organic compounds
The 2:1
of 4,6-dimethyldibenzothiophene and 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethaneaFaculty of Systems Engineering, Wakayama University, Sakaedani 930, Wakayama 640-8510, Japan
*Correspondence e-mail: yamakado@sys.wakayama-u.ac.jp
The title compound, 2C14H12S·C12N4F4, was obtained by using 4,6-dimethyldibenzothiophene (DMDBT) as an and 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane (F4TCNQ) as an The consists of one DMDBT molecule and one half of an F4TCNQ molecule, which lies on an inversion centre. In the crystal, the DMDBT and F4TCNQ molecules form a 2:1 unit via a charge-transfer interaction, with a centroid–centroid distance of 3.3681 (15) Å between the five-membered ring of DMDBT and the six-membered ring of F4TCNQ. An F⋯F contact [2.911 (1) Å] is also observed.
Keywords: crystal structure; charge-transfer complex; 4,6-dimethyldibenzothiophene; 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane.
CCDC reference: 1816551
Structure description
4,6-Dimethyldibenzothiophene (DMDBT) is one of the sulfur compounds contained in light oil. Hydrodesulfurization is used to remove the sulfur compounds in light oil. However, DMDBT is difficult to desulfurize because the two methyl groups interfere with the reaction of hydrodesulfurization. Although Milenkovic et al. (1999) succeeded in desulfurizing from light oil by the formation of charge-transfer complexes using 2,4,5,7-tetranitro-9-fluorene (TNF) as an the of DMDBT–TNF was not determined. The crystal structures of DMDBT and 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane (F4TCNQ) have been determined by Meille et al. (1996) and Krupskaya et al. (2015), respectively. In this study, we obtained a novel complex using DMDBT as a donor and F4TCNQ as an acceptor, and determined the crystal structure.
The 4TCNQ molecule, which lies on an inversion centre (Fig. 1). A donor–acceptor–donor 2:1 unit is formed via a charge-transfer interaction (Fig. 2); the centroid–centroid distance between the five-membered ring of DMDBT and the six-membered ring of F4TCNQ is 3.3681 (15) Å. The units are stacked in a column along [110]. An F⋯F contact [2.911 (1) Å] is also observed (Fig. 3).
consists of one DMDBT molecule and one half of an FSynthesis and crystallization
The title complex was obtained by mixing an acetonitrile solution (3 ml) of DMDBT (2.2 mg) with an acetonitrile solution (2.5 ml) of F4TCNQ (2.7 mg), and then concentrating the solution for one day. The obtained black complex showed new charge-transfer bands around 600 nm in the UV–vis which were not observed for the raw materials.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 1816551
