organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

9-(4-Formyl­phen­yl)-3,3,6,6-tetra­methyl-3,4,5,6,7,9-hexa­hydro-1H-xanthene-1,8(2H)-dione

aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India, bDepartment of Chemistry, Government Arts College for Women, Pudukottai 622 001, Tamil Nadu, India, and cDepartment of Chemistry, Government College of Engineering, Sengipatti, Thanjavur 613 402, Tamil Nadu, India
*Correspondence e-mail: saisukanyashri@gmail.com

Edited by H. Ishida, Okayama University, Japan (Received 7 January 2018; accepted 17 January 2018; online 31 January 2018)

In the title compound, C24H26O4, the central 4H-pyran ring adopts a flattened boat conformation, with the mean and maximum deviations of the ring being 0.0582 (6) and 0.1012 (3) Å, respectively. The two cyclo­hexenone rings on opposite sides of the pyran ring each adopt an envelope conformation; the C atom bearing a dimethyl substituent is the flap atom in each case. The mean planes of the pyran ring and the substituent benzene ring subtend a dihedral angle of 86.45 (2)°. In the crystal, mol­ecules are linked into inversion dimers via pairs of C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Xanthene is the parent compound of a number of naturally occurring substances and some synthetic dyes. Xanthene derivatives (Reddy et al., 2009[Reddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916.]; Mehdi et al., 2011[Mehdi, S. H., Sulaiman, O., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1719-o1720.]; Rizwana Begum et al., 2014[Rizwana Begum, S., Hema, R., Sumathi, G., Valliappan, R. & Srinivasan, N. (2014). Acta Cryst. E70, o276-o277.]; Sughanya & Sureshbabu, 2012[Sughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o1060.]; Sureshbabu & Sughanya, 2013[Sureshbabu, N. & Sughanya, V. (2013). Acta Cryst. E69, o281.]) are used as dyes (Hilderbrand & Weissleder, 2007[Hilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383-4385.]), possess biological properties such as anti­bacterial, anti­viral and anti-inflammatory (Dimmock et al., 1988[Dimmock, J. R., Raghavan, S. K. & Bigam, G. E. (1988). Eur. J. Med. Chem. 23, 111-117.]) activities and are used in medicine. Ehretianone, a quinonoid xanthene, has been reported to possess anti-snake venom activity (Selvanayagam et al., 1996[Selvanayagam, Z. E., Gnanavendhan, S. G., Balakrishna, K., Rao, R. B., Sivaraman, J., Subramanian, K., Puri, R. & Puri, R. K. (1996). J. Nat. Prod. 59, 664-667.]; Lambert et al., 1997[Lambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K. E. B. & Thomas, G. J. (1997). PCT Int. Appl. WO 9706178.]; Poupelin et al., 1978[Poupelin, J. P., Saint-Ruf, G., Foussard-Blanpin, O., Narcisse, G., Uchida- Ernouf, G. & Lacroix, R. (1978). Eur. J. Med. Chem. 13, 67-71.]).

In the title mol­ecule (Fig. 1[link]), the central pyran ring B (O3/C5–C9) is almost planar with a mean deviation of 0.0582 (6) Å from the mean plane and a maximum deviation of 0.1012 (3) Å for C7. Atoms O3 and C7 are displaced out of this mean plane, which means that the ring may also be described as having a highly flattened boat conformation. The cyclo­hexenone rings A (C1-C6) and C (C8–C13) both adopt envelope conformations, with atoms C3 and C11 being the respective flap atoms deviating from the ring plane by 0.3256 (4) and 0.3211 (2) Å, respectively. Rings A, B and C show total puckering amplitudes Q(T) of 0.4611 (4), 0.1558 (2) and 0.4565 (2) Å, respectively, and the puckering parameters are φ = 116.1 (2)° and θ = 54.59 (13)° for A, φ = 185.54 (8)° and θ = 77.49 (2)° for B, and φ = −2.12 (2)° and θ = 119.64 (2) ° for C. The benzene substituent (C18–C23) and the pyran ring form a dihedral angle of 86.45 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

In the crystal, the mol­ecules are linked into inversion dimers via pairs of C—H⋯O hydrogen bonds (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯O2i 0.93 2.46 3.380 (3) 171
Symmetry code: (i) -x+1, -y, -z+1.

