18C109.5C6—O11—C10117.9 (6)
O12—C18—H18A109.5C14—O12—C18117.3 (6)
O12—C18—H18B109.5C16—O14—C20115.8 (6)
O12—C18—H18C109.5C15—O13—C19115.3 (6)
H19A—C19—H19B109.5C24—O15—C28117.9 (8)
H19A—C19—H19C109.5C25—O16—C29117.6 (9)
H19B—C19—H19C109.5C30—O17—C26120.4 (9)
O13—C19—H19A109.5C34—O18—C38117.3 (6)
O13—C19—H19B109.5C35—O19—C39119.6 (7)
O13—C19—H19C109.5C40—O20—C36119.0 (8)
H20A—C20—H20B109.5O1—Ru1—Cl189.03 (14)
H20A—C20—H20C109.5O1—Ru1—O3178.32 (19)
H20B—C20—H20C109.5O1—Ru1—O589.54 (19)
O14—C20—H20A109.5O1—Ru1—O790.20 (19)
O14—C20—H20B109.5O1—Ru1—Ru288.62 (13)
O14—C20—H20C109.5O3—Ru1—Cl192.49 (14)
O5—C21—C22117.2 (7)O3—Ru1—Ru289.79 (13)
O5—C21—O6124.4 (7)O5—Ru1—Cl197.33 (14)
O6—C21—C22118.4 (7)O5—Ru1—O391.0 (2)
C23—C22—C21118.3 (7)O5—Ru1—Ru289.49 (14)
C27—C22—C21121.6 (7)O7—Ru1—Cl185.04 (14)
C27—C22—C23120.0 (8)O7—Ru1—O389.2 (2)
C22—C23—H23120.4O7—Ru1—O5177.61 (19)
C24—C23—C22119.1 (8)O7—Ru1—Ru288.13 (13)
C24—C23—H23120.4Ru2—Ru1—Cl1172.77 (5)
C25—C24—C23120.9 (9)O2—Ru2—Cl1i94.43 (14)
O15—C24—C23124.2 (9)O2—Ru2—Ru189.60 (13)
O15—C24—C25114.8 (9)O4—Ru2—Cl1i87.41 (14)
C26—C25—C24118.6 (8)O4—Ru2—O2178.16 (19)
O16—C25—C24119.2 (9)O4—Ru2—O690.8 (2)
O16—C25—C26122.2 (9)O4—Ru2—O888.9 (2)
C25—C26—C27120.4 (8)O4—Ru2—Ru188.57 (13)
C25—C26—O17117.4 (8)O6—Ru2—Cl1i87.77 (14)
O17—C26—C27122.2 (9)O6—Ru2—O289.3 (2)
C22—C27—H27119.6O6—Ru2—O8178.8 (2)
C26—C27—C22120.8 (8)O6—Ru2—Ru189.18 (14)
C26—C27—H27119.6O8—Ru2—Cl1i93.37 (14)
H28A—C28—H28B109.5O8—Ru2—O291.0 (2)
H28A—C28—H28C109.5O8—Ru2—Ru189.66 (14)
H28B—C28—H28C109.5Ru1—Ru2—Cl1i174.92 (6)
O15—C28—H28A109.5
Cl1—Ru1—Ru2—Cl1i146.0 (6)C31—O7—Ru1—O188.6 (5)
Cl1—Ru1—Ru2—O271.6 (4)C31—O7—Ru1—O389.8 (5)
Cl1—Ru1—Ru2—O4108.3 (4)C31—O7—Ru1—O55 (5)
Cl1—Ru1—Ru2—O6160.9 (4)C31—O7—Ru1—Ru20.0 (5)
Cl1—Ru1—Ru2—O819.4 (4)C31—O8—Ru2—Cl1i176.5 (5)
C1—C2—C3—C4175.4 (7)C31—O8—Ru2—O289.0 (5)
C1—C2—C7—C6175.9 (7)C31—O8—Ru2—O489.2 (5)
C1—O1—Ru1—Cl1177.2 (5)C31—O8—Ru2—O614 (10)
C1—O1—Ru1—O322 (7)C31—O8—Ru2—Ru10.6 (5)
C1—O1—Ru1—O585.5 (5)C32—C31—O7—Ru1179.9 (5)
C1—O1—Ru1—O792.1 (5)C32—C31—O8—Ru2179.6 (5)
C1—O1—Ru1—Ru24.0 (5)C32—C33—C34—C352.2 (13)
C1—O2—Ru2—Cl1i174.3 (5)C32—C33—C34—O18179.5 (7)
C1—O2—Ru2—O47 (7)C33—C32—C37—C360.8 (12)
C1—O2—Ru2—O686.6 (5)C33—C34—C35—C365.0 (13)
C1—O2—Ru2—O892.2 (5)C33—C34—C35—O19178.6 (7)
C1—O2—Ru2—Ru12.6 (5)C33—C34—O18—C383.7 (12)
C2—C1—O1—Ru1174.9 (5)C34—C35—C36—C374.8 (13)
C2—C1—O2—Ru2175.8 (5)C34—C35—C36—O20175.5 (8)
C2—C3—C4—C50.1 (11)C34—C35—O19—C39122.6 (10)
C2—C3—C4—O9178.0 (7)C35—C34—O18—C38177.9 (8)
C3—C2—C7—C62.7 (11)C35—C36—C37—C322.0 (12)
C3—C4—C5—C62.4 (12)C35—C36—O20—C4090.2 (13)
