organic compounds
3-Nitrobenzaldehyde
aRadboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
*Correspondence e-mail: p.tinnemans@science.ru.nl
Polymorph I of the title compound, C7H5NO3, is approximately planar: the dihedral angle between the benzene ring and the nitro group is 10.41 (4)° and the aldehyde O atom deviates from the ring plane by 0.165 (1) Å. In the crystal, aromatic π–π stacking interactions are observed [centroid–centroid separation = 3.7363 (5) Å].
CCDC reference: 1816967
Structure description
The existence of two polymorphic forms of the title compound, C7H5NO3, has been known for almost eighty years (Lindpaintner, 1939); however, to date no of the title compound has been reported. Here, we present the of the stable polymorph (polymorph I). For the of the closely related compound 2-nitrobenzaldehyde, see Coppens & Schmidt (1964) and Coppens (1964) and for the of 4-nitrobenzalhyde, see Jackisch et al. (1989) and King & Bryant (1996).
The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the benzene ring and the nitro group is 10.41 (4)° and the aldehyde O atom deviates from the ring plane by 0.165 (1) Å. In the crystal, aromatic π–π stacking interactions are observed [centroid–centroid separation = 3.7363 (5) Å].
The melting point of the stable polymorph is 327 K, while the melting point of polymorph II is 322 K, as determined using the onset temperature of differential scanning calorimetry.
Synthesis and crystallization
A 100 mg mL−1 solution of 3-nitrobenzaldehyde (Merck, no indication of purity given) in acetone was filtered to obtain a clear yellow solution. Slow evaporation of a 1:1 mixture of this solution and heptane resulted in large colourless needle-shaped crystals of the title compound after two days.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 1816967
https://doi.org/10.1107/S2414314618000925/hb4202sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618000925/hb4202Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618000925/hb4202Isup3.mol
Supporting information file. DOI: https://doi.org/10.1107/S2414314618000925/hb4202Isup4.cml
Data collection: APEX3 (Bruker, 2012); cell
PEAKREF (Schreurs, 2013); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009) and ShelXLe (Hübschle et al., 2011).C7H5NO3 | Dx = 1.528 Mg m−3 |
Mr = 151.12 | Melting point: 327 K |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 3.7363 (2) Å | Cell parameters from 9919 reflections |
b = 7.0071 (3) Å | θ = 2.9–40.3° |
c = 12.5877 (6) Å | µ = 0.12 mm−1 |
β = 94.8144 (16)° | T = 150 K |
V = 328.39 (3) Å3 | Needle, colourless |
Z = 2 | 0.48 × 0.17 × 0.09 mm |
F(000) = 156 |
Bruker D8 Quest APEX3 diffractometer | 4005 independent reflections |
Radiation source: sealed tube | 3735 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
Detector resolution: 10.4 pixels mm-1 | θmax = 40.3°, θmin = 3.3° |
φ and ω scans | h = −6→6 |
Absorption correction: multi-scan (SADABS; Bruker, 2011) | k = −12→12 |
Tmin = 0.713, Tmax = 0.748 | l = −22→22 |
18662 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.089 | w = 1/[σ2(Fo2) + (0.0643P)2 + 0.0066P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
4005 reflections | Δρmax = 0.38 e Å−3 |
100 parameters | Δρmin = −0.21 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 1595 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.02 (13) |
Experimental. Polymorph I |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O01 | 0.3805 (2) | 0.36964 (11) | 0.47803 (5) | 0.02774 (14) | |
O02 | 0.5659 (2) | 0.81726 (10) | 0.79109 (6) | 0.02858 (15) | |
O03 | 0.3141 (2) | 0.75360 (14) | 0.93565 (6) | 0.03273 (17) | |
N01 | 0.39008 (18) | 0.71338 (9) | 0.84537 (5) | 0.01838 (11) | |
C01 | 0.26607 (18) | 0.52935 (9) | 0.79964 (5) | 0.01429 (10) | |
C02 | 0.1223 (2) | 0.39635 (11) | 0.86644 (6) | 0.01736 (12) | |
H02 | 0.101303 | 0.424953 | 0.939430 | 0.021* | |