Synthesis and crystallization

A mixture of terephaldehyde (0.402 g, 3 mmol) and 5,5-di­methyl­cyclo­hexane-1,3-dione (0.84 g, 6 mmol) was dissolved in 25 ml of ethanol. To this solution about 15 drops of concentrated hydro­chloric acid were added and the content was refluxed for 30 minutes. The reaction was monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and stirred well. The formed precipitate was filtered and dried. Colourless single crystals suitable for X-ray diffraction were obtained from an ethanol solution at room temperature (m.p. 481 K, yield 92%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H26O4
Mr 378.45
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 296
a, b, c (Å) 15.1185 (14), 11.0273 (9), 24.141 (2)
V3) 4024.8 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.20 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.686, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 69441, 3540, 1947
Rint 0.099
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.140, 1.12
No. of reflections 3540
No. of parameters 258
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.16
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

9-(4-Formylphenyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione top
Crystal data top
C24H26O4Dx = 1.249 Mg m3
Mr = 378.45Melting point: 481 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
a = 15.1185 (14) ÅCell parameters from 7686 reflections
b = 11.0273 (9) Åθ = 2.3–22.5°
c = 24.141 (2) ŵ = 0.08 mm1
V = 4024.8 (6) Å3T = 296 K
Z = 8Block, colourless
F(000) = 16160.20 × 0.20 × 0.15 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3540 independent reflections
Radiation source: fine-focus sealed tube1947 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
ω and φ scanθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1717
Tmin = 0.686, Tmax = 0.745k = 1313
69441 measured reflectionsl = 2828
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0505P)2 + 1.1747P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.140(Δ/σ)max = 0.001
S = 1.12Δρmax = 0.19 e Å3
3540 reflectionsΔρmin = 0.15 e Å3
258 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0032 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.69613 (17)0.3599 (2)0.63271 (11)0.0520 (7)
C20.74775 (18)0.4377 (2)0.67209 (11)0.0595 (7)
H2A0.78020.49770.65090.071*
H2B0.79070.38730.69110.071*
C30.69178 (17)0.5031 (2)0.71530 (11)0.0522 (7)
C40.61917 (17)0.5724 (2)0.68500 (11)0.0500 (7)
H4A0.57700.60330.71180.060*
H4B0.64510.64120.66590.060*
C50.57195 (16)0.4947 (2)0.64411 (10)0.0422 (6)
C60.60483 (16)0.3958 (2)0.61981 (9)0.0419 (6)
C70.55205 (16)0.3201 (2)0.57950 (10)0.0452 (6)
H70.58830.30760.54630.054*
C80.47054 (16)0.3896 (2)0.56266 (9)0.0420 (6)
C90.44183 (16)0.4876 (2)0.59004 (10)0.0422 (6)
C100.35954 (17)0.5563 (2)0.57806 (10)0.0482 (7)
H10A0.37400.62640.55550.058*
H10B0.33460.58540.61260.058*
C110.29050 (17)0.4800 (2)0.54792 (11)0.0505 (7)
C120.33608 (19)0.4167 (2)0.49966 (11)0.0558 (7)
