organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl (Z)-2-[2-(4-methylphenyl)hydrazin-1-yl­idene]-3-oxo-3-(thiazol-2-ylamino)propanoate

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, cApplied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt, dNational Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, PO Box 6086, Riyadh 11442, Saudi Arabia, and eSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 December 2017; accepted 30 December 2017; online 9 January 2018)

In the title compound, C15H16N4O3S, the dihedral angle between the aromatic rings is 15.90 (19)°. The mol­ecule features two intra­molecular N—H⋯O hydrogen bonds, which both close S(6) rings. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into [010] chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Azo dyes containing thia­zole ring systems have various industrial applications (e.g. Hunger, 2003[Hunger, K. (2003). Industrial Dyes: Chemistry, Properties, Application. Weinheim: Wiley-VCH.]; El-Shishtawy et al., 2013[El-Shishtawy, R. M., Borbone, F., Al-amshany, Z. M., Tuzi, A., Barsella, A., Asiri, A. M. & Roviello, A. (2013). Dyes Pigments, 96, 45-51.]). As part of our studies in this area, we now describe the synthesis and structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure showing 50% displacement ellipsoids.

The central atoms (C4/C5/C6/O1/O2/O3/N2/N3/N4) are almost coplanar (r.m.s. deviation = 0.037 Å) and subtend dihedral angles of 10.35 (16) and 6.63 (15)° with the five- and six-membered rings, respectively. The dihedral angle between the rings is 15.90 (19)°. The terminal CH3 group of the ethyl side-chain is twisted away from the rest of the mol­ecule [C6—O3—C7—C8 = 81.4 (5)°]. The mol­ecule features two intra­molecular N—H⋯O hydrogen bonds (Table 1[link]), which both generate S(6) rings. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into [010] C(8) chains (Fig. 2[link]), with adjacent mol­ecules related by the 21 screw axis.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2 0.86 1.93 2.639 (4) 139
N4—H4⋯O1 0.86 1.91 2.590 (4) 135
C10—H10⋯O2i 0.93 2.44 3.255 (5) 147
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view down the a axis of the crystal packing.

Synthesis and crystallization

1-Chloro-2-(4-tol­yl)diazene and ethyl 3-oxo-3-(thia­zol-2-yl­amino)­propano­ate were dissolved in ethanol containing sodium acetate trihydrate and placed in an ice-bath for 2 h. The resulting solid was filtered, washed with ethanol, dried and recrystallized from di­methyl­formamide solution to give yellow blocks, m.p. 152–153°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H16N4O3S
Mr 332.38
Crystal system, space group Orthorhombic, P212121
Temperature (K) 298
a, b, c (Å) 5.6487 (3), 16.7479 (11), 16.9726 (14)
V3) 1605.67 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.18 × 0.18 × 0.11
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Agilent 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.756, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5888, 3601, 2691
Rint 0.022
(sin θ/λ)max−1) 0.698
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.130, 1.07
No. of reflections 3601
No. of parameters 210
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.19
Absolute structure Flack x determined using 863 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.02 (5)
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 20015), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 20015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Ethyl (Z)-2-[2-(4-methylphenyl)hydrazin-1-ylidene]-3-oxo-3-(thiazol-2-ylamino)propanoate top
Crystal data top
C15H16N4O3SDx = 1.375 Mg m3
Mr = 332.38Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1846 reflections
a = 5.6487 (3) Åθ = 3.8–26.8°
b = 16.7479 (11) ŵ = 0.22 mm1
c = 16.9726 (14) ÅT = 298 K
V = 1605.67 (19) Å3Block, yellow
Z = 40.18 × 0.18 × 0.11 mm
F(000) = 696
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
2691 reflections with I > 2σ(I)
ω scansRint = 0.022
Absorption correction: multi-scan
(CrysAlisPro; Agilent 2014)
θmax = 29.8°, θmin = 3.4°
Tmin = 0.756, Tmax = 1.000h = 75
5888 measured reflectionsk = 2315
3601 independent reflectionsl = 2214
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.2718P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.130(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.18 e Å3
3601 reflectionsΔρmin = 0.19 e Å3
210 parametersAbsolute structure: Flack x determined using 863 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.02 (5)
Special details top