https://doi.org/10.1107/S2414314618000779/is4022sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618000779/is4022Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618000779/is4022Isup3.cml
Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SIR2014 (Burla et al., 2012); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2016) and publCIF (Westrip, 2010).2C14H12S·C12F4N4 | Z = 1 |
Mr = 700.77 | F(000) = 360.00 |
Triclinic, P1 | Dx = 1.516 Mg m−3 |
a = 7.570 (2) Å | Mo Kα radiation, λ = 0.71075 Å |
b = 10.206 (3) Å | Cell parameters from 2475 reflections |
c = 11.549 (4) Å | θ = 3.7–27.5° |
α = 113.400 (2)° | µ = 0.24 mm−1 |
β = 90.010 (3)° | T = 93 K |
γ = 108.607 (3)° | Prism, black |
V = 767.8 (4) Å3 | 0.42 × 0.10 × 0.02 mm |
Rigaku Saturn724 diffractometer | 2887 reflections with F2 > 2σ(F2) |
Detector resolution: 28.445 pixels mm-1 | Rint = 0.021 |
ω scans | θmax = 27.3°, θmin = 3.7° |
Absorption correction: multi-scan (REQAB; Rigaku, 1998) | h = −8→9 |
Tmin = 0.854, Tmax = 0.995 | k = −13→13 |
6222 measured reflections | l = −14→12 |
3311 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.047P)2 + 0.4352P] where P = (Fo2 + 2Fc2)/3 |
3311 reflections | (Δ/σ)max < 0.001 |
228 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
S1 | 0.50372 (5) | 0.19776 (4) | 0.00985 (3) | 0.01267 (11) | |
F1 | 0.66794 (11) | 0.46548 (10) | −0.11943 (8) | 0.01555 (19) | |
F2 | 0.73704 (12) | 0.60156 (10) | 0.13100 (8) | 0.0156 (2) | |
N1 | 1.37660 (19) | 0.69718 (16) | 0.40939 (13) | 0.0196 (3) | |
N2 | 0.8594 (2) | 0.75756 (17) | 0.42387 (13) | 0.0234 (3) | |
C1 | 1.0005 (2) | 0.24541 (16) | 0.16420 (14) | 0.0134 (3) | |
H1 | 1.106198 | 0.219533 | 0.132407 | 0.016* | |
C2 | 1.0013 (2) | 0.31783 (17) | 0.29404 (14) | 0.0144 (3) | |
H2 | 1.107384 | 0.340458 | 0.351784 | 0.017* | |
C3 | 0.8466 (2) | 0.35811 (16) | 0.34113 (14) | 0.0149 (3) | |
H3 | 0.850956 | 0.408757 | 0.430689 | 0.018* | |
C4 | 0.6867 (2) | 0.32626 (16) | 0.26081 (14) | 0.0135 (3) | |
C5 | 0.6874 (2) | 0.25106 (16) | 0.12964 (14) | 0.0123 (3) | |
C6 | 0.6322 (2) | 0.12100 (16) | −0.10872 (14) | 0.0120 (3) | |
C7 | 0.5684 (2) | 0.05155 (16) | −0.24017 (14) | 0.0134 (3) | |
C8 | 0.6910 (2) | −0.00336 (16) | −0.31948 (14) | 0.0150 (3) | |
H8 | 0.652923 | −0.051750 | −0.409160 | 0.018* | |
C9 | 0.8694 (2) | 0.01070 (17) | −0.27078 (14) | 0.0151 (3) | |
H9 | 0.949518 | −0.027864 | −0.327803 | 0.018* | |