H12A0.29520.35810.48410.067*
H12B0.34810.47660.47120.067*
C130.42085 (18)0.3525 (2)0.51294 (11)0.0508 (7)
C140.2168 (2)0.5632 (3)0.52696 (14)0.0774 (10)
H14A0.18960.60360.55780.116*
H14B0.17320.51580.50780.116*
H14C0.24120.62230.50210.116*
C150.2508 (2)0.3866 (2)0.58760 (12)0.0689 (8)
H15A0.29630.33250.60010.103*
H15B0.20570.34110.56880.103*
H15C0.22530.42750.61890.103*
C160.7482 (2)0.5926 (3)0.74823 (13)0.0811 (10)
H16A0.77970.64450.72310.122*
H16B0.78970.54870.77070.122*
H16C0.71070.64070.77160.122*
C170.6509 (2)0.4119 (2)0.75569 (11)0.0673 (8)
H17A0.61680.45450.78300.101*
H17B0.69710.36690.77360.101*
H17C0.61310.35720.73570.101*
C180.52809 (16)0.1958 (2)0.60290 (10)0.0452 (6)
C190.48770 (18)0.1855 (2)0.65403 (11)0.0565 (7)
H190.47530.25500.67440.068*
C200.46557 (18)0.0737 (2)0.67525 (12)0.0630 (8)
H200.43810.06820.70960.076*
C210.48412 (19)0.0305 (2)0.64562 (13)0.0601 (8)
C220.5248 (2)0.0208 (2)0.59482 (14)0.0698 (9)
H220.53800.09040.57470.084*
C230.54615 (19)0.0911 (2)0.57368 (12)0.0627 (8)
H230.57320.09640.53920.075*
C240.4585 (2)0.1513 (3)0.66713 (19)0.0884 (12)
H240.47790.21880.64750.106*
O10.72885 (13)0.27064 (18)0.61019 (8)0.0747 (6)
O20.45149 (14)0.27458 (18)0.48226 (8)0.0731 (6)
O30.48830 (11)0.53829 (13)0.63329 (6)0.0466 (5)
O40.4148 (2)0.1695 (2)0.70769 (14)0.1232 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0489 (18)0.0509 (15)0.0562 (17)0.0036 (14)0.0095 (14)0.0040 (14)
C20.0442 (16)0.0618 (16)0.0724 (19)0.0003 (14)0.0018 (15)0.0046 (15)
C30.0509 (17)0.0447 (14)0.0610 (17)0.0012 (13)0.0088 (14)0.0013 (13)
C40.0480 (16)0.0417 (14)0.0602 (17)0.0042 (12)0.0051 (14)0.0040 (12)
C50.0407 (15)0.0373 (13)0.0486 (15)0.0012 (12)0.0001 (12)0.0022 (12)
C60.0433 (16)0.0388 (13)0.0434 (15)0.0004 (12)0.0065 (12)0.0017 (11)
C70.0489 (16)0.0431 (14)0.0435 (15)0.0029 (12)0.0106 (12)0.0049 (11)
C80.0475 (16)0.0372 (13)0.0413 (14)0.0049 (12)0.0022 (12)0.0031 (11)
C90.0475 (16)0.0368 (13)0.0422 (14)0.0059 (12)0.0032 (12)0.0015 (12)
C100.0500 (16)0.0403 (13)0.0543 (16)0.0008 (12)0.0071 (13)0.0029 (12)
C110.0507 (16)0.0407 (14)0.0601 (17)0.0037 (13)0.0083 (14)0.0019 (13)
C120.0674 (19)0.0478 (15)0.0522 (16)0.0106 (14)0.0101 (15)0.0011 (13)
C130.0629 (19)0.0409 (14)0.0485 (16)0.0068 (13)0.0056 (14)0.0032 (13)
C140.067 (2)0.0635 (18)0.102 (2)0.0065 (16)0.0347 (19)0.0103 (17)
C150.0623 (19)0.0621 (17)0.082 (2)0.0124 (16)0.0097 (17)0.0029 (16)
C160.075 (2)0.074 (2)0.095 (2)0.0056 (18)0.030 (2)0.0115 (18)
C170.081 (2)0.0639 (18)0.0564 (18)0.0017 (16)0.0012 (16)0.0035 (15)
C180.0449 (15)0.0374 (14)0.0533 (16)0.0044 (12)0.0041 (13)0.0063 (12)
C190.0671 (19)0.0387 (14)0.0638 (18)0.0022 (13)0.0168 (15)0.0074 (13)
C200.0598 (19)0.0561 (18)0.0730 (19)0.0077 (14)0.0117 (16)0.0043 (15)
C210.0541 (18)0.0404 (15)0.086 (2)0.0019 (13)0.0124 (16)0.0031 (15)
C220.086 (2)0.0380 (16)0.086 (2)0.0100 (15)0.0033 (19)0.0132 (16)
C230.080 (2)0.0437 (15)0.0648 (19)0.0097 (15)0.0117 (16)0.0118 (14)