C3—C4—C5—O10179.3 (7)C36—C35—O19—C3961.1 (12)
C3—C4—O9—C812.1 (11)C37—C32—C33—C340.7 (12)
C4—C5—C6—C72.2 (12)C37—C36—O20—C4090.1 (13)
C4—C5—C6—O11174.3 (7)O1—C1—C2—C3174.3 (7)
C4—C5—O10—C9106.1 (9)O1—C1—C2—C71.2 (10)
C5—C4—O9—C8166.2 (7)O1—C1—O2—Ru26.5 (9)
C5—C6—C7—C20.3 (12)O1—Ru1—Ru2—Cl1i142.9 (6)
C5—C6—O11—C10158.6 (7)O1—Ru1—Ru2—O20.52 (19)
C6—C5—O10—C977.1 (10)O1—Ru1—Ru2—O4179.3 (2)
C7—C2—C3—C42.5 (11)O1—Ru1—Ru2—O689.80 (19)
C7—C6—O11—C1017.9 (11)O1—Ru1—Ru2—O890.48 (19)
C11—C12—C13—C14178.3 (7)O2—C1—C2—C37.8 (11)
C11—C12—C17—C16178.9 (7)O2—C1—C2—C7179.1 (7)
C11—O3—Ru1—Cl1169.2 (5)O2—C1—O1—Ru17.3 (10)
C11—O3—Ru1—O114 (7)O3—C11—C12—C132.0 (11)
C11—O3—Ru1—O593.4 (5)O3—C11—C12—C17179.4 (7)
C11—O3—Ru1—O784.2 (5)O3—C11—O4—Ru28.1 (10)
C11—O3—Ru1—Ru24.0 (5)O3—Ru1—Ru2—Cl1i37.6 (6)
C11—O4—Ru2—Cl1i179.4 (5)O3—Ru1—Ru2—O2180.0 (2)
C11—O4—Ru2—O21 (7)O3—Ru1—Ru2—O40.1 (2)
C11—O4—Ru2—O692.8 (5)O3—Ru1—Ru2—O690.7 (2)
C11—O4—Ru2—O886.0 (5)O3—Ru1—Ru2—O889.00 (19)
C11—O4—Ru2—Ru13.7 (5)O4—C11—C12—C13179.0 (7)
C12—C11—O3—Ru1173.0 (5)O4—C11—C12—C170.4 (10)
C12—C11—O4—Ru2173.0 (5)O4—C11—O3—Ru18.0 (9)
C12—C13—C14—C153.5 (12)O5—C21—C22—C23163.9 (7)
C12—C13—C14—O12176.1 (7)O5—C21—C22—C2718.8 (11)
C13—C12—C17—C160.3 (12)O5—C21—O6—Ru22.2 (10)
C13—C14—C15—C166.2 (12)O5—Ru1—Ru2—Cl1i53.4 (6)
C13—C14—C15—O13179.4 (7)O5—Ru1—Ru2—O289.02 (19)
C13—C14—O12—C1819.1 (12)O5—Ru1—Ru2—O491.1 (2)
C14—C15—C16—C175.5 (12)O5—Ru1—Ru2—O60.3 (2)
C14—C15—C16—O14173.9 (7)O5—Ru1—Ru2—O8180.0 (2)
C14—C15—O13—C19104.6 (9)O6—C21—C22—C2314.8 (11)
C15—C14—O12—C18160.5 (8)O6—C21—C22—C27162.5 (7)
C15—C16—C17—C122.2 (12)O6—C21—O5—Ru11.9 (9)
C15—C16—O14—C20164.8 (7)O7—C31—C32—C3318.4 (11)
C16—C15—O13—C1982.3 (10)O7—C31—C32—C37161.6 (7)
C17—C12—C13—C140.3 (12)O7—C31—O8—Ru20.8 (9)
C17—C16—O14—C2014.5 (11)O7—Ru1—Ru2—Cl1i126.8 (6)
C21—C22—C23—C24178.1 (7)O7—Ru1—Ru2—O290.8 (2)
C21—C22—C27—C26180.0 (7)O7—Ru1—Ru2—O489.1 (2)
C21—O5—Ru1—Cl1176.9 (5)O7—Ru1—Ru2—O6180.0 (2)
C21—O5—Ru1—O188.0 (5)O7—Ru1—Ru2—O80.2 (2)
C21—O5—Ru1—O390.4 (5)O8—C31—C32—C33162.0 (7)
C21—O5—Ru1—O74 (5)O8—C31—C32—C3718.1 (11)
C21—O5—Ru1—Ru20.6 (5)O8—C31—O7—Ru10.5 (9)
C21—O6—Ru2—Cl1i177.2 (5)O9—C4—C5—C6175.9 (7)
C21—O6—Ru2—O288.3 (5)O9—C4—C5—O101.0 (11)
C21—O6—Ru2—O489.8 (5)O10—C5—C6—C7179.1 (7)
C21—O6—Ru2—O815 (10)O10—C5—C6—O112.5 (11)
C21—O6—Ru2—Ru11.3 (5)O11—C6—C7—C2176.6 (7)
C22—C21—O5—Ru1179.5 (5)O12—C14—C15—C16173.5 (7)
C22—C21—O6—Ru2179.2 (5)O12—C14—C15—O130.3 (11)
C22—C23—C24—C253.3 (14)O14—C16—C17—C12177.1 (7)
C22—C23—C24—O15178.4 (8)O13—C15—C16—C17178.4 (7)
C23—C22—C27—C262.7 (13)O13—C15—C16—O141.0 (11)