C10 | 0.9300 (2) | 0.08007 (16) | −0.14069 (14) | 0.0134 (3) | |
H10 | 1.050959 | 0.089629 | −0.108152 | 0.016* | |
C11 | 0.8102 (2) | 0.13592 (16) | −0.05784 (14) | 0.0119 (3) | |
C12 | 0.8422 (2) | 0.21067 (15) | 0.08018 (13) | 0.0116 (3) | |
C13 | 0.5213 (2) | 0.36983 (18) | 0.31136 (15) | 0.0174 (3) | |
H13A | 0.514343 | 0.452297 | 0.290378 | 0.026* | |
H13B | 0.536587 | 0.404189 | 0.404152 | 0.026* | |
H13C | 0.405198 | 0.281435 | 0.272533 | 0.026* | |
C14 | 0.3773 (2) | 0.03761 (17) | −0.29078 (15) | 0.0167 (3) | |
H14A | 0.371282 | 0.139434 | −0.266854 | 0.025* | |
H14B | 0.280501 | −0.018362 | −0.254580 | 0.025* | |
H14C | 0.355357 | −0.017344 | −0.383911 | 0.025* | |
C15 | 0.83036 (19) | 0.48166 (16) | −0.06107 (14) | 0.0114 (3) | |
C16 | 0.86612 (19) | 0.55144 (16) | 0.06696 (14) | 0.0117 (3) | |
C17 | 1.03840 (19) | 0.57591 (15) | 0.13883 (13) | 0.0113 (3) | |
C18 | 1.0752 (2) | 0.64812 (16) | 0.26997 (14) | 0.0131 (3) | |
C19 | 1.2464 (2) | 0.67300 (16) | 0.34279 (14) | 0.0146 (3) | |
C20 | 0.9484 (2) | 0.70676 (17) | 0.35044 (14) | 0.0156 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01041 (17) | 0.01487 (18) | 0.01270 (18) | 0.00466 (13) | 0.00217 (13) | 0.00553 (13) |
F1 | 0.0113 (4) | 0.0217 (5) | 0.0136 (4) | 0.0073 (3) | −0.0004 (3) | 0.0062 (4) |
F2 | 0.0127 (4) | 0.0201 (4) | 0.0142 (4) | 0.0091 (3) | 0.0050 (3) | 0.0048 (3) |
N1 | 0.0190 (7) | 0.0225 (7) | 0.0150 (6) | 0.0063 (5) | 0.0002 (5) | 0.0064 (5) |
N2 | 0.0234 (7) | 0.0268 (7) | 0.0163 (7) | 0.0101 (6) | 0.0058 (6) | 0.0045 (6) |
C1 | 0.0128 (7) | 0.0123 (7) | 0.0163 (7) | 0.0044 (5) | 0.0037 (6) | 0.0072 (6) |
C2 | 0.0128 (7) | 0.0155 (7) | 0.0158 (7) | 0.0039 (5) | 0.0001 (5) | 0.0081 (6) |
C3 | 0.0173 (7) | 0.0144 (7) | 0.0123 (7) | 0.0041 (6) | 0.0026 (6) | 0.0059 (6) |
C4 | 0.0136 (7) | 0.0123 (7) | 0.0150 (7) | 0.0039 (5) | 0.0040 (5) | 0.0067 (5) |
C5 | 0.0113 (6) | 0.0114 (6) | 0.0145 (7) | 0.0023 (5) | 0.0014 (5) | 0.0070 (5) |
C6 | 0.0116 (6) | 0.0093 (6) | 0.0147 (7) | 0.0024 (5) | 0.0026 (5) | 0.0057 (5) |
C7 | 0.0132 (7) | 0.0107 (7) | 0.0153 (7) | 0.0020 (5) | 0.0012 (5) | 0.0063 (5) |
C8 | 0.0172 (7) | 0.0127 (7) | 0.0126 (7) | 0.0036 (6) | 0.0011 (6) | 0.0040 (5) |
C9 | 0.0154 (7) | 0.0129 (7) | 0.0163 (7) | 0.0060 (6) | 0.0046 (6) | 0.0047 (6) |
C10 | 0.0125 (7) | 0.0119 (7) | 0.0166 (7) | 0.0045 (5) | 0.0026 (5) | 0.0065 (5) |
C11 | 0.0123 (7) | 0.0087 (6) | 0.0139 (7) | 0.0017 (5) | 0.0014 (5) | 0.0054 (5) |
C12 | 0.0134 (7) | 0.0093 (6) | 0.0131 (7) | 0.0034 (5) | 0.0030 (5) | 0.0061 (5) |