C240.077 (3)0.0518 (19)0.136 (4)0.0064 (18)0.024 (2)0.016 (2)
O10.0634 (14)0.0746 (13)0.0862 (15)0.0203 (11)0.0075 (11)0.0170 (11)
O20.0878 (16)0.0701 (13)0.0615 (13)0.0051 (11)0.0014 (11)0.0249 (11)
O30.0460 (11)0.0413 (9)0.0525 (10)0.0030 (8)0.0058 (9)0.0094 (8)
O40.116 (2)0.0848 (18)0.169 (3)0.0282 (16)0.004 (2)0.0485 (19)
Geometric parameters (Å, º) top
C1—O11.228 (3)C12—H12A0.9700
C1—C61.470 (3)C12—H12B0.9700
C1—C21.500 (4)C13—O21.225 (3)
C2—C31.524 (4)C14—H14A0.9600
C2—H2A0.9700C14—H14B0.9600
C2—H2B0.9700C14—H14C0.9600
C3—C41.525 (3)C15—H15A0.9600
C3—C161.527 (4)C15—H15B0.9600
C3—C171.531 (4)C15—H15C0.9600
C4—C51.489 (3)C16—H16A0.9600
C4—H4A0.9700C16—H16B0.9600
C4—H4B0.9700C16—H16C0.9600
C5—C61.334 (3)C17—H17A0.9600
C5—O31.378 (3)C17—H17B0.9600
C6—C71.510 (3)C17—H17C0.9600
C7—C81.507 (3)C18—C231.380 (3)
C7—C181.526 (3)C18—C191.382 (3)
C7—H70.9800C19—C201.376 (3)
C8—C91.339 (3)C19—H190.9300
C8—C131.474 (3)C20—C211.382 (4)
C9—O31.377 (3)C20—H200.9300
C9—C101.485 (3)C21—C221.376 (4)
C10—C111.525 (3)C21—C241.482 (4)
C10—H10A0.9700C22—C231.374 (4)
C10—H10B0.9700C22—H220.9300
C11—C121.523 (4)C23—H230.9300
C11—C151.530 (3)C24—O41.198 (4)
C11—C141.530 (3)C24—H240.9300
C12—C131.499 (4)
O1—C1—C6120.0 (2)C11—C12—H12A108.3
O1—C1—C2122.0 (2)C13—C12—H12B108.3
C6—C1—C2117.9 (2)C11—C12—H12B108.3
C1—C2—C3114.6 (2)H12A—C12—H12B107.4
C1—C2—H2A108.6O2—C13—C8119.6 (2)
C3—C2—H2A108.6O2—C13—C12121.7 (2)
C1—C2—H2B108.6C8—C13—C12118.6 (2)
C3—C2—H2B108.6C11—C14—H14A109.5
H2A—C2—H2B107.6C11—C14—H14B109.5
C2—C3—C4108.0 (2)H14A—C14—H14B109.5
C2—C3—C16110.6 (2)C11—C14—H14C109.5
C4—C3—C16109.2 (2)H14A—C14—H14C109.5
C2—C3—C17110.4 (2)H14B—C14—H14C109.5
C4—C3—C17110.1 (2)C11—C15—H15A109.5
C16—C3—C17108.6 (2)C11—C15—H15B109.5
C5—C4—C3112.0 (2)H15A—C15—H15B109.5
C5—C4—H4A109.2C11—C15—H15C109.5
C3—C4—H4A109.2H15A—C15—H15C109.5
C5—C4—H4B109.2H15B—C15—H15C109.5
C3—C4—H4B109.2C3—C16—H16A109.5
H4A—C4—H4B107.9C3—C16—H16B109.5
C6—C5—O3122.9 (2)H16A—C16—H16B109.5
C6—C5—C4125.7 (2)C3—C16—H16C109.5
O3—C5—C4111.41 (19)H16A—C16—H16C109.5
C5—C6—C1118.5 (2)H16B—C16—H16C109.5
C5—C6—C7122.6 (2)C3—C17—H17A109.5
C1—C6—C7118.9 (2)C3—C17—H17B109.5
C8—C7—C6108.96 (18)H17A—C17—H17B109.5
C8—C7—C18111.3 (2)C3—C17—H17C109.5
C6—C7—C18112.54 (19)H17A—C17—H17C109.5
C8—C7—H7108.0H17B—C17—H17C109.5
C6—C7—H7108.0C23—C18—C19118.3 (2)
C18—C7—H7108.0C23—C18—C7121.0 (2)
C9—C8—C13117.5 (2)C19—C18—C7120.6 (2)
C9—C8—C7122.8 (2)C20—C19—C18120.9 (2)
C13—C8—C7119.7 (2)C20—C19—H19119.5
C8—C9—O3122.4 (2)C18—C19—H19119.5
C8—C9—C10125.9 (2)C19—C20—C21120.2 (3)
O3—C9—C10111.60 (19)C19—C20—H20119.9
C9—C10—C11112.63 (19)C21—C20—H20119.9
C9—C10—H10A109.1C22—C21—C20119.2 (2)
C11—C10—H10A109.1C22—C21—C24120.0 (3)
C9—C10—H10B109.1C20—C21—C24120.9 (3)
C11—C10—H10B109.1C23—C22—C21120.4 (3)
H10A—C10—H10B107.8C23—C22—H22119.8
C12—C11—C10107.9 (2)C21—C22—H22119.8
C12—C11—C15110.4 (2)C22—C23—C18121.0 (3)
C10—C11—C15110.0 (2)C22—C23—H23119.5
C12—C11—C14110.6 (2)C18—C23—H23119.5
C10—C11—C14109.00 (19)O4—C24—C21125.5 (4)
