organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

S-[2-(2,2-Di­methyl­propanamido)-3-(tri­fluoro­meth­yl)phen­yl] N,N-diiso­propyl­di­thio­carbamate

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK, and cChemistry Department, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, PO Box 83, Al-Kharij 11942, Saudi Arabia
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 January 2018; accepted 5 January 2018; online 12 January 2018)

In the title compound, C19H27F3N2OS2, the dihedral angle between the benzene ring and di­thio­carbamate group is 67.00 (9)° and a weak intra­molecular N—H⋯S inter­action generates an S(7) ring. The tert-butyl group is disordered over two orientations in a 0.628 (14):0.372 (14) ratio. In the crystal, inversion dimers linked by pairs of weak C—H⋯O inter­actions generate R22(20) loops and the aromatic rings of neighbouring pairs of mol­ecules are involved in very weak ππ stacking inter­actions [centroid–centroid separation = 4.0042 (13) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Various N-(substituted phen­yl)pivalamides can be substituted efficiently in reactions with lithium reagents followed by reaction with electrophiles (e.g.: Smith et al., 2015[Smith, K., El-Hiti, G. A., Hegazy, A. S., Alshammari, M. B. & Masmali, A. M. (2015). ARKIVOC iv, 19-47.]; Smith et al., 2012[Smith, K., El-Hiti, G. A. & Alshammari, M. B. (2012). J. Org. Chem. 77, 11210-11215.]). Recently, the X-ray crystal structure of 4-(pivaloyl­amino)­pyridin-3-yl N,N-diiso­propyl­dithio­carbamate has been published (El-Hiti et al., 2014[El-Hiti, G. A., Smith, K., Hegazy, A. S., Baashen, M. & Kariuki, B. M. (2014). Acta Cryst. E70, o1069-o1070.]). We now describe the synthesis and structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure, with displacement ellipsoids at the 50% probability level, showing both orientations of the disordered tert-butyl group.

An intra­molecular N1—H1⋯S2 contact is observed (Table 1[link]). The crystal packing is shown in Fig. 2[link] and features inversion dimers linked by weak C—H⋯O inter­actions and very weak aromatic ππ stacking inter­actions [centroid–centroid separation = 4.0042 (13) Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S2 0.86 2.65 3.2576 (18) 129
C14—H14⋯O1i 0.98 2.35 3.097 (4) 132
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
Crystal packing, viewed down [100]. Hydrogen atoms have been omitted for clarity.

Synthesis and crystallization

N-(2-(tri­fluoro­meth­yl)phen­yl)pivalamide and n-butyl­ltihium (two equivalents) in anhydrous tetra­hydro­furan at 0°C was reacted with tetra­iso­propyl­thiuram di­sulfide (one equivalent). Crystallization of the crude product using ethyl acetate as solvent gave colourless blocks, m.p. 129–131°C.

The NMR spectrum indicates that the two iso-propyl groups are different, possibly due to restricted rotation about the N—C bond (Chatgilialoglu & Asmus, 1990[Chatgilialoglu, C. & Asmus, K.-D. (1990). Sulfur-Centered Reactive Intermediates in Chemistry and Biology. Vol. 179, NATO-ASI Series. New York and London: Plenum.]). The NMR assignments are based on predicted chemical shifts and coupling patterns and have not been rigorously confirmed. 1H NMR (500 MHz, CDCl3): δ 7.84 (d, J = 7.8 Hz, 1 H, H-6), 7.74 (d, J = 7.8 Hz, 1 H, H-4), 7.72 (br s, exch., 1 H, NH), 7.48 (app. t, J = 7.8 Hz, 1 H, H-5), 4.99, 4.07 [2 br, 2 H, 2 CH(CH3)2], 1.66, 1.41 [2 br, 12 H, 2 CH(CH3)2], 1.31 [s, 9 H, C(CH3)3]; 13C NMR (125 MHz, CDCl3): δ 192.4 (C=S), 177.8 (C=O), 140.6 (C-6), 140.5 (C-1), 133.6 (m, C-2), 130.4 (q, J = 30.1 Hz, C-3), 129.2 (q, J = 5.0 Hz, C-4), 128.1 (C-5), 123.2 (q, J = 274.0 Hz, CF3), 56.5, 52.7 [2 CH(CH3)2], 39.1 [C(CH3)3], 27.4 [C(CH3)3], 20.2, 19.6 [2 CH(CH3)2]; EI–MS: m/z (%) = 420 (M+, 12), 259 (31), 244 (72), 219 (23), 144 (80), 102 (100), 100 (41), 57 (26); HRMS (EI): calculated for C19H27F3N2OS2 (MH+): 420.1517; found: 420.1512.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The tert-butyl group is disordered and was modelled with two components with occupancies of 0.628 (14)/0.372 (14).