C13 | 0.0156 (7) | 0.0225 (8) | 0.0156 (7) | 0.0089 (6) | 0.0051 (6) | 0.0076 (6) |
C14 | 0.0146 (7) | 0.0174 (7) | 0.0156 (7) | 0.0042 (6) | −0.0007 (6) | 0.0055 (6) |
C15 | 0.0089 (6) | 0.0115 (6) | 0.0140 (7) | 0.0032 (5) | 0.0012 (5) | 0.0059 (5) |
C16 | 0.0101 (6) | 0.0114 (6) | 0.0148 (7) | 0.0045 (5) | 0.0049 (5) | 0.0060 (5) |
C17 | 0.0119 (7) | 0.0096 (6) | 0.0128 (7) | 0.0028 (5) | 0.0026 (5) | 0.0056 (5) |
C18 | 0.0138 (7) | 0.0118 (7) | 0.0122 (7) | 0.0032 (5) | 0.0024 (5) | 0.0047 (5) |
C19 | 0.0183 (7) | 0.0134 (7) | 0.0100 (7) | 0.0040 (6) | 0.0040 (6) | 0.0040 (5) |
C20 | 0.0166 (7) | 0.0149 (7) | 0.0119 (7) | 0.0032 (6) | −0.0007 (6) | 0.0041 (6) |
S1—C5 | 1.7500 (15) | C8—C9 | 1.405 (2) |
S1—C6 | 1.7520 (15) | C8—H8 | 0.9500 |
F1—C15 | 1.3322 (17) | C9—C10 | 1.384 (2) |
F2—C16 | 1.3350 (15) | C9—H9 | 0.9500 |
N1—C19 | 1.148 (2) | C10—C11 | 1.4003 (19) |
N2—C20 | 1.147 (2) | C10—H10 | 0.9500 |
C1—C2 | 1.383 (2) | C11—C12 | 1.448 (2) |
C1—C12 | 1.400 (2) | C13—H13A | 0.9800 |
C1—H1 | 0.9500 | C13—H13B | 0.9800 |
C2—C3 | 1.402 (2) | C13—H13C | 0.9800 |
C2—H2 | 0.9500 | C14—H14A | 0.9800 |
C3—C4 | 1.393 (2) | C14—H14B | 0.9800 |
C3—H3 | 0.9500 | C14—H14C | 0.9800 |
C4—C5 | 1.401 (2) | C15—C16 | 1.344 (2) |
C4—C13 | 1.5015 (19) | C15—C17i | 1.4466 (19) |
C5—C12 | 1.4105 (19) | C16—C17 | 1.442 (2) |
C6—C7 | 1.402 (2) | C17—C18 | 1.377 (2) |
C6—C11 | 1.408 (2) | C18—C20 | 1.438 (2) |
C7—C8 | 1.393 (2) | C18—C19 | 1.439 (2) |
C7—C14 | 1.502 (2) | ||
C5—S1—C6 | 91.18 (7) | C10—C11—C12 | 128.65 (13) |
C2—C1—C12 | 119.20 (13) | C6—C11—C12 | 112.03 (12) |
C2—C1—H1 | 120.4 | C1—C12—C5 | 119.36 (13) |
C12—C1—H1 | 120.4 | C1—C12—C11 | 128.77 (13) |
C1—C2—C3 | 120.50 (14) | C5—C12—C11 | 111.87 (13) |
C1—C2—H2 | 119.7 | C4—C13—H13A | 109.5 |
C3—C2—H2 | 119.7 | C4—C13—H13B | 109.5 |
C4—C3—C2 | 122.11 (14) | H13A—C13—H13B | 109.5 |
C4—C3—H3 | 118.9 | C4—C13—H13C | 109.5 |
C2—C3—H3 | 118.9 | H13A—C13—H13C | 109.5 |
C3—C4—C5 | 116.59 (13) | H13B—C13—H13C | 109.5 |
C3—C4—C13 | 122.05 (13) | C7—C14—H14A | 109.5 |
C5—C4—C13 | 121.35 (13) | C7—C14—H14B | 109.5 |
C4—C5—C12 | 122.23 (13) | H14A—C14—H14B | 109.5 |
C4—C5—S1 | 125.29 (11) | C7—C14—H14C | 109.5 |
C12—C5—S1 | 112.48 (11) | H14A—C14—H14C | 109.5 |
C7—C6—C11 | 122.66 (13) | H14B—C14—H14C | 109.5 |
C7—C6—S1 | 124.90 (11) | F1—C15—C16 | 118.90 (12) |
C11—C6—S1 | 112.45 (11) | F1—C15—C17i | 118.30 (12) |
C8—C7—C6 | 116.35 (13) | C16—C15—C17i | 122.80 (13) |
C8—C7—C14 | 122.58 (14) | F2—C16—C15 | 118.70 (13) |