C15—C11—C14109.0 (2)O4—C24—H24117.2
C13—C12—C11116.1 (2)C21—C24—H24117.2
C13—C12—H12A108.3C9—O3—C5118.07 (18)
O1—C1—C2—C3152.7 (2)C9—C10—C11—C1248.4 (3)
C6—C1—C2—C329.6 (3)C9—C10—C11—C1572.0 (3)
C1—C2—C3—C453.1 (3)C9—C10—C11—C14168.6 (2)
C1—C2—C3—C16172.4 (2)C10—C11—C12—C1348.9 (3)
C1—C2—C3—C1767.4 (3)C15—C11—C12—C1371.4 (3)
C2—C3—C4—C549.3 (3)C14—C11—C12—C13168.0 (2)
C16—C3—C4—C5169.6 (2)C9—C8—C13—O2169.7 (2)
C17—C3—C4—C571.4 (3)C7—C8—C13—O28.3 (3)
C3—C4—C5—C624.5 (3)C9—C8—C13—C126.9 (3)
C3—C4—C5—O3156.2 (2)C7—C8—C13—C12175.1 (2)
O3—C5—C6—C1177.7 (2)C11—C12—C13—O2161.3 (2)
C4—C5—C6—C11.5 (4)C11—C12—C13—C822.2 (3)
O3—C5—C6—C72.0 (4)C8—C7—C18—C23109.2 (3)
C4—C5—C6—C7178.8 (2)C6—C7—C18—C23128.2 (3)
O1—C1—C6—C5178.6 (2)C8—C7—C18—C1970.8 (3)
C2—C1—C6—C50.8 (3)C6—C7—C18—C1951.8 (3)
O1—C1—C6—C71.1 (3)C23—C18—C19—C200.3 (4)
C2—C1—C6—C7178.9 (2)C7—C18—C19—C20179.7 (3)
C5—C6—C7—C813.1 (3)C18—C19—C20—C210.4 (4)
C1—C6—C7—C8166.6 (2)C19—C20—C21—C220.0 (4)
C5—C6—C7—C18110.8 (2)C19—C20—C21—C24178.3 (3)
C1—C6—C7—C1869.5 (3)C20—C21—C22—C230.5 (5)
C6—C7—C8—C914.6 (3)C24—C21—C22—C23177.8 (3)
C18—C7—C8—C9110.1 (3)C21—C22—C23—C180.6 (5)
C6—C7—C8—C13163.2 (2)C19—C18—C23—C220.2 (4)
C18—C7—C8—C1372.1 (3)C7—C18—C23—C22179.8 (3)
C13—C8—C9—O3172.8 (2)C22—C21—C24—O4171.7 (4)
C7—C8—C9—O35.1 (4)C20—C21—C24—O46.5 (5)
C13—C8—C9—C106.0 (4)C8—C9—O3—C57.8 (3)
C7—C8—C9—C10176.1 (2)C10—C9—O3—C5171.09 (19)
C8—C9—C10—C1123.6 (3)C6—C5—O3—C99.4 (3)
O3—C9—C10—C11157.5 (2)C4—C5—O3—C9169.92 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O2i0.932.463.380 (3)171
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors thank Dr Babu Varghese and the SAIF, IIT Madras, for the intensity data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDimmock, J. R., Raghavan, S. K. & Bigam, G. E. (1988). Eur. J. Med. Chem. 23, 111–117.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383–4385.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K. E. B. & Thomas, G. J. (1997). PCT Int. Appl. WO 9706178.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMehdi, S. H., Sulaiman, O., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1719–o1720.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPoupelin, J. P., Saint-Ruf, G., Foussard-Blanpin, O., Narcisse, G., Uchida- Ernouf, G. & Lacroix, R. (1978). Eur. J. Med. Chem. 13, 67–71.  CAS Google Scholar
First citationReddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRizwana Begum, S., Hema, R., Sumathi, G., Valliappan, R. & Srinivasan, N. (2014). Acta Cryst. E70, o276–o277.  CrossRef IUCr Journals Google Scholar
First citationSelvanayagam, Z. E., Gnanavendhan, S. G., Balakrishna, K., Rao, R. B., Sivaraman, J., Subramanian, K., Puri, R. & Puri, R. K. (1996). J. Nat. Prod. 59, 664–667.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o1060.  CSD CrossRef IUCr Journals Google Scholar
First citationSureshbabu, N. & Sughanya, V. (2013). Acta Cryst. E69, o281.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]