organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 1-phenyl-1,4-di­hydro­indeno­[1,2-c]pyrazole-3-carboxyl­ate

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, cApplied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt, dNational Center for Petrochemicals Technology, King Abdulaziz City for Science and Technology, PO Box 6086, Riyadh 11442, Saudi Arabia, and eSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 23 December 2017; accepted 23 December 2017; online 9 January 2018)

The non-H atoms of the title mol­ecule, C19H16N2O2, are almost coplanar (r.m.s. deviation = 0.019 Å), apart from the phenyl group, which is disordered with two components of almost equal occupancy: the dihedral angle between them is 78.9 (3)°. In the crystal, weak C—H⋯N hydrogen bonds link the mol­ecules into [001] chains and aromatic ππ stacking inter­actions [shortest centroid–centroid separation = 3.747 (2) Å] form columns parallel to the c-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrazole-3-carboylates can be synthesized using various efficient procedures (e.g. Khidre et al., 2016[Khidre, R. E., Abdel-Wahab, B. F., Farahat, A. A. & Mohamed, H. A. (2016). J. Heterocycl. Chem. 53, 13-31.]; Radwan et al., 2014[Radwan, A. A., Ghorab, M. A., Alsaid, M. S. & Alanazi, F. K. (2014). Acta Pharm. 64, 335-344.]). As part of our studies in this area, we now describe the synthesis and structure of the title compound.

The title mol­ecule is almost planar (r.m.s. deviation = 0.017 Å) apart from the phenyl ring (Fig. 1[link]), which is disordered with two components of almost equal occupancy [50.5 (4)% and 49.5 (4)%]. The components of the disordered phenyl rings are twisted by 54.6 (2) and 46.9 (2)° away from the least-squares plane of the rest of the mol­ecule and the angle between the disorder components is 78.9 (3)°.

[Figure 1]
Figure 1
An ORTEP representation of the title molecule showing 50% probability displacement ellipsoids.

In the crystal, weak C—H⋯N hydrogen bonds (Table 1[link]) link the mol­ecules into [001] chains and aromatic ππ stacking inter­actions [shortest centroid–centroid separation = 3.747 (2) Å] generate columns parallel to the c-axis direction (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯N2i 0.93 2.56 3.489 (5) 178
Symmetry code: (i) x, y, z-1.
[Figure 2]
Figure 2
Crystal packing showing one component of the disordered ring in the mol­ecules.

Synthesis and crystallization

Ethyl 2-oxo-2-(1-oxo-2,3-di­hydro-1H-inden-2-yl)acetate and phenyl hydrazine hydro­chloride were refluxed in ethanol solution for 4 h. The mixture was left to cool and the solid obtained was filtered, washed (ethanol) and dried. Recrystallization from di­methyl­formamide solution provided pale-yellow crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The phenyl ring was modelled with two disorder components with occupancies of 49.5 (4) and 50.5 (4)%.

Table 2
Experimental details

Crystal data
Chemical formula C19H16N2O2
Mr 304.34
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 296
a, b, c (Å) 32.387 (3), 9.8559 (15), 5.0043 (8)
V3) 1597.4 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.38 × 0.13 × 0.05
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction Gaussian (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.991, 0.998
No. of measured, independent and observed [I > 2σ(I)] reflections 10362, 3460, 2661
Rint 0.054
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.149, 1.05
No. of reflections 3460
No. of parameters 240
No. of restraints 37
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.17
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft. CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Ethyl 1-phenyl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxylate top
Crystal data top
C19H16N2O2Dx = 1.265 Mg m3
Mr = 304.34Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 1394 reflections
a = 32.387 (3) Åθ = 4.1–25.3°
b = 9.8559 (15) ŵ = 0.08 mm1
c = 5.0043 (8) ÅT = 296 K
V = 1597.4 (4) Å3Block, pale yellow
Z = 40.38 × 0.13 × 0.05 mm
F(000) = 640
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
2661 reflections with I > 2σ(I)
ω scansRint = 0.054
Absorption correction: gaussian
(CrysAlisPro; Agilent, 2014)
θmax = 29.6°, θmin = 2.2°
Tmin = 0.991, Tmax = 0.998h = 4439
10362 measured reflectionsk = 1112
3460 independent reflectionsl = 56
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0805P)2 + 0.1345P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3460 reflectionsΔρmax = 0.18 e Å3
240 parametersΔρmin = 0.17 e Å3
37 restraints
Special details top