Table 2
Experimental details

Crystal data
Chemical formula C19H27F3N2OS2
Mr 420.54
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 10.0633 (3), 11.5253 (4), 11.8648 (3)
α, β, γ (°) 103.597 (2), 112.018 (3), 109.899 (3)
V3) 1090.81 (6)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.53
Crystal size (mm) 0.36 × 0.21 × 0.20
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction Gaussian (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.874, 0.917
No. of measured, independent and observed [I > 2σ(I)] reflections 17158, 4349, 3933
Rint 0.022
(sin θ/λ)max−1) 0.623
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.135, 1.08
No. of reflections 4349
No. of parameters 282
No. of restraints 72
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.70, −0.52
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

S-[2-(2,2-Dimethylpropanamido)-3-(trifluoromethyl)phenyl] N,N-diisopropyldithiocarbamate top
Crystal data top
C19H27F3N2OS2Z = 2
Mr = 420.54F(000) = 444
Triclinic, P1Dx = 1.280 Mg m3
a = 10.0633 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.5253 (4) ÅCell parameters from 12098 reflections
c = 11.8648 (3) Åθ = 4.4–74.0°
α = 103.597 (2)°µ = 2.53 mm1
β = 112.018 (3)°T = 296 K
γ = 109.899 (3)°Block, colourless
V = 1090.81 (6) Å30.36 × 0.21 × 0.20 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
3933 reflections with I > 2σ(I)
ω scansRint = 0.022
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
θmax = 74.0°, θmin = 4.4°
Tmin = 0.874, Tmax = 0.917h = 1212
17158 measured reflectionsk = 1314
4349 independent reflectionsl = 1414
Refinement top
Refinement on F272 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0682P)2 + 0.462P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
4349 reflectionsΔρmax = 0.70 e Å3
282 parametersΔρmin = 0.52 e Å3
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET) (compiled Mar 27 2014,17:12:48) numerical absorption correction based on gaussian integration over a multifaceted crystal model empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed in calculated positions and refined using a riding model. Methyl C—H bonds were fixed at 0.96 Å, with displacement parameters 1.5 times Ueq(C), and were allowed to spin about the C—C bond. The N—H bond was fixed at 0.86 Å and aromatic C—H distances were set to 0.93 Å and their U(iso) set to 1.2 times the Ueq for the atoms to which they are bonded.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5618 (2)0.1992 (2)0.6694 (2)0.0492 (5)
C20.4617 (2)0.23679 (19)0.58578 (18)0.0436 (4)
C30.4637 (2)0.2317 (2)0.46719 (19)0.0458 (4)
C40.5665 (3)0.1937 (2)0.4360 (2)0.0550 (5)
H40.56690.19050.35700.066*
C50.6685 (3)0.1604 (2)0.5223 (2)0.0613 (6)
H50.73900.13650.50220.074*
C60.6659 (3)0.1627 (2)0.6372 (2)0.0584 (5)
H60.73420.13960.69450.070*
C70.5636 (3)0.1943 (3)0.7954 (3)0.0671 (6)