C6—C7—C14 | 121.07 (13) | F2—C16—C17 | 118.20 (12) |
C7—C8—C9 | 121.94 (14) | C15—C16—C17 | 123.10 (13) |
C7—C8—H8 | 119.0 | C18—C17—C16 | 123.02 (13) |
C9—C8—H8 | 119.0 | C18—C17—C15i | 122.88 (13) |
C10—C9—C8 | 120.80 (13) | C16—C17—C15i | 114.10 (13) |
C10—C9—H9 | 119.6 | C17—C18—C20 | 124.50 (13) |
C8—C9—H9 | 119.6 | C17—C18—C19 | 123.55 (13) |
C9—C10—C11 | 118.93 (13) | C20—C18—C19 | 111.96 (13) |
C9—C10—H10 | 120.5 | N1—C19—C18 | 174.55 (15) |
C11—C10—H10 | 120.5 | N2—C20—C18 | 173.74 (16) |
C10—C11—C6 | 119.32 (13) | ||
C12—C1—C2—C3 | −0.9 (2) | C7—C6—C11—C12 | −179.64 (12) |
C1—C2—C3—C4 | 0.7 (2) | S1—C6—C11—C12 | 0.22 (15) |
C2—C3—C4—C5 | 0.2 (2) | C2—C1—C12—C5 | 0.4 (2) |
C2—C3—C4—C13 | −179.84 (13) | C2—C1—C12—C11 | −179.92 (13) |
C3—C4—C5—C12 | −0.7 (2) | C4—C5—C12—C1 | 0.5 (2) |
C13—C4—C5—C12 | 179.28 (13) | S1—C5—C12—C1 | −179.87 (11) |
C3—C4—C5—S1 | 179.65 (11) | C4—C5—C12—C11 | −179.28 (13) |
C13—C4—C5—S1 | −0.3 (2) | S1—C5—C12—C11 | 0.39 (15) |
C6—S1—C5—C4 | 179.43 (13) | C10—C11—C12—C1 | 0.1 (2) |
C6—S1—C5—C12 | −0.22 (11) | C6—C11—C12—C1 | 179.90 (14) |
C5—S1—C6—C7 | 179.85 (13) | C10—C11—C12—C5 | 179.81 (14) |
C5—S1—C6—C11 | 0.00 (11) | C6—C11—C12—C5 | −0.39 (17) |
C11—C6—C7—C8 | 0.2 (2) | F1—C15—C16—F2 | 0.2 (2) |
S1—C6—C7—C8 | −179.66 (11) | C17i—C15—C16—F2 | 179.72 (12) |
C11—C6—C7—C14 | 179.91 (13) | F1—C15—C16—C17 | −179.32 (12) |
S1—C6—C7—C14 | 0.1 (2) | C17i—C15—C16—C17 | 0.2 (2) |
C6—C7—C8—C9 | −0.4 (2) | F2—C16—C17—C18 | 0.1 (2) |
C14—C7—C8—C9 | 179.90 (14) | C15—C16—C17—C18 | 179.65 (13) |
C7—C8—C9—C10 | 0.2 (2) | F2—C16—C17—C15i | −179.71 (11) |
C8—C9—C10—C11 | 0.2 (2) | C15—C16—C17—C15i | −0.2 (2) |
C9—C10—C11—C6 | −0.4 (2) | C16—C17—C18—C20 | 0.2 (2) |
C9—C10—C11—C12 | 179.42 (14) | C15i—C17—C18—C20 | −179.97 (13) |
C7—C6—C11—C10 | 0.2 (2) | C16—C17—C18—C19 | 179.89 (13) |
S1—C6—C11—C10 | −179.95 (11) | C15i—C17—C18—C19 | −0.3 (2) |
Symmetry code: (i) −x+2, −y+1, −z. |
Funding information
This work was supported by JSPS KAKENHI grant No. JP17KT0100.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Krupskaya, Y., Gibertini, M., Marzari, N. & Morpurgo, A. F. (2015). Adv. Mater. 27, 2453–2458. CSD CrossRef CAS PubMed Google Scholar
Meille, V., Schulz, E., Lemaire, M., Faure, R. & Vrinat, M. (1996). Tetrahedron, 52, 3953–3960. CSD CrossRef CAS Google Scholar
Milenkovic, A., Schulz, E., Meille, V., Loffreda, D., Forissier, M., Vrinat, M., Sautet, P. & Lemaire, M. (1999). Energy Fuels, 13, 881–887. CrossRef CAS Google Scholar
Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.