organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

The 2:1 charge-transfer complex of 4,6-di­methyl­dibenzo­thio­phene and 7,7,8,8-tetra­cyano-2,3,5,6-tetra­fluoro­quinodi­methane

aFaculty of Systems Engineering, Wakayama University, Sakaedani 930, Wakayama 640-8510, Japan
*Correspondence e-mail: yamakado@sys.wakayama-u.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 15 December 2017; accepted 12 January 2018; online 19 January 2018)

The title compound, 2C14H12S·C12N4F4, was obtained by using 4,6-di­methyl­dibenzo­thio­phene (DMDBT) as an electron donor and 7,7,8,8-tetra­cyano-2,3,5,6-tetra­fluoro­quinodi­methane (F4TCNQ) as an electron acceptor. The asymmetric unit consists of one DMDBT mol­ecule and one half of an F4TCNQ mol­ecule, which lies on an inversion centre. In the crystal, the DMDBT and F4TCNQ mol­ecules form a 2:1 unit via a charge-transfer inter­action, with a centroid–centroid distance of 3.3681 (15) Å between the five-membered ring of DMDBT and the six-membered ring of F4TCNQ. An F⋯F contact [2.911 (1) Å] is also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

4,6-Di­methyl­dibenzo­thio­phene (DMDBT) is one of the sulfur compounds contained in light oil. Hydro­desulfurization is used to remove the sulfur compounds in light oil. However, DMDBT is difficult to desulfurize because the two methyl groups inter­fere with the reaction of hydro­desulfurization. Although Milenkovic et al. (1999[Milenkovic, A., Schulz, E., Meille, V., Loffreda, D., Forissier, M., Vrinat, M., Sautet, P. & Lemaire, M. (1999). Energy Fuels, 13, 881-887.]) succeeded in desulfurizing from light oil by the formation of charge-transfer complexes using 2,4,5,7-tetra­nitro-9-fluorene (TNF) as an electron acceptor, the crystal structure of DMDBT–TNF was not determined. The crystal structures of DMDBT and 7,7,8,8-tetra­cyano-2,3,5,6-tetra­fluoroquinodi­methane (F4TCNQ) have been determined by Meille et al. (1996[Meille, V., Schulz, E., Lemaire, M., Faure, R. & Vrinat, M. (1996). Tetrahedron, 52, 3953-3960.]) and Krupskaya et al. (2015[Krupskaya, Y., Gibertini, M., Marzari, N. & Morpurgo, A. F. (2015). Adv. Mater. 27, 2453-2458.]), respectively. In this study, we obtained a novel complex using DMDBT as a donor and F4TCNQ as an acceptor, and determined the crystal structure.

The asymmetric unit consists of one DMDBT mol­ecule and one half of an F4TCNQ mol­ecule, which lies on an inversion centre (Fig. 1[link]). A donor–acceptor–donor 2:1 unit is formed via a charge-transfer inter­action (Fig. 2[link]); the centroid–centroid distance between the five-membered ring of DMDBT and the six-membered ring of F4TCNQ is 3.3681 (15) Å. The units are stacked in a column along [110]. An F⋯F contact [2.911 (1) Å] is also observed (Fig. 3[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level and H atoms are shown as small spheres. [Symmetry code: (i) −x + 2, −y + 1, −z.]
[Figure 2]
Figure 2
A packing diagram of the title compound, showing the 2:1 electron donor and acceptor unit.
[Figure 3]
Figure 3
A packing diagram of the title compound, showing the F⋯F contacts as blue dashed lines.

Synthesis and crystallization

The title complex was obtained by mixing an aceto­nitrile solution (3 ml) of DMDBT (2.2 mg) with an aceto­nitrile solution (2.5 ml) of F4TCNQ (2.7 mg), and then concentrating the solution for one day. The obtained black complex showed new charge-transfer bands around 600 nm in the UV–vis absorption spectrum, which were not observed for the raw materials.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula 2C14H12S·C12F4N4
Mr 700.77
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 93
a, b, c (Å) 7.570 (2), 10.206 (3), 11.549 (4)
α, β, γ (°) 113.400 (2), 90.010 (3), 108.607 (3)
V3) 767.8 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.42 × 0.10 × 0.02
 
Data collection
Diffractometer Rigaku Saturn724
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.854, 0.995
No. of measured, independent and observed [F2 > 2σ(F2)] reflections 6222, 3311, 2887
Rint 0.021
(sin θ/λ)max−1) 0.644
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.091, 1.03
No. of reflections 3311
No. of parameters 228
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.25
Computer programs: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SIR2014 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), CrystalStructure (Rigaku, 2016[Rigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SIR2014 (Burla et al., 2012); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2016) and publCIF (Westrip, 2010).