Experimental. Version 1.171.37.35g (release 09-12-2014 CrysAlis171 .NET) (compiled Dec 9 2014,15:38:47) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.38927 (8)0.1784 (3)0.9703 (6)0.0522 (6)
C20.41595 (7)0.0900 (3)1.0968 (7)0.0532 (6)
C30.45872 (8)0.1067 (3)0.9863 (7)0.0593 (7)
H3A0.46830.02410.90100.071*
H3B0.47820.13301.12450.071*
C40.45247 (9)0.2195 (3)0.7847 (7)0.0580 (7)
C50.41075 (8)0.2621 (3)0.7730 (7)0.0552 (6)
C60.48178 (10)0.2807 (4)0.6220 (8)0.0705 (8)
H60.50930.25420.62950.085*
C70.46916 (13)0.3826 (4)0.4476 (8)0.0779 (10)
H70.48850.42460.33780.093*
C80.42798 (12)0.4225 (4)0.4353 (8)0.0748 (9)
H80.42020.49040.31640.090*
C90.39854 (10)0.3633 (3)0.5956 (7)0.0648 (8)
H90.37110.39030.58570.078*
C100.39149 (8)0.0192 (3)1.2805 (7)0.0537 (6)
C110.40527 (8)0.0897 (3)1.4630 (7)0.0588 (7)
C120.38793 (12)0.2480 (4)1.7995 (8)0.0749 (9)
H12A0.40930.21571.91920.090*
H12B0.39870.32461.69950.090*
C130.35063 (14)0.2894 (5)1.9549 (11)0.0985 (13)
H13A0.33990.21232.04910.148*
H13B0.35810.35882.08070.148*
H13C0.33000.32371.83490.148*
C140.31175 (11)0.2208 (5)1.0428 (9)0.050 (3)0.505 (4)
C150.28917 (13)0.2838 (5)1.2438 (7)0.0645 (16)0.505 (4)
H150.29830.28011.41970.077*0.505 (4)
C160.25288 (12)0.3522 (5)1.1818 (8)0.075 (2)0.505 (4)
H160.23780.39431.31630.090*0.505 (4)
C170.23917 (12)0.3576 (6)0.9188 (9)0.074 (4)0.505 (4)
H170.21490.40330.87740.089*0.505 (4)
C180.26174 (13)0.2946 (6)0.7178 (7)0.083 (2)0.505 (4)
H180.25260.29820.54190.099*0.505 (4)
C190.29804 (13)0.2262 (5)0.7798 (8)0.0689 (18)0.505 (4)
H190.31310.18400.64530.083*0.505 (4)
C14A0.31445 (9)0.2308 (4)1.0024 (12)0.045 (2)0.495 (4)
C15A0.31241 (10)0.3716 (3)0.9934 (12)0.0573 (14)0.495 (4)
H15A0.33630.42291.01290.069*0.495 (4)
C16A0.27464 (13)0.4357 (3)0.9553 (12)0.0685 (17)0.495 (4)
H16A0.27330.52990.94930.082*0.495 (4)
C17A0.23890 (10)0.3590 (4)0.9262 (12)0.072 (4)0.495 (4)
H17A0.21360.40190.90070.086*0.495 (4)
C18A0.24094 (9)0.2182 (4)0.9351 (11)0.0652 (17)0.495 (4)
H18A0.21700.16690.91560.078*0.495 (4)
C19A0.27872 (12)0.1541 (3)0.9732 (11)0.0565 (14)0.495 (4)
H19A0.28010.05990.97920.068*0.495 (4)
N10.35113 (6)0.1593 (2)1.0792 (6)0.0543 (6)
N20.35193 (6)0.0611 (2)1.2712 (6)0.0575 (6)
O10.44040 (7)0.1290 (3)1.4686 (7)0.0823 (8)
O20.37529 (6)0.1400 (2)1.6176 (5)0.0663 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0458 (13)0.0540 (14)0.0569 (15)0.0039 (10)0.0074 (12)0.0135 (12)
C20.0431 (12)0.0557 (14)0.0607 (15)0.0047 (10)0.0058 (12)0.0127 (13)