Experimental. Version 1.171.37.35g (release 09-12-2014 CrysAlis171 .NET) (compiled Dec 9 2014,15:38:47) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed in calculated positions and refined using a riding model. Methyl C—H bonds were fixed at 0.96 Å, with displacement parameters 1.5 times Ueq(C), and were allowed to spin about the C—C bonds. The N—H bonds were was fixed at 0.86 Å, ethyl C—H were fixed at 0.97 Å and aromatic C—H distances were set to 0.93 Å and their U(iso) set to 1.2 times the Ueq for the atoms to which they are bonded.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5357 (7)0.0268 (2)0.3815 (2)0.0505 (8)
C20.2323 (7)0.0349 (3)0.4602 (2)0.0648 (11)
H20.09770.05790.48200.078*
C30.3136 (8)0.0352 (3)0.4845 (3)0.0663 (11)
H30.24580.06570.52440.080*
C40.8791 (6)0.0096 (2)0.2963 (2)0.0466 (8)
C51.0331 (6)0.0486 (2)0.2376 (2)0.0460 (8)
C60.9915 (7)0.1316 (2)0.2118 (2)0.0547 (9)
C71.1328 (9)0.2416 (2)0.1390 (3)0.0760 (13)
H7A1.08720.27320.18440.091*
H7B1.28550.26070.12090.091*
C80.9588 (13)0.2523 (3)0.0768 (4)0.113 (2)
H8A0.80810.23250.09420.170*
H8B0.94540.30800.06420.170*
H8C1.00790.22330.03080.170*
C91.4593 (6)0.09900 (19)0.1852 (2)0.0441 (7)
C101.4866 (7)0.1794 (2)0.1996 (2)0.0570 (9)
H101.38560.20530.23460.068*
C111.6640 (7)0.2217 (2)0.1622 (3)0.0595 (10)
H111.68070.27610.17180.071*
C121.8173 (6)0.1838 (2)0.1106 (2)0.0576 (10)
C131.7886 (7)0.1027 (2)0.0987 (2)0.0582 (10)
H131.89230.07620.06510.070*
C141.6118 (6)0.0601 (2)0.1349 (2)0.0506 (8)
H141.59540.00560.12560.061*
C152.0080 (7)0.2309 (3)0.0683 (3)0.0792 (13)
H15A2.16100.21170.08400.119*
H15B1.99410.28640.08170.119*
H15C1.98980.22450.01240.119*
N10.3575 (6)0.07177 (19)0.40072 (19)0.0589 (8)
N20.6934 (6)0.05218 (19)0.32443 (18)0.0545 (7)
H2A0.67170.09910.30510.065*
N31.2153 (5)0.01322 (15)0.20449 (17)0.0466 (7)
N41.2696 (5)0.05964 (17)0.22258 (17)0.0486 (7)
H41.18870.08430.25790.058*
O10.9189 (4)0.05855 (15)0.32087 (15)0.0554 (6)
O20.8283 (6)0.17229 (15)0.2343 (2)0.0779 (9)
O31.1534 (5)0.15850 (15)0.16202 (17)0.0660 (8)
S10.5615 (2)0.06154 (6)0.43218 (7)0.0657 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0535 (19)0.0531 (18)0.0449 (19)0.0073 (18)0.0004 (17)0.0047 (16)
C20.057 (2)0.082 (3)0.055 (2)0.009 (2)0.0076 (19)0.004 (2)