Bis[6,10-dimethyl-8-thiatricyclo[7.4.0.02,7]trideca-1(9),2,4,6,10,12-hexaene] 2-[4-(dicyanomethylidene)-2,3,5,6-tetrafluorocyclohexa-2,5-dien-1-ylidene]propanedinitrile top
Crystal data top
2C14H12S·C12F4N4Z = 1
Mr = 700.77F(000) = 360.00
Triclinic, P1Dx = 1.516 Mg m3
a = 7.570 (2) ÅMo Kα radiation, λ = 0.71075 Å
b = 10.206 (3) ÅCell parameters from 2475 reflections
c = 11.549 (4) Åθ = 3.7–27.5°
α = 113.400 (2)°µ = 0.24 mm1
β = 90.010 (3)°T = 93 K
γ = 108.607 (3)°Prism, black
V = 767.8 (4) Å30.42 × 0.10 × 0.02 mm
Data collection top
Rigaku Saturn724
diffractometer
2887 reflections with F2 > 2σ(F2)
Detector resolution: 28.445 pixels mm-1Rint = 0.021
ω scansθmax = 27.3°, θmin = 3.7°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 89
Tmin = 0.854, Tmax = 0.995k = 1313
6222 measured reflectionsl = 1412
3311 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.047P)2 + 0.4352P]
where P = (Fo2 + 2Fc2)/3
3311 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.25 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50372 (5)0.19776 (4)0.00985 (3)0.01267 (11)
F10.66794 (11)0.46548 (10)0.11943 (8)0.01555 (19)
F20.73704 (12)0.60156 (10)0.13100 (8)0.0156 (2)
N11.37660 (19)0.69718 (16)0.40939 (13)0.0196 (3)
N20.8594 (2)0.75756 (17)0.42387 (13)0.0234 (3)
C11.0005 (2)0.24541 (16)0.16420 (14)0.0134 (3)
H11.1061980.2195330.1324070.016*
C21.0013 (2)0.31783 (17)0.29404 (14)0.0144 (3)
H21.1073840.3404580.3517840.017*
C30.8466 (2)0.35811 (16)0.34113 (14)0.0149 (3)
H30.8509560.4087570.4306890.018*
C40.6867 (2)0.32626 (16)0.26081 (14)0.0135 (3)
C50.6874 (2)0.25106 (16)0.12964 (14)0.0123 (3)
C60.6322 (2)0.12100 (16)0.10872 (14)0.0120 (3)
C70.5684 (2)0.05155 (16)0.24017 (14)0.0134 (3)
C80.6910 (2)0.00336 (16)0.31948 (14)0.0150 (3)
H80.6529230.0517500.4091600.018*
C90.8694 (2)0.01070 (17)0.27078 (14)0.0151 (3)
H90.9495180.0278640.3278030.018*
C100.9300 (2)0.08007 (16)0.14069 (14)0.0134 (3)
H101.0509590.0896290.1081520.016*
C110.8102 (2)0.13592 (16)0.05784 (14)0.0119 (3)
C120.8422 (2)0.21067 (15)0.08018 (13)0.0116 (3)
C130.5213 (2)0.36983 (18)0.31136 (15)0.0174 (3)
H13A0.5143430.4522970.2903780.026*
H13B0.5365870.4041890.4041520.026*
H13C0.4051980.2814350.2725330.026*
C140.3773 (2)0.03761 (17)0.29078 (15)0.0167 (3)
H14A0.3712820.1394340.2668540.025*
H14B0.2805010.0183620.2545800.025*
H14C0.3553570.0173440.3839110.025*
C150.83036 (19)0.48166 (16)0.06107 (14)0.0114 (3)
C160.86612 (19)0.55144 (16)0.06696 (14)0.0117 (3)
C171.03840 (19)0.57591 (15)0.13883 (13)0.0113 (3)
C181.0752 (2)0.64812 (16)0.26997 (14)0.0131 (3)
C191.2464 (2)0.67300 (16)0.34279 (14)0.0146 (3)
