organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Nitro­benzaldehyde

aRadboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
*Correspondence e-mail: p.tinnemans@science.ru.nl

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 5 January 2018; accepted 15 January 2018; online 19 January 2018)

Polymorph I of the title compound, C7H5NO3, is approximately planar: the dihedral angle between the benzene ring and the nitro group is 10.41 (4)° and the aldehyde O atom deviates from the ring plane by 0.165 (1) Å. In the crystal, aromatic ππ stacking inter­actions are observed [centroid–centroid separation = 3.7363 (5) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The existence of two polymorphic forms of the title compound, C7H5NO3, has been known for almost eighty years (Lindpaintner, 1939[Lindpaintner, E. (1939). Mikrochim. Acta, 27, 21-41.]); however, to date no crystal structure of the title compound has been reported. Here, we present the crystal structure of the stable polymorph (polymorph I). For the crystal structure of the closely related compound 2-nitro­benzaldehyde, see Coppens & Schmidt (1964[Coppens, P. & Schmidt, G. M. J. (1964). Acta Cryst. 17, 222-228.]) and Coppens (1964[Coppens, P. (1964). Acta Cryst. 17, 573-578.]) and for the crystal structure of 4-nitro­benzalhyde, see Jackisch et al. (1989[Jackisch, M. A., Fronczek, F. R. & Butler, L. G. (1989). Acta Cryst. C45, 2016-2018.]) and King & Bryant (1996[King, J. A. & Bryant, G. L. (1996). Acta Cryst. C52, 1691-1693.]).

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The dihedral angle between the benzene ring and the nitro group is 10.41 (4)° and the aldehyde O atom deviates from the ring plane by 0.165 (1) Å. In the crystal, aromatic ππ stacking inter­actions are observed [centroid–centroid separation = 3.7363 (5) Å].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.

The melting point of the stable polymorph is 327 K, while the melting point of polymorph II is 322 K, as determined using the onset temperature of differential scanning calorimetry.

Synthesis and crystallization

A 100 mg mL−1 solution of 3-nitro­benzaldehyde (Merck, no indication of purity given) in acetone was filtered to obtain a clear yellow solution. Slow evaporation of a 1:1 mixture of this solution and heptane resulted in large colourless needle-shaped crystals of the title compound after two days.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C7H5NO3
Mr 151.12
Crystal system, space group Monoclinic, P21
Temperature (K) 150
a, b, c (Å) 3.7363 (2), 7.0071 (3), 12.5877 (6)
β (°) 94.8144 (16)
V3) 328.39 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.48 × 0.17 × 0.09
 
Data collection
Diffractometer Bruker D8 Quest APEX3
Absorption correction Multi-scan (SADABS; Bruker, 2011[Bruker (2011). SADABS2014/5. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.713, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 18662, 4005, 3735
Rint 0.021
(sin θ/λ)max−1) 0.909
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.089, 1.05
No. of reflections 4005
No. of parameters 100
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.21
Absolute structure Flack x determined using 1595 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter −0.02 (13)
Computer programs: APEX3 (Bruker, 2012[Bruker (2012). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), PEAKREF (Schreurs, 2013[Schreurs, A. M. M. (2013). PEAKREF. Utrecht University, The Netherlands.]), SAINT (Bruker, 2012[Bruker (2012). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and ShelXLe (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2012); cell refinement: PEAKREF (Schreurs, 2013); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009) and ShelXLe (Hübschle et al., 2011).

3-Nitrobenzaldehyde top
Crystal data top
C7H5NO3Dx = 1.528 Mg m3
Mr = 151.12Melting point: 327 K
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 3.7363 (2) ÅCell parameters from 9919 reflections
b = 7.0071 (3) Åθ = 2.9–40.3°
c = 12.5877 (6) ŵ = 0.12 mm1
β = 94.8144 (16)°T = 150 K
V = 328.39 (3) Å3Needle, colourless
Z = 20.48 × 0.17 × 0.09 mm
F(000) = 156
Data collection top
Bruker D8 Quest APEX3
diffractometer
4005 independent reflections
Radiation source: sealed tube3735 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 10.4 pixels mm-1θmax = 40.3°, θmin = 3.3°
φ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
k = 1212
Tmin = 0.713, Tmax = 0.748l = 2222
18662 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0643P)2 + 0.0066P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4005 reflectionsΔρmax = 0.38 e Å3
100 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack x determined using 1595 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (13)
Special details top