C30.0469 (13)0.0653 (16)0.0658 (17)0.0072 (11)0.0032 (13)0.0138 (15)
C40.0532 (14)0.0636 (17)0.0571 (15)0.0008 (11)0.0005 (13)0.0135 (14)
C50.0540 (14)0.0554 (14)0.0561 (15)0.0024 (11)0.0036 (13)0.0156 (13)
C60.0594 (16)0.080 (2)0.072 (2)0.0042 (15)0.0023 (15)0.0102 (18)
C70.087 (2)0.075 (2)0.072 (2)0.0097 (17)0.0097 (19)0.0071 (17)
C80.093 (2)0.0641 (19)0.068 (2)0.0001 (16)0.0030 (18)0.0000 (16)
C90.0684 (18)0.0589 (16)0.0669 (18)0.0061 (13)0.0076 (16)0.0089 (15)
C100.0448 (12)0.0489 (13)0.0674 (16)0.0024 (10)0.0085 (12)0.0085 (13)
C110.0498 (14)0.0550 (15)0.0717 (19)0.0048 (11)0.0071 (14)0.0122 (14)
C120.086 (2)0.0666 (19)0.072 (2)0.0158 (16)0.0073 (19)0.0028 (17)
C130.099 (3)0.100 (3)0.096 (3)0.005 (2)0.002 (3)0.018 (3)
C140.039 (4)0.055 (5)0.056 (5)0.003 (3)0.005 (3)0.001 (4)
C150.058 (3)0.084 (4)0.051 (3)0.015 (3)0.002 (3)0.001 (3)
C160.064 (4)0.099 (5)0.062 (4)0.030 (3)0.007 (3)0.001 (3)
C170.054 (7)0.098 (7)0.069 (7)0.023 (7)0.002 (7)0.000 (7)
C180.062 (4)0.130 (7)0.057 (4)0.025 (4)0.010 (3)0.009 (4)
C190.053 (3)0.091 (5)0.063 (4)0.012 (3)0.000 (3)0.019 (4)
C14A0.040 (4)0.052 (5)0.043 (3)0.004 (3)0.005 (3)0.001 (3)
C15A0.052 (3)0.050 (3)0.070 (4)0.003 (2)0.001 (3)0.007 (3)
C16A0.063 (3)0.062 (3)0.081 (4)0.014 (3)0.002 (3)0.005 (3)
C17A0.050 (6)0.098 (7)0.067 (7)0.026 (6)0.004 (6)0.008 (7)
C18A0.041 (3)0.093 (5)0.062 (4)0.000 (3)0.006 (2)0.000 (3)
C19A0.049 (3)0.061 (3)0.060 (3)0.000 (2)0.005 (3)0.001 (3)
N10.0425 (10)0.0509 (12)0.0696 (15)0.0043 (8)0.0064 (10)0.0064 (11)
N20.0440 (11)0.0502 (12)0.0782 (16)0.0002 (8)0.0075 (12)0.0025 (12)
O10.0547 (12)0.0882 (16)0.104 (2)0.0218 (10)0.0061 (13)0.0110 (15)
O20.0587 (11)0.0633 (12)0.0768 (14)0.0092 (9)0.0048 (11)0.0027 (11)
Geometric parameters (Å, º) top
C1—N11.363 (4)C13—H13B0.9600
C1—C21.380 (4)C13—H13C0.9600
C1—C51.463 (5)C14—C151.3900
C2—C101.400 (5)C14—C191.3900
C2—C31.501 (4)C14—N11.424 (3)
C3—C41.515 (5)C15—C161.3900
C3—H3A0.9700C15—H150.9300
C3—H3B0.9700C16—C171.3900
C4—C61.388 (5)C16—H160.9300
C4—C51.416 (4)C17—C181.3900
C5—C91.393 (5)C17—H170.9300
C6—C71.392 (6)C18—C191.3900
C6—H60.9300C18—H180.9300
C7—C81.392 (5)C19—H190.9300
C7—H70.9300C14A—C15A1.3900
C8—C91.376 (5)C14A—C19A1.3900
C8—H80.9300C14A—N11.434 (4)
C9—H90.9300C15A—C16A1.3900
C10—N21.347 (3)C15A—H15A0.9300
C10—C111.478 (4)C16A—C17A1.3900
C11—O11.202 (3)C16A—H16A0.9300
C11—O21.337 (4)C17A—C18A1.3900
C12—O21.459 (4)C17A—H17A0.9300
C12—C131.494 (6)C18A—C19A1.3900
