organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

S-2-Amino­phenyl phenyl­carbamo­thio­ate

aDepartment of Physics, Faculty of Sciences, Erciyes University, Kayseri 38039, Turkey, and bDepartment of Chemistry, Howard University, Washington DC 20059, USA
*Correspondence e-mail: ozturk@erciyes.edu.tr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 December 2017; accepted 10 January 2018; online 12 January 2018)

In the title compound, C13H12N2OS, which was obtained from the condensation reaction of 2-amino­benzene­thiol with iso­cyanato­benzene, the benzene rings are inclined to one another by 83.5 (1)° and a short intra­molecular C—H⋯O contact is observed. In the crystal, mol­ecules are linked by N—H⋯O and N—H⋯N hydrogen bonds, generating (001) sheets.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Organic carbamo­thio­ates are a class of compounds that play an important role in the synthesis of pharmaceuticals and agricultural chemicals (Torrico-Vallejos et al., 2011[Torrico-Vallejos, S., Erben, M. F., Hey-Hawkins, E. & Della Védova, C. O. (2011). Tetrahedron Lett. 52, 5352-5354.]; Belkhir et al., 2015[Belkhir, K., Shen, H., Chen, J., Jegat, C. & Taha, M. (2015). Eur. Polym. J. 66, 290-300.]). As part of our studies in this area, the title compound (Fig. 1[link]) was obtained from the condensation reaction of 2-amino­benzene­thiol with iso­cyanato­benzene.

[Figure 1]
Figure 1
The mol­ecular structure with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as circles of arbitrary size.

The dihedral angle between the aromatic rings is 83.5 (1)° and the major twist occurs about the C6—S1 bond [C1—C6—S1—C7 = 87.6 (2)°]. The C—S bond distances are comparable with those in related structures [average C—S = 1.778 (6) Å in S-phenyl 4-meth­oxy­benzo­thio­ate (El-Azab et al., 2012[El-Azab, A. S., Abdel-Aziz, A. A.-M., El-Subbagh, H. I., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o1074-o1075.]) and 1.7733 (2) Å in ethane-1,2-diyl bis(benzene­dithio­ate) (Abe et al., 2011[Abe, D., Sasanuma, Y. & Sato, H. (2011). Acta Cryst. E67, o961.])]. The least-squares plane through the S-methyl methyl­carbamo­thio­ate unit (S1/C7/O1/N2) makes dihedral angles of 88.3 (1) and 6.9 (1)° with the C1–C6 and C8–C13 benzene rings, respectively.

In the crystal, N—H⋯O and N—H⋯N hydrogen bonds connect the mol­ecules into (001) sheets (Fig. 2[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O1 0.95 2.32 2.928 (4) 121
N1—H1N2⋯O1i 0.87 (4) 2.15 (4) 2.896 (3) 143 (3)
N2—H2N⋯N1ii 0.86 (4) 2.14 (4) 2.993 (3) 173 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
A packing diagram viewed along [001]. Hydrogen-bonding inter­actions are shown with dashed lines.

Synthesis and crystallization

2-Amino­benzene­thiol (7.9 mmol, 0.85 ml) was added to an iso­cyanato­benzene solution (8.7 mmol, 0.9 ml) in 5 ml di­methyl­formamide (Fig. 3[link]). The mixture was stirred at 0°C until the reaction was complete, and then warmed to room temperature. A precipitate was formed after adding 5 ml water. The precipitate was filtered off and washed with toluene. The resulting residue was purified by recrystallization from Et2O solution to afford S-(2-amino­phen­yl) phenyl­carbamo­thio­ate (1.2 g, 69% yield) as a white solid. Slow evaporation of the solvent resulted in colourless plates. 1H NMR (400 MHz, DMSO) δ 10.40 (s, 1H, NH), 7.49 (d, J = 7.9 Hz, 2H), 7.29 (t, J = 7.8 Hz, 2H), 7.21 (d, J = 7.6 Hz, 1H), 7.14 (t, J = 7.6 Hz, 1H), 7.08–6.95 (m, 1H), 6.77 (d, J = 8.1 Hz, 1H), 6.55 (t, J = 7.4 Hz, 1H), 5.36 (s, 2H, NH2).