Experimental. Polymorph I

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O010.3805 (2)0.36964 (11)0.47803 (5)0.02774 (14)
O020.5659 (2)0.81726 (10)0.79109 (6)0.02858 (15)
O030.3141 (2)0.75360 (14)0.93565 (6)0.03273 (17)
N010.39008 (18)0.71338 (9)0.84537 (5)0.01838 (11)
C010.26607 (18)0.52935 (9)0.79964 (5)0.01429 (10)
C020.1223 (2)0.39635 (11)0.86644 (6)0.01736 (12)
H020.1013030.4249530.9394300.021*
C030.0102 (2)0.22081 (11)0.82413 (6)0.01891 (13)
H030.0874390.1276060.8682730.023*
C040.0419 (2)0.18223 (10)0.71667 (6)0.01706 (12)
H040.0365770.0628380.6875030.020*
C050.18828 (17)0.31822 (9)0.65163 (5)0.01416 (10)
C060.30344 (19)0.49536 (10)0.69286 (5)0.01405 (10)
H060.4033840.5886420.6492440.017*
C070.2287 (2)0.26924 (11)0.53892 (6)0.01863 (12)
H070.1297890.1519150.5124890.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O010.0390 (3)0.0266 (3)0.0188 (2)0.0037 (3)0.0094 (2)0.0013 (2)
O020.0373 (3)0.0184 (2)0.0311 (3)0.0106 (3)0.0088 (3)0.0032 (2)
O030.0461 (4)0.0320 (3)0.0209 (3)0.0065 (3)0.0074 (3)0.0112 (3)
N010.0201 (3)0.0162 (2)0.0187 (2)0.00059 (19)0.00057 (19)0.00306 (18)
C010.0145 (2)0.0137 (2)0.0148 (2)0.00082 (17)0.00209 (18)0.00065 (17)
C020.0185 (3)0.0190 (3)0.0148 (2)0.0012 (2)0.0030 (2)0.00250 (19)
C030.0203 (3)0.0171 (3)0.0196 (3)0.0025 (2)0.0034 (2)0.0042 (2)
C040.0173 (3)0.0139 (2)0.0200 (3)0.00153 (19)0.0015 (2)0.0017 (2)
C050.0143 (2)0.0129 (2)0.0153 (2)0.00052 (19)0.00169 (18)0.00008 (19)
C060.0148 (2)0.0132 (2)0.0145 (2)0.00045 (17)0.00272 (17)0.00045 (17)
C070.0216 (3)0.0172 (2)0.0174 (3)0.0010 (2)0.0028 (2)0.0031 (2)
Geometric parameters (Å, º) top
O01—C071.2152 (10)C03—C041.3941 (10)
O02—N011.2262 (9)C03—H030.9500
O03—N011.2271 (9)C04—C051.3974 (9)
N01—C011.4711 (9)C04—H040.9500
C01—C061.3836 (9)C05—C061.3992 (10)
C01—C021.3928 (9)C05—C071.4797 (9)
C02—C031.3909 (11)C06—H060.9500
C02—H020.9500C07—H070.9500
O03—N01—O02123.79 (8)C03—C04—C05120.36 (6)
O03—N01—C01118.29 (7)C03—C04—H04119.8
O02—N01—C01117.92 (6)C05—C04—H04119.8
C06—C01—C02123.15 (6)C04—C05—C06120.73 (6)
C06—C01—N01118.48 (6)C04—C05—C07118.69 (6)
C02—C01—N01118.36 (6)C06—C05—C07120.56 (6)
C03—C02—C01118.65 (6)C01—C06—C05117.39 (6)
C03—C02—H02120.7C01—C06—H06121.3
C01—C02—H02120.7C05—C06—H06121.3
C02—C03—C04119.72 (6)O01—C07—C05124.13 (7)
C02—C03—H03120.1O01—C07—H07117.9
C04—C03—H03120.1C05—C07—H07117.9
O03—N01—C01—C06170.48 (8)C03—C04—C05—C060.38 (10)
O02—N01—C01—C0610.01 (10)C03—C04—C05—C07177.92 (7)
O03—N01—C01—C0210.63 (11)C02—C01—C06—C050.25 (10)
O02—N01—C01—C02168.88 (7)N01—C01—C06—C05179.09 (6)
C06—C01—C02—C030.08 (11)C04—C05—C06—C010.02 (9)
N01—C01—C02—C03178.92 (7)C07—C05—C06—C01178.30 (6)
C01—C02—C03—C040.34 (11)C04—C05—C07—O01173.33 (8)
C02—C03—C04—C050.56 (11)C06—C05—C07—O014.98 (12)
 

References

First citationBruker (2011). SADABS2014/5. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2012). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoppens, P. (1964). Acta Cryst. 17, 573–578.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCoppens, P. & Schmidt, G. M. J. (1964). Acta Cryst. 17, 222–228.  CSD CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJackisch, M. A., Fronczek, F. R. & Butler, L. G. (1989). Acta Cryst. C45, 2016–2018.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKing, J. A. & Bryant, G. L. (1996). Acta Cryst. C52, 1691–1693.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLindpaintner, E. (1939). Mikrochim. Acta, 27, 21–41.  CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchreurs, A. M. M. (2013). PEAKREF. Utrecht University, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]