C200.9484 (2)0.70676 (17)0.35044 (14)0.0156 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01041 (17)0.01487 (18)0.01270 (18)0.00466 (13)0.00217 (13)0.00553 (13)
F10.0113 (4)0.0217 (5)0.0136 (4)0.0073 (3)0.0004 (3)0.0062 (4)
F20.0127 (4)0.0201 (4)0.0142 (4)0.0091 (3)0.0050 (3)0.0048 (3)
N10.0190 (7)0.0225 (7)0.0150 (6)0.0063 (5)0.0002 (5)0.0064 (5)
N20.0234 (7)0.0268 (7)0.0163 (7)0.0101 (6)0.0058 (6)0.0045 (6)
C10.0128 (7)0.0123 (7)0.0163 (7)0.0044 (5)0.0037 (6)0.0072 (6)
C20.0128 (7)0.0155 (7)0.0158 (7)0.0039 (5)0.0001 (5)0.0081 (6)
C30.0173 (7)0.0144 (7)0.0123 (7)0.0041 (6)0.0026 (6)0.0059 (6)
C40.0136 (7)0.0123 (7)0.0150 (7)0.0039 (5)0.0040 (5)0.0067 (5)
C50.0113 (6)0.0114 (6)0.0145 (7)0.0023 (5)0.0014 (5)0.0070 (5)
C60.0116 (6)0.0093 (6)0.0147 (7)0.0024 (5)0.0026 (5)0.0057 (5)
C70.0132 (7)0.0107 (7)0.0153 (7)0.0020 (5)0.0012 (5)0.0063 (5)
C80.0172 (7)0.0127 (7)0.0126 (7)0.0036 (6)0.0011 (6)0.0040 (5)
C90.0154 (7)0.0129 (7)0.0163 (7)0.0060 (6)0.0046 (6)0.0047 (6)
C100.0125 (7)0.0119 (7)0.0166 (7)0.0045 (5)0.0026 (5)0.0065 (5)
C110.0123 (7)0.0087 (6)0.0139 (7)0.0017 (5)0.0014 (5)0.0054 (5)
C120.0134 (7)0.0093 (6)0.0131 (7)0.0034 (5)0.0030 (5)0.0061 (5)
C130.0156 (7)0.0225 (8)0.0156 (7)0.0089 (6)0.0051 (6)0.0076 (6)
C140.0146 (7)0.0174 (7)0.0156 (7)0.0042 (6)0.0007 (6)0.0055 (6)
C150.0089 (6)0.0115 (6)0.0140 (7)0.0032 (5)0.0012 (5)0.0059 (5)
C160.0101 (6)0.0114 (6)0.0148 (7)0.0045 (5)0.0049 (5)0.0060 (5)
C170.0119 (7)0.0096 (6)0.0128 (7)0.0028 (5)0.0026 (5)0.0056 (5)
C180.0138 (7)0.0118 (7)0.0122 (7)0.0032 (5)0.0024 (5)0.0047 (5)
C190.0183 (7)0.0134 (7)0.0100 (7)0.0040 (6)0.0040 (6)0.0040 (5)
C200.0166 (7)0.0149 (7)0.0119 (7)0.0032 (6)0.0007 (6)0.0041 (6)
Geometric parameters (Å, º) top
S1—C51.7500 (15)C8—C91.405 (2)
S1—C61.7520 (15)C8—H80.9500
F1—C151.3322 (17)C9—C101.384 (2)
F2—C161.3350 (15)C9—H90.9500
N1—C191.148 (2)C10—C111.4003 (19)
N2—C201.147 (2)C10—H100.9500
C1—C21.383 (2)C11—C121.448 (2)
C1—C121.400 (2)C13—H13A0.9800
C1—H10.9500C13—H13B0.9800
C2—C31.402 (2)C13—H13C0.9800
C2—H20.9500C14—H14A0.9800
C3—C41.393 (2)C14—H14B0.9800
C3—H30.9500C14—H14C0.9800
C4—C51.401 (2)C15—C161.344 (2)
C4—C131.5015 (19)C15—C17i1.4466 (19)
C5—C121.4105 (19)C16—C171.442 (2)
C6—C71.402 (2)C17—C181.377 (2)
C6—C111.408 (2)C18—C201.438 (2)
C7—C81.393 (2)C18—C191.439 (2)
C7—C141.502 (2)
C5—S1—C691.18 (7)C10—C11—C12128.65 (13)
C2—C1—C12119.20 (13)C6—C11—C12112.03 (12)
C2—C1—H1120.4C1—C12—C5119.36 (13)
C12—C1—H1120.4C1—C12—C11128.77 (13)
C1—C2—C3120.50 (14)C5—C12—C11111.87 (13)
C1—C2—H2119.7C4—C13—H13A109.5
C3—C2—H2119.7C4—C13—H13B109.5
C4—C3—C2122.11 (14)H13A—C13—H13B109.5
C4—C3—H3118.9C4—C13—H13C109.5