[Figure 3]
Figure 3
Reaction scheme.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H12N2OS
Mr 244.31
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 9.448 (5), 10.395 (5), 24.337 (5)
V3) 2390.2 (18)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.35 × 0.19 × 0.08
 
Data collection
Diffractometer Rigaku OD SuperNova, Dual, Cu at zero, Atlas
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD. (2015). CrysAlis PRO. Rigaku Oxford Diffraction, The Woodlands, Texas, USA.])
Tmin, Tmax 0.712, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 37562, 5122, 2960
Rint 0.117
(sin θ/λ)max−1) 0.812
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.094, 0.217, 1.08
No. of reflections 5122
No. of parameters 166
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.89, −0.49
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD. (2015). CrysAlis PRO. Rigaku Oxford Diffraction, The Woodlands, Texas, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

S-2-Aminophenyl phenylcarbamothioate top
Crystal data top
C13H12N2OSDx = 1.358 Mg m3
Mr = 244.31Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 4641 reflections
a = 9.448 (5) Åθ = 3.8–33.3°
b = 10.395 (5) ŵ = 0.26 mm1
c = 24.337 (5) ÅT = 100 K
V = 2390.2 (18) Å3Plate, colourless
Z = 80.35 × 0.19 × 0.08 mm
F(000) = 1024
Data collection top
Rigaku OD SuperNova, Dual, Cu at zero, Atlas
diffractometer
5122 independent reflections
Radiation source: micro-focus sealed X-ray tube2960 reflections with I > 2σ(I)
Detector resolution: 10.6501 pixels mm-1Rint = 0.117
ω scansθmax = 35.3°, θmin = 3.4°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2015)
h = 1414
Tmin = 0.712, Tmax = 1.000k = 1616
37562 measured reflectionsl = 3838
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.094H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.217 w = 1/[σ2(Fo2) + (0.0531P)2 + 4.6756P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
5122 reflectionsΔρmax = 0.89 e Å3
166 parametersΔρmin = 0.49 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms on N atoms were located in difference maps and refined isotropically. The remaining H atoms were positioned geometrically and treated as riding, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.27820 (6)0.48071 (7)0.50003 (3)0.02546 (16)
O10.1937 (2)0.6451 (2)0.57835 (9)0.0342 (5)
N10.4537 (2)0.6976 (3)0.45289 (11)0.0285 (5)
H1N10.463 (3)0.675 (3)0.4882 (13)0.023 (8)*
H1N20.499 (4)0.770 (4)0.4493 (15)0.038 (10)*
N20.3466 (2)0.4836 (2)0.60304 (9)0.0268 (5)
H2N0.398 (4)0.427 (4)0.5872 (14)0.043 (10)*
C10.3125 (3)0.6969 (3)0.43601 (11)0.0255 (5)
C20.2647 (3)0.7841 (3)0.39658 (12)0.0301 (6)
H2A0.3286140.8450790.3814560.036*
C30.1248 (3)0.7826 (3)0.37920 (12)0.0349 (6)
H3A0.0938550.8430920.3525110.042*
C40.0297 (3)0.6940 (3)0.40033 (12)0.0357 (7)
H4A0.0664870.6945760.3889710.043*
C50.0770 (3)0.6045 (3)0.43822 (11)0.0301 (6)
H5A0.0129110.5420760.4521120.036*
C60.2175 (2)0.6044 (3)0.45646 (10)0.0232 (5)
C70.2669 (3)0.5517 (3)0.56763 (11)0.0255 (5)
C80.3536 (3)0.4943 (3)0.66088 (11)0.0271 (5)
C90.4367 (3)0.4039 (3)0.68797 (13)0.0364 (7)
H9A0.4844750.3393390.6674980.044*