C12—H12A0.9700C18A—H18A0.9300
C12—H12B0.9700C19A—H19A0.9300
C13—H13A0.9600N1—N21.364 (4)
N1—C1—C2107.3 (3)H13A—C13—H13C109.5
N1—C1—C5141.1 (2)H13B—C13—H13C109.5
C2—C1—C5111.6 (2)C15—C14—C19120.0
C1—C2—C10105.2 (2)C15—C14—N1124.7 (3)
C1—C2—C3109.8 (3)C19—C14—N1115.1 (3)
C10—C2—C3145.0 (3)C16—C15—C14120.0
C2—C3—C4101.7 (2)C16—C15—H15120.0
C2—C3—H3A111.4C14—C15—H15120.0
C4—C3—H3A111.4C15—C16—C17120.0
C2—C3—H3B111.4C15—C16—H16120.0
C4—C3—H3B111.4C17—C16—H16120.0
H3A—C3—H3B109.3C16—C17—C18120.0
C6—C4—C5120.0 (3)C16—C17—H17120.0
C6—C4—C3128.2 (3)C18—C17—H17120.0
C5—C4—C3111.9 (3)C19—C18—C17120.0
C9—C5—C4120.6 (3)C19—C18—H18120.0
C9—C5—C1134.4 (3)C17—C18—H18120.0
C4—C5—C1105.0 (3)C18—C19—C14120.0
C4—C6—C7118.7 (3)C18—C19—H19120.0
C4—C6—H6120.6C14—C19—H19120.0
C7—C6—H6120.6C15A—C14A—C19A120.0
C8—C7—C6120.8 (3)C15A—C14A—N1122.6 (2)
C8—C7—H7119.6C19A—C14A—N1116.8 (3)
C6—C7—H7119.6C14A—C15A—C16A120.0
C9—C8—C7121.2 (3)C14A—C15A—H15A120.0
C9—C8—H8119.4C16A—C15A—H15A120.0
C7—C8—H8119.4C17A—C16A—C15A120.0
C8—C9—C5118.6 (3)C17A—C16A—H16A120.0
C8—C9—H9120.7C15A—C16A—H16A120.0
C5—C9—H9120.7C16A—C17A—C18A120.0
N2—C10—C2111.3 (3)C16A—C17A—H17A120.0
N2—C10—C11122.1 (3)C18A—C17A—H17A120.0
C2—C10—C11126.7 (2)C19A—C18A—C17A120.0
O1—C11—O2123.6 (3)C19A—C18A—H18A120.0
O1—C11—C10122.3 (3)C17A—C18A—H18A120.0
O2—C11—C10114.1 (2)C18A—C19A—C14A120.0
O2—C12—C13107.3 (3)C18A—C19A—H19A120.0
O2—C12—H12A110.3C14A—C19A—H19A120.0
C13—C12—H12A110.3C1—N1—N2111.2 (2)
O2—C12—H12B110.3C1—N1—C14134.6 (3)
C13—C12—H12B110.3N2—N1—C14114.1 (3)
H12A—C12—H12B108.5C1—N1—C14A125.2 (3)
C12—C13—H13A109.5N2—N1—C14A123.6 (3)
C12—C13—H13B109.5C10—N2—N1105.1 (2)
H13A—C13—H13B109.5C11—O2—C12115.3 (2)
C12—C13—H13C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···N2i0.932.563.489 (5)178
Symmetry code: (i) x, y, z1.
 

Footnotes

Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.

Funding information

The project was supported by King Saud University, Deanship of Scientific Research, Research Chairs.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationCambridge Soft. CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKhidre, R. E., Abdel-Wahab, B. F., Farahat, A. A. & Mohamed, H. A. (2016). J. Heterocycl. Chem. 53, 13–31.  Web of Science CrossRef CAS Google Scholar
First citationRadwan, A. A., Ghorab, M. A., Alsaid, M. S. & Alanazi, F. K. (2014). Acta Pharm. 64, 335–344.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]