C03 | 0.0102 (2) | 0.22081 (11) | 0.82413 (6) | 0.01891 (13) | |
H03 | −0.087439 | 0.127606 | 0.868273 | 0.023* | |
C04 | 0.0419 (2) | 0.18223 (10) | 0.71667 (6) | 0.01706 (12) | |
H04 | −0.036577 | 0.062838 | 0.687503 | 0.020* | |
C05 | 0.18828 (17) | 0.31822 (9) | 0.65163 (5) | 0.01416 (10) | |
C06 | 0.30344 (19) | 0.49536 (10) | 0.69286 (5) | 0.01405 (10) | |
H06 | 0.403384 | 0.588642 | 0.649244 | 0.017* | |
C07 | 0.2287 (2) | 0.26924 (11) | 0.53892 (6) | 0.01863 (12) | |
H07 | 0.129789 | 0.151915 | 0.512489 | 0.022* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O01 | 0.0390 (3) | 0.0266 (3) | 0.0188 (2) | −0.0037 (3) | 0.0094 (2) | −0.0013 (2) |
O02 | 0.0373 (3) | 0.0184 (2) | 0.0311 (3) | −0.0106 (3) | 0.0088 (3) | −0.0032 (2) |
O03 | 0.0461 (4) | 0.0320 (3) | 0.0209 (3) | −0.0065 (3) | 0.0074 (3) | −0.0112 (3) |
N01 | 0.0201 (3) | 0.0162 (2) | 0.0187 (2) | −0.00059 (19) | 0.00057 (19) | −0.00306 (18) |
C01 | 0.0145 (2) | 0.0137 (2) | 0.0148 (2) | −0.00082 (17) | 0.00209 (18) | −0.00065 (17) |
C02 | 0.0185 (3) | 0.0190 (3) | 0.0148 (2) | −0.0012 (2) | 0.0030 (2) | 0.00250 (19) |
C03 | 0.0203 (3) | 0.0171 (3) | 0.0196 (3) | −0.0025 (2) | 0.0034 (2) | 0.0042 (2) |
C04 | 0.0173 (3) | 0.0139 (2) | 0.0200 (3) | −0.00153 (19) | 0.0015 (2) | 0.0017 (2) |
C05 | 0.0143 (2) | 0.0129 (2) | 0.0153 (2) | 0.00052 (19) | 0.00169 (18) | 0.00008 (19) |
C06 | 0.0148 (2) | 0.0132 (2) | 0.0145 (2) | −0.00045 (17) | 0.00272 (17) | 0.00045 (17) |
C07 | 0.0216 (3) | 0.0172 (2) | 0.0174 (3) | 0.0010 (2) | 0.0028 (2) | −0.0031 (2) |
O01—C07 | 1.2152 (10) | C03—C04 | 1.3941 (10) |
O02—N01 | 1.2262 (9) | C03—H03 | 0.9500 |
O03—N01 | 1.2271 (9) | C04—C05 | 1.3974 (9) |
N01—C01 | 1.4711 (9) | C04—H04 | 0.9500 |
C01—C06 | 1.3836 (9) | C05—C06 | 1.3992 (10) |
C01—C02 | 1.3928 (9) | C05—C07 | 1.4797 (9) |
C02—C03 | 1.3909 (11) | C06—H06 | 0.9500 |
C02—H02 | 0.9500 | C07—H07 | 0.9500 |
O03—N01—O02 | 123.79 (8) | C03—C04—C05 | 120.36 (6) |
O03—N01—C01 | 118.29 (7) | C03—C04—H04 | 119.8 |
O02—N01—C01 | 117.92 (6) | C05—C04—H04 | 119.8 |
C06—C01—C02 | 123.15 (6) | C04—C05—C06 | 120.73 (6) |
C06—C01—N01 | 118.48 (6) | C04—C05—C07 | 118.69 (6) |
C02—C01—N01 | 118.36 (6) | C06—C05—C07 | 120.56 (6) |
C03—C02—C01 | 118.65 (6) | C01—C06—C05 | 117.39 (6) |
C03—C02—H02 | 120.7 | C01—C06—H06 | 121.3 |
C01—C02—H02 | 120.7 | C05—C06—H06 | 121.3 |
C02—C03—C04 | 119.72 (6) | O01—C07—C05 | 124.13 (7) |
C02—C03—H03 | 120.1 | O01—C07—H07 | 117.9 |
C04—C03—H03 | 120.1 | C05—C07—H07 | 117.9 |
O03—N01—C01—C06 | 170.48 (8) | C03—C04—C05—C06 | −0.38 (10) |
O02—N01—C01—C06 | −10.01 (10) | C03—C04—C05—C07 | 177.92 (7) |
O03—N01—C01—C02 | −10.63 (11) | C02—C01—C06—C05 | 0.25 (10) |
O02—N01—C01—C02 | 168.88 (7) | N01—C01—C06—C05 | 179.09 (6) |
C06—C01—C02—C03 | −0.08 (11) | C04—C05—C06—C01 | −0.02 (9) |
N01—C01—C02—C03 | −178.92 (7) | C07—C05—C06—C01 | −178.30 (6) |
C01—C02—C03—C04 | −0.34 (11) | C04—C05—C07—O01 | −173.33 (8) |
C02—C03—C04—C05 | 0.56 (11) | C06—C05—C07—O01 | 4.98 (12) |
References
Bruker (2011). SADABS2014/5. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2012). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Coppens, P. (1964). Acta Cryst. 17, 573–578. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Coppens, P. & Schmidt, G. M. J. (1964). Acta Cryst. 17, 222–228. CSD CrossRef IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Jackisch, M. A., Fronczek, F. R. & Butler, L. G. (1989). Acta Cryst. C45, 2016–2018. CSD CrossRef CAS IUCr Journals Google Scholar
King, J. A. & Bryant, G. L. (1996). Acta Cryst. C52, 1691–1693. CSD CrossRef CAS IUCr Journals Google Scholar
Lindpaintner, E. (1939). Mikrochim. Acta, 27, 21–41. CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Schreurs, A. M. M. (2013). PEAKREF. Utrecht University, The Netherlands. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.