C23—C24—C25—C260.3 (15)O15—C24—C25—C26178.8 (8)
C23—C24—C25—O16178.0 (8)O15—C24—C25—O160.5 (14)
C23—C24—O15—C282.3 (14)O16—C25—C26—C27179.8 (9)
C24—C25—C26—C271.5 (14)O16—C25—C26—O171.7 (14)
C24—C25—C26—O17179.9 (9)O17—C26—C27—C22178.8 (8)
C24—C25—O16—C29121.2 (12)O18—C34—C35—C36176.5 (7)
C25—C24—O15—C28179.3 (9)O18—C34—C35—O190.1 (12)
C25—C26—C27—C220.4 (13)O19—C35—C36—C37178.8 (7)
C25—C26—O17—C30116.6 (14)O19—C35—C36—O200.9 (13)
C26—C25—O16—C2960.6 (15)O20—C36—C37—C32178.3 (7)
C27—C22—C23—C244.5 (12)Ru2ii—Cl1—Ru1—O163.82 (15)
C27—C26—O17—C3064.9 (16)Ru2ii—Cl1—Ru1—O3116.89 (16)
C31—C32—C33—C34179.3 (7)Ru2ii—Cl1—Ru1—O525.58 (17)
C31—C32—C37—C36179.2 (7)Ru2ii—Cl1—Ru1—O7154.10 (16)
C31—O7—Ru1—Cl1177.6 (5)Ru2ii—Cl1—Ru1—Ru2134.9 (4)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z.
Selected bond lengths (Å) top
Ru1—Ru22.2930 (8)
Ru1—Cl12.584 (2)Ru2—Cl12.561 (2)
Ru1—O12.015 (5)Ru2—O22.041 (5)
Ru1—O32.029 (5)Ru2—O41.996 (5)
Ru1—O52.035 (5)Ru2—O62.014 (5)
Ru1—O72.009 (5)Ru2—O82.026 (5)
 

Funding information

This work was financially supported by Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación (Project No. CTQ2015–63858-P).

References

First citationAquino, M. A. S. (2004). Coord. Chem. Rev. 248, 1025–1045.  Web of Science CrossRef CAS Google Scholar
First citationBarral, M. C., Jiménez-Aparicio, R., Pérez-Quintanilla, D., Priego, J. L., Royer, E. C., Torres, M. R. & Urbanos, F. A. (2000). Inorg. Chem. 39, 65–70.  CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, Springer, New York, 3rd edn. pp. 377–430.  Google Scholar
First citationDelgado, P., González-Prieto, R., Jiménez-Aparicio, R., Perles, J., Priego, J. L. & Torres, M. R. (2012). Dalton Trans. 41, 11866–11874.  CSD CrossRef CAS PubMed Google Scholar
First citationDelgado-Martínez, P., González-Prieto, R., Gómez-García, C. J., Jiménez-Aparicio, R., Priego, J. L. & Torres, M. R. (2014). Dalton Trans. 43, 3227–3237.  PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEstiú, G., Cukiernik, F. D., Maldivi, P. & Poizat, O. (1999). Inorg. Chem. 38, 3030–3039.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMitchell, R. W., Spencer, A. & Wilkinson, G. (1973). J. Chem. Soc. Dalton Trans. pp. 846–854.  CrossRef Google Scholar
First citationNorman, J. G., Renzoni, G. E. & Case, D. A. (1979). J. Am. Chem. Soc. 101, 5256–5267.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThompson, D. J., Barker Paredes, J. A., Villalobos, L., Ciclosi, M., Elsby, R. J., Liu, B., Fanwick, P. E. & Ren, T. (2015). Inorg. Chim. Acta, 424, 150–155.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]