C80.4096 (2)0.3958 (2)0.7162 (2)0.0482 (4)
C90.2774 (3)0.4292 (3)0.7235 (2)0.0596 (6)
C100.3551 (12)0.5554 (10)0.8486 (7)0.121 (3)0.628 (14)
H10A0.38750.53470.92520.181*0.628 (14)
H10B0.27820.58820.84440.181*0.628 (14)
H10C0.44910.62390.85610.181*0.628 (14)
C110.1496 (12)0.3079 (9)0.7222 (14)0.115 (3)0.628 (14)
H11A0.20340.27240.77900.172*0.628 (14)
H11B0.07880.23860.63260.172*0.628 (14)
H11C0.08670.33690.75420.172*0.628 (14)
C120.1958 (10)0.4518 (9)0.5999 (6)0.080 (2)0.628 (14)
H12A0.11680.47850.60480.121*0.628 (14)
H12B0.14240.36920.52140.121*0.628 (14)
H12C0.27650.52190.59540.121*0.628 (14)
C10A0.3656 (18)0.5855 (7)0.8072 (15)0.095 (4)0.372 (14)
H10D0.39640.63150.75630.143*0.372 (14)
H10E0.46120.61050.88830.143*0.372 (14)
H10F0.29350.61070.82850.143*0.372 (14)
C11A0.2190 (19)0.3623 (14)0.8041 (16)0.093 (3)0.372 (14)
H11D0.13570.38180.80980.140*0.372 (14)
H11E0.30890.39700.89240.140*0.372 (14)
H11F0.17570.26600.76090.140*0.372 (14)
C12A0.1355 (17)0.391 (2)0.5898 (8)0.113 (5)0.372 (14)
H12D0.06620.29410.54810.169*0.372 (14)
H12E0.17590.41740.53350.169*0.372 (14)
H12F0.07460.43570.60300.169*0.372 (14)
C130.1484 (2)0.1780 (2)0.28142 (18)0.0441 (4)
C140.1219 (3)0.3324 (2)0.1703 (2)0.0508 (5)
H140.24040.36830.21520.061*
C150.0900 (4)0.4433 (3)0.2300 (3)0.0743 (7)
H15A0.02520.41260.18680.111*
H15B0.14320.52190.21760.111*
H15C0.13160.46600.32390.111*
C160.0630 (4)0.2946 (3)0.0227 (3)0.0744 (7)
H16A0.07580.21790.01360.112*
H16B0.12580.37000.01110.112*
H16C0.04990.27180.02290.112*
C170.1287 (2)0.1370 (2)0.1281 (2)0.0564 (5)
H170.16580.18570.07670.068*
C180.1937 (3)0.1447 (3)0.2245 (3)0.0773 (7)
H18A0.16880.09220.27310.116*
H18B0.30960.10930.17540.116*
H18C0.14380.23760.28590.116*
C190.2022 (3)0.0068 (3)0.0255 (3)0.0786 (8)
H19A0.15340.00570.03020.118*
H19B0.31760.04230.02870.118*
H19C0.18210.06300.07080.118*
N10.3565 (2)0.27758 (18)0.61456 (16)0.0489 (4)
H10.25320.22470.56510.059*
N20.05355 (19)0.21183 (17)0.19727 (16)0.0458 (4)
O10.55330 (19)0.46862 (17)0.79613 (18)0.0683 (5)
F10.4313 (3)0.1794 (3)0.8007 (2)0.1186 (8)
F20.6854 (3)0.30527 (19)0.90418 (15)0.0974 (6)
F30.5919 (3)0.09416 (18)0.81723 (17)0.0949 (6)
S10.36197 (6)0.29820 (5)0.36548 (5)0.05110 (16)
S20.08666 (7)0.04280 (5)0.31403 (6)0.05922 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0437 (10)0.0475 (10)0.0471 (10)0.0224 (8)0.0137 (8)0.0191 (8)
C20.0377 (9)0.0446 (10)0.0429 (9)0.0205 (8)0.0156 (7)0.0158 (8)
C30.0396 (9)0.0498 (10)0.0429 (9)0.0220 (8)0.0163 (8)0.0175 (8)
C40.0504 (11)0.0603 (12)0.0523 (11)0.0289 (10)0.0254 (9)0.0168 (9)
C50.0500 (11)0.0609 (13)0.0695 (14)0.0345 (10)0.0259 (11)0.0162 (11)
C60.0469 (11)0.0541 (12)0.0616 (13)0.0289 (10)0.0135 (10)0.0201 (10)
C70.0670 (15)0.0782 (16)0.0636 (14)0.0414 (13)0.0255 (12)0.0422 (13)
C80.0490 (11)0.0556 (11)0.0501 (10)0.0288 (9)0.0276 (9)0.0268 (9)
C90.0616 (13)0.0820 (16)0.0579 (12)0.0466 (12)0.0374 (11)0.0327 (12)