C30.069 (2)0.073 (3)0.057 (2)0.017 (2)0.012 (2)0.001 (2)
C40.0492 (19)0.0473 (18)0.0432 (19)0.0053 (15)0.0005 (16)0.0061 (16)
C50.0506 (18)0.0463 (17)0.0411 (18)0.0036 (16)0.0013 (15)0.0031 (15)
C60.065 (2)0.0471 (17)0.052 (2)0.0013 (18)0.007 (2)0.0016 (17)
C70.092 (3)0.049 (2)0.087 (3)0.004 (2)0.013 (3)0.014 (2)
C80.154 (5)0.078 (3)0.109 (4)0.006 (4)0.015 (5)0.017 (3)
C90.0419 (16)0.0476 (16)0.0427 (18)0.0029 (15)0.0039 (15)0.0034 (15)
C100.056 (2)0.0488 (18)0.066 (3)0.0071 (17)0.001 (2)0.0044 (18)
C110.056 (2)0.0474 (19)0.075 (3)0.0039 (17)0.002 (2)0.0031 (19)
C120.0449 (18)0.073 (2)0.055 (2)0.0000 (19)0.0072 (19)0.010 (2)
C130.048 (2)0.076 (2)0.051 (2)0.0026 (19)0.0016 (18)0.0035 (19)
C140.0485 (18)0.0523 (19)0.051 (2)0.0036 (17)0.0027 (16)0.0048 (18)
C150.060 (2)0.099 (3)0.078 (3)0.015 (2)0.001 (2)0.020 (3)
N10.0590 (18)0.066 (2)0.0521 (18)0.0005 (16)0.0080 (16)0.0017 (16)
N20.0598 (17)0.0491 (15)0.0545 (18)0.0006 (15)0.0110 (15)0.0029 (14)
N30.0504 (16)0.0443 (14)0.0452 (16)0.0040 (13)0.0026 (14)0.0020 (13)
N40.0494 (15)0.0457 (14)0.0508 (17)0.0036 (14)0.0051 (13)0.0029 (14)
O10.0627 (15)0.0486 (13)0.0549 (15)0.0013 (13)0.0058 (12)0.0047 (12)
O20.090 (2)0.0508 (14)0.094 (2)0.0145 (15)0.035 (2)0.0115 (15)
O30.0793 (18)0.0462 (13)0.0725 (19)0.0003 (13)0.0211 (16)0.0099 (13)
S10.0756 (6)0.0558 (5)0.0656 (6)0.0035 (5)0.0145 (5)0.0067 (5)
Geometric parameters (Å, º) top
C1—N11.299 (5)C8—H8B0.9600
C1—N21.383 (5)C8—H8C0.9600
C1—S11.718 (4)C9—C141.377 (5)
C2—C31.326 (6)C9—C101.378 (5)
C2—N11.378 (5)C9—N41.409 (4)
C2—H20.9300C10—C111.381 (5)
C3—S11.717 (4)C10—H100.9300
C3—H30.9300C11—C121.385 (6)
C4—O11.236 (4)C11—H110.9300
C4—N21.354 (4)C12—C131.382 (5)
C4—C51.476 (5)C12—C151.516 (5)
C5—N31.313 (4)C13—C141.373 (5)
C5—C61.475 (5)C13—H130.9300
C6—O21.209 (4)C14—H140.9300
C6—O31.325 (4)C15—H15A0.9600
C7—O31.451 (4)C15—H15B0.9600
C7—C81.454 (7)C15—H15C0.9600
C7—H7A0.9700N2—H2A0.8600
C7—H7B0.9700N3—N41.295 (4)
C8—H8A0.9600N4—H40.8600
N1—C1—N2119.8 (3)C10—C9—N4117.6 (3)
N1—C1—S1116.1 (3)C9—C10—C11120.0 (4)
N2—C1—S1124.1 (3)C9—C10—H10120.0
C3—C2—N1116.6 (4)C11—C10—H10120.0
C3—C2—H2121.7C10—C11—C12120.7 (4)
N1—C2—H2121.7C10—C11—H11119.7
C2—C3—S1110.4 (3)C12—C11—H11119.7
C2—C3—H3124.8C13—C12—C11117.9 (4)
S1—C3—H3124.8C13—C12—C15121.7 (4)
O1—C4—N2120.5 (3)C11—C12—C15120.4 (4)