C2—C3—H3118.9H13A—C13—H13C109.5
C3—C4—C5116.59 (13)H13B—C13—H13C109.5
C3—C4—C13122.05 (13)C7—C14—H14A109.5
C5—C4—C13121.35 (13)C7—C14—H14B109.5
C4—C5—C12122.23 (13)H14A—C14—H14B109.5
C4—C5—S1125.29 (11)C7—C14—H14C109.5
C12—C5—S1112.48 (11)H14A—C14—H14C109.5
C7—C6—C11122.66 (13)H14B—C14—H14C109.5
C7—C6—S1124.90 (11)F1—C15—C16118.90 (12)
C11—C6—S1112.45 (11)F1—C15—C17i118.30 (12)
C8—C7—C6116.35 (13)C16—C15—C17i122.80 (13)
C8—C7—C14122.58 (14)F2—C16—C15118.70 (13)
C6—C7—C14121.07 (13)F2—C16—C17118.20 (12)
C7—C8—C9121.94 (14)C15—C16—C17123.10 (13)
C7—C8—H8119.0C18—C17—C16123.02 (13)
C9—C8—H8119.0C18—C17—C15i122.88 (13)
C10—C9—C8120.80 (13)C16—C17—C15i114.10 (13)
C10—C9—H9119.6C17—C18—C20124.50 (13)
C8—C9—H9119.6C17—C18—C19123.55 (13)
C9—C10—C11118.93 (13)C20—C18—C19111.96 (13)
C9—C10—H10120.5N1—C19—C18174.55 (15)
C11—C10—H10120.5N2—C20—C18173.74 (16)
C10—C11—C6119.32 (13)
C12—C1—C2—C30.9 (2)C7—C6—C11—C12179.64 (12)
C1—C2—C3—C40.7 (2)S1—C6—C11—C120.22 (15)
C2—C3—C4—C50.2 (2)C2—C1—C12—C50.4 (2)
C2—C3—C4—C13179.84 (13)C2—C1—C12—C11179.92 (13)
C3—C4—C5—C120.7 (2)C4—C5—C12—C10.5 (2)
C13—C4—C5—C12179.28 (13)S1—C5—C12—C1179.87 (11)
C3—C4—C5—S1179.65 (11)C4—C5—C12—C11179.28 (13)
C13—C4—C5—S10.3 (2)S1—C5—C12—C110.39 (15)
C6—S1—C5—C4179.43 (13)C10—C11—C12—C10.1 (2)
C6—S1—C5—C120.22 (11)C6—C11—C12—C1179.90 (14)
C5—S1—C6—C7179.85 (13)C10—C11—C12—C5179.81 (14)
C5—S1—C6—C110.00 (11)C6—C11—C12—C50.39 (17)
C11—C6—C7—C80.2 (2)F1—C15—C16—F20.2 (2)
S1—C6—C7—C8179.66 (11)C17i—C15—C16—F2179.72 (12)
C11—C6—C7—C14179.91 (13)F1—C15—C16—C17179.32 (12)
S1—C6—C7—C140.1 (2)C17i—C15—C16—C170.2 (2)
C6—C7—C8—C90.4 (2)F2—C16—C17—C180.1 (2)
C14—C7—C8—C9179.90 (14)C15—C16—C17—C18179.65 (13)
C7—C8—C9—C100.2 (2)F2—C16—C17—C15i179.71 (11)
C8—C9—C10—C110.2 (2)C15—C16—C17—C15i0.2 (2)
C9—C10—C11—C60.4 (2)C16—C17—C18—C200.2 (2)
C9—C10—C11—C12179.42 (14)C15i—C17—C18—C20179.97 (13)
C7—C6—C11—C100.2 (2)C16—C17—C18—C19179.89 (13)
S1—C6—C11—C10179.95 (11)C15i—C17—C18—C190.3 (2)
Symmetry code: (i) x+2, y+1, z.
 

Funding information

This work was supported by JSPS KAKENHI grant No. JP17KT0100.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrupskaya, Y., Gibertini, M., Marzari, N. & Morpurgo, A. F. (2015). Adv. Mater. 27, 2453–2458.  CSD CrossRef CAS PubMed Google Scholar
First citationMeille, V., Schulz, E., Lemaire, M., Faure, R. & Vrinat, M. (1996). Tetrahedron, 52, 3953–3960.  CSD CrossRef CAS Google Scholar
First citationMilenkovic, A., Schulz, E., Meille, V., Loffreda, D., Forissier, M., Vrinat, M., Sautet, P. & Lemaire, M. (1999). Energy Fuels, 13, 881–887.  CrossRef CAS Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]