C100.105 (5)0.167 (6)0.072 (4)0.092 (5)0.033 (3)0.001 (4)
C110.101 (5)0.152 (6)0.173 (8)0.079 (5)0.107 (6)0.099 (6)
C120.085 (4)0.118 (5)0.081 (3)0.080 (4)0.045 (3)0.052 (3)
C10A0.108 (6)0.100 (6)0.122 (8)0.071 (5)0.080 (7)0.042 (5)
C11A0.100 (7)0.132 (7)0.119 (7)0.073 (5)0.089 (6)0.077 (6)
C12A0.095 (8)0.183 (12)0.078 (6)0.093 (8)0.045 (5)0.038 (7)
C130.0421 (9)0.0462 (10)0.0400 (9)0.0224 (8)0.0174 (8)0.0148 (8)
C140.0446 (10)0.0562 (11)0.0546 (11)0.0258 (9)0.0217 (9)0.0297 (9)
C150.0895 (19)0.0542 (13)0.0849 (18)0.0357 (13)0.0461 (16)0.0308 (13)
C160.0861 (18)0.0880 (18)0.0624 (14)0.0449 (16)0.0399 (14)0.0415 (14)
C170.0386 (10)0.0569 (12)0.0615 (12)0.0209 (9)0.0148 (9)0.0256 (10)
C180.0533 (13)0.0873 (19)0.099 (2)0.0336 (13)0.0424 (14)0.0440 (16)
C190.0589 (14)0.0589 (14)0.0694 (16)0.0187 (12)0.0026 (12)0.0150 (12)
N10.0385 (8)0.0600 (10)0.0445 (8)0.0250 (7)0.0181 (7)0.0179 (7)
N20.0384 (8)0.0483 (9)0.0467 (8)0.0215 (7)0.0163 (7)0.0203 (7)
O10.0495 (9)0.0578 (9)0.0769 (11)0.0219 (7)0.0263 (8)0.0105 (8)
F10.1074 (14)0.208 (2)0.1278 (16)0.0988 (16)0.0815 (13)0.1291 (18)
F20.1329 (16)0.0901 (12)0.0533 (8)0.0560 (12)0.0331 (10)0.0231 (8)
F30.1371 (16)0.0857 (11)0.0758 (10)0.0685 (11)0.0409 (10)0.0520 (9)
S10.0404 (3)0.0597 (3)0.0505 (3)0.0226 (2)0.0177 (2)0.0290 (2)
S20.0527 (3)0.0490 (3)0.0594 (3)0.0190 (2)0.0150 (2)0.0265 (2)
Geometric parameters (Å, º) top
C1—C21.392 (3)C10A—H10D0.9600
C1—C61.394 (3)C10A—H10E0.9600
C1—C71.503 (3)C10A—H10F0.9600
C2—C31.402 (3)C11A—H11D0.9600
C2—N11.411 (3)C11A—H11E0.9600
C3—C41.385 (3)C11A—H11F0.9600
C3—S11.770 (2)C12A—H12D0.9600
C4—C51.384 (3)C12A—H12E0.9600
C4—H40.9300C12A—H12F0.9600
C5—C61.368 (4)C13—N21.335 (2)
C5—H50.9300C13—S21.664 (2)
C6—H60.9300C13—S11.803 (2)
C7—F11.310 (3)C14—N21.493 (3)
C7—F21.332 (3)C14—C151.504 (4)
C7—F31.337 (3)C14—C161.515 (3)
C8—O11.211 (3)C14—H140.9800
C8—N11.359 (3)C15—H15A0.9600
C8—C91.532 (3)C15—H15B0.9600
C9—C101.507 (6)C15—H15C0.9600
C9—C12A1.513 (7)C16—H16A0.9600
C9—C11A1.520 (7)C16—H16B0.9600
C9—C121.522 (5)C16—H16C0.9600
C9—C111.536 (6)C17—N21.498 (2)
C9—C10A1.558 (7)C17—C181.515 (4)
C10—H10A0.9600C17—C191.522 (4)
C10—H10B0.9600C17—H170.9800
C10—H10C0.9600C18—H18A0.9600
C11—H11A0.9600C18—H18B0.9600
C11—H11B0.9600C18—H18C0.9600
C11—H11C0.9600C19—H19A0.9600
C12—H12A0.9600C19—H19B0.9600
C12—H12B0.9600C19—H19C0.9600
C12—H12C0.9600N1—H10.8600
C2—C1—C6120.0 (2)H10D—C10A—H10F109.5
C2—C1—C7123.1 (2)H10E—C10A—H10F109.5
C6—C1—C7116.90 (19)C9—C11A—H11D109.5
C1—C2—C3118.57 (18)C9—C11A—H11E109.5
C1—C2—N1122.61 (18)H11D—C11A—H11E109.5
C3—C2—N1118.80 (17)C9—C11A—H11F109.5
C4—C3—C2120.60 (19)H11D—C11A—H11F109.5
C4—C3—S1116.70 (16)H11E—C11A—H11F109.5
C2—C3—S1121.95 (15)C9—C12A—H12D109.5
C5—C4—C3119.9 (2)C9—C12A—H12E109.5
C5—C4—H4120.0H12D—C12A—H12E109.5
C3—C4—H4120.0C9—C12A—H12F109.5
C6—C5—C4120.1 (2)H12D—C12A—H12F109.5