O1—C4—C5121.9 (3)C14—C13—C12122.1 (4)
N2—C4—C5117.5 (3)C14—C13—H13119.0
N3—C5—C6115.0 (3)C12—C13—H13119.0
N3—C5—C4123.5 (3)C13—C14—C9119.1 (4)
C6—C5—C4121.5 (3)C13—C14—H14120.5
O2—C6—O3122.4 (3)C9—C14—H14120.5
O2—C6—C5124.0 (3)C12—C15—H15A109.5
O3—C6—C5113.6 (3)C12—C15—H15B109.5
O3—C7—C8111.5 (4)H15A—C15—H15B109.5
O3—C7—H7A109.3C12—C15—H15C109.5
C8—C7—H7A109.3H15A—C15—H15C109.5
O3—C7—H7B109.3H15B—C15—H15C109.5
C8—C7—H7B109.3C1—N1—C2108.8 (3)
H7A—C7—H7B108.0C4—N2—C1125.7 (3)
C7—C8—H8A109.5C4—N2—H2A117.1
C7—C8—H8B109.5C1—N2—H2A117.1
H8A—C8—H8B109.5N4—N3—C5120.6 (3)
C7—C8—H8C109.5N3—N4—C9121.0 (3)
H8A—C8—H8C109.5N3—N4—H4119.5
H8B—C8—H8C109.5C9—N4—H4119.5
C14—C9—C10120.2 (3)C6—O3—C7116.3 (3)
C14—C9—N4122.2 (3)C3—S1—C188.2 (2)
N1—C2—C3—S10.5 (5)N2—C1—N1—C2178.0 (3)
O1—C4—C5—N33.2 (5)S1—C1—N1—C20.6 (4)
N2—C4—C5—N3178.4 (3)C3—C2—N1—C10.0 (5)
O1—C4—C5—C6176.7 (3)O1—C4—N2—C10.9 (5)
N2—C4—C5—C61.7 (5)C5—C4—N2—C1177.6 (3)
N3—C5—C6—O2177.8 (4)N1—C1—N2—C4176.6 (3)
C4—C5—C6—O22.3 (6)S1—C1—N2—C44.9 (5)
N3—C5—C6—O33.3 (5)C6—C5—N3—N4179.8 (3)
C4—C5—C6—O3176.6 (3)C4—C5—N3—N40.1 (5)
C14—C9—C10—C111.5 (5)C5—N3—N4—C9177.6 (3)
N4—C9—C10—C11177.5 (3)C14—C9—N4—N37.5 (5)
C9—C10—C11—C120.6 (6)C10—C9—N4—N3171.5 (3)
C10—C11—C12—C130.8 (6)O2—C6—O3—C73.4 (6)
C10—C11—C12—C15178.6 (4)C5—C6—O3—C7175.5 (3)
C11—C12—C13—C141.4 (6)C8—C7—O3—C681.4 (5)
C15—C12—C13—C14178.0 (4)C2—C3—S1—C10.7 (3)
C12—C13—C14—C90.5 (5)N1—C1—S1—C30.8 (3)
C10—C9—C14—C130.9 (5)N2—C1—S1—C3177.8 (3)
N4—C9—C14—C13178.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.861.932.639 (4)139
N4—H4···O10.861.912.590 (4)135
C10—H10···O2i0.932.443.255 (5)147
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

Footnotes

Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.

Funding information

The project was supported by King Saud University, Deanship of Scientific Research, Research Chairs.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationEl-Shishtawy, R. M., Borbone, F., Al-amshany, Z. M., Tuzi, A., Barsella, A., Asiri, A. M. & Roviello, A. (2013). Dyes Pigments, 96, 45–51.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHunger, K. (2003). Industrial Dyes: Chemistry, Properties, Application. Weinheim: Wiley-VCH.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]