C6—C5—H5120.0H12E—C12A—H12F109.5
C4—C5—H5120.0N2—C13—S2126.48 (15)
C5—C6—C1120.7 (2)N2—C13—S1113.18 (14)
C5—C6—H6119.6S2—C13—S1120.33 (11)
C1—C6—H6119.6N2—C14—C15111.50 (19)
F1—C7—F2105.7 (3)N2—C14—C16112.07 (19)
F1—C7—F3107.3 (2)C15—C14—C16112.0 (2)
F2—C7—F3103.7 (2)N2—C14—H14107.0
F1—C7—C1115.9 (2)C15—C14—H14107.0
F2—C7—C1112.5 (2)C16—C14—H14107.0
F3—C7—C1110.9 (2)C14—C15—H15A109.5
O1—C8—N1121.13 (19)C14—C15—H15B109.5
O1—C8—C9122.8 (2)H15A—C15—H15B109.5
N1—C8—C9116.04 (18)C14—C15—H15C109.5
C12A—C9—C11A111.0 (6)H15A—C15—H15C109.5
C10—C9—C12110.6 (5)H15B—C15—H15C109.5
C10—C9—C8109.1 (4)C14—C16—H16A109.5
C12A—C9—C8115.1 (6)C14—C16—H16B109.5
C11A—C9—C8108.0 (5)H16A—C16—H16B109.5
C12—C9—C8107.8 (3)C14—C16—H16C109.5
C10—C9—C11111.3 (4)H16A—C16—H16C109.5
C12—C9—C11108.8 (4)H16B—C16—H16C109.5
C8—C9—C11109.1 (3)N2—C17—C18112.87 (19)
C12A—C9—C10A109.8 (6)N2—C17—C19113.3 (2)
C11A—C9—C10A107.0 (5)C18—C17—C19113.3 (2)
C8—C9—C10A105.5 (6)N2—C17—H17105.5
C9—C10—H10A109.5C18—C17—H17105.5
C9—C10—H10B109.5C19—C17—H17105.5
H10A—C10—H10B109.5C17—C18—H18A109.5
C9—C10—H10C109.5C17—C18—H18B109.5
H10A—C10—H10C109.5H18A—C18—H18B109.5
H10B—C10—H10C109.5C17—C18—H18C109.5
C9—C11—H11A109.5H18A—C18—H18C109.5
C9—C11—H11B109.5H18B—C18—H18C109.5
H11A—C11—H11B109.5C17—C19—H19A109.5
C9—C11—H11C109.5C17—C19—H19B109.5
H11A—C11—H11C109.5H19A—C19—H19B109.5
H11B—C11—H11C109.5C17—C19—H19C109.5
C9—C12—H12A109.5H19A—C19—H19C109.5
C9—C12—H12B109.5H19B—C19—H19C109.5
H12A—C12—H12B109.5C8—N1—C2123.57 (17)
C9—C12—H12C109.5C8—N1—H1118.2
H12A—C12—H12C109.5C2—N1—H1118.2
H12B—C12—H12C109.5C13—N2—C14122.25 (16)
C9—C10A—H10D109.5C13—N2—C17123.01 (17)
C9—C10A—H10E109.5C14—N2—C17114.67 (16)
H10D—C10A—H10E109.5C3—S1—C13105.47 (9)
C9—C10A—H10F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S20.862.653.2576 (18)129
C14—H14···O1i0.982.353.097 (4)132
Symmetry code: (i) x+1, y+1, z+1.
 

Footnotes

Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.

Funding information

The project was supported by King Saud University, Deanship of Scientific Research, Research Chairs. We thank the EPSRC for the grant which supplied the MS instrumentation used in this study.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationChatgilialoglu, C. & Asmus, K.-D. (1990). Sulfur-Centered Reactive Intermediates in Chemistry and Biology. Vol. 179, NATO–ASI Series. New York and London: Plenum.  Google Scholar
First citationEl-Hiti, G. A., Smith, K., Hegazy, A. S., Baashen, M. & Kariuki, B. M. (2014). Acta Cryst. E70, o1069–o1070.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, K., El-Hiti, G. A. & Alshammari, M. B. (2012). J. Org. Chem. 77, 11210–11215.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSmith, K., El-Hiti, G. A., Hegazy, A. S., Alshammari, M. B. & Masmali, A. M. (2015). ARKIVOC iv, 19–47.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]