C100.4502 (4)0.4074 (4)0.74440 (14)0.0484 (9)
H10A0.5074900.3455600.7625780.058*
C110.3807 (5)0.5005 (4)0.77457 (14)0.0528 (10)
H11A0.3880730.5019480.8134930.063*
C120.3004 (4)0.5915 (4)0.74748 (14)0.0489 (9)
H12A0.2546100.6570160.7681070.059*
C130.2851 (3)0.5895 (3)0.69083 (12)0.0363 (7)
H13A0.2286910.6522330.6727730.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0209 (3)0.0266 (3)0.0289 (3)0.0001 (2)0.0013 (2)0.0007 (2)
O10.0286 (10)0.0331 (11)0.0409 (11)0.0105 (8)0.0030 (8)0.0033 (9)
N10.0193 (9)0.0277 (12)0.0386 (13)0.0035 (9)0.0017 (9)0.0009 (10)
N20.0212 (10)0.0296 (12)0.0296 (11)0.0047 (9)0.0000 (8)0.0016 (9)
C10.0207 (10)0.0246 (13)0.0312 (12)0.0027 (9)0.0021 (9)0.0047 (10)
C20.0315 (13)0.0241 (13)0.0346 (14)0.0035 (10)0.0041 (11)0.0014 (10)
C30.0341 (14)0.0368 (17)0.0339 (14)0.0136 (12)0.0009 (11)0.0011 (12)
C40.0230 (12)0.0482 (19)0.0358 (15)0.0101 (12)0.0024 (10)0.0005 (13)
C50.0182 (10)0.0398 (16)0.0324 (13)0.0001 (10)0.0003 (9)0.0009 (11)
C60.0184 (10)0.0244 (12)0.0269 (11)0.0034 (9)0.0000 (8)0.0002 (9)
C70.0171 (10)0.0269 (13)0.0327 (13)0.0003 (9)0.0003 (9)0.0012 (10)
C80.0232 (11)0.0285 (14)0.0298 (12)0.0015 (10)0.0003 (9)0.0002 (10)
C90.0386 (15)0.0344 (16)0.0363 (15)0.0087 (13)0.0023 (12)0.0001 (12)
C100.063 (2)0.045 (2)0.0377 (17)0.0161 (18)0.0070 (15)0.0025 (14)
C110.078 (3)0.053 (2)0.0274 (15)0.015 (2)0.0036 (16)0.0010 (14)
C120.063 (2)0.047 (2)0.0371 (16)0.0152 (18)0.0056 (15)0.0054 (15)
C130.0364 (15)0.0365 (18)0.0361 (15)0.0083 (13)0.0017 (12)0.0006 (12)
Geometric parameters (Å, º) top
S1—C61.763 (3)C4—C51.383 (4)
S1—C71.806 (3)C4—H4A0.9500
O1—C71.221 (3)C5—C61.400 (4)
N1—C11.397 (3)C5—H5A0.9500
N1—H1N10.90 (3)C8—C131.389 (4)
N1—H1N20.87 (4)C8—C91.391 (4)
N2—C71.346 (3)C9—C101.380 (4)
N2—C81.414 (3)C9—H9A0.9500
N2—H2N0.86 (4)C10—C111.381 (5)
C1—C21.395 (4)C10—H10A0.9500
C1—C61.406 (4)C11—C121.380 (5)
C2—C31.388 (4)C11—H11A0.9500
C2—H2A0.9500C12—C131.387 (5)
C3—C41.386 (5)C12—H12A0.9500
C3—H3A0.9500C13—H13A0.9500
C6—S1—C7103.32 (13)C5—C6—S1120.0 (2)
C1—N1—H1N1112 (2)C1—C6—S1120.30 (19)
C1—N1—H1N2116 (2)O1—C7—N2126.8 (3)
H1N1—N1—H1N2106 (3)O1—C7—S1123.6 (2)
C7—N2—C8128.5 (2)N2—C7—S1109.58 (19)
C7—N2—H2N113 (2)C13—C8—C9119.7 (3)
C8—N2—H2N118 (2)C13—C8—N2123.8 (3)
C2—C1—N1120.6 (3)C9—C8—N2116.4 (3)
C2—C1—C6118.8 (2)C10—C9—C8120.4 (3)
N1—C1—C6120.6 (2)C10—C9—H9A119.8
C3—C2—C1120.7 (3)C8—C9—H9A119.8
C3—C2—H2A119.6C9—C10—C11120.3 (3)
C1—C2—H2A119.6C9—C10—H10A119.9
C4—C3—C2120.8 (3)C11—C10—H10A119.9
C4—C3—H3A119.6C12—C11—C10119.2 (3)
C2—C3—H3A119.6C12—C11—H11A120.4
C5—C4—C3119.0 (3)C10—C11—H11A120.4
C5—C4—H4A120.5C11—C12—C13121.5 (3)
C3—C4—H4A120.5C11—C12—H12A119.3
C4—C5—C6121.2 (3)C13—C12—H12A119.3
C4—C5—H5A119.4C12—C13—C8119.0 (3)
C6—C5—H5A119.4C12—C13—H13A120.5
C5—C6—C1119.5 (2)C8—C13—H13A120.5
N1—C1—C2—C3179.2 (3)C8—N2—C7—S1170.7 (2)
C6—C1—C2—C32.2 (4)C6—S1—C7—O119.6 (3)
C1—C2—C3—C40.5 (4)C6—S1—C7—N2162.42 (18)
C2—C3—C4—C51.5 (5)C7—N2—C8—C136.3 (5)
C3—C4—C5—C61.7 (4)C7—N2—C8—C9174.8 (3)
C4—C5—C6—C10.1 (4)C13—C8—C9—C100.7 (5)
C4—C5—C6—S1174.4 (2)N2—C8—C9—C10179.7 (3)
C2—C1—C6—C52.0 (4)C8—C9—C10—C110.3 (6)
N1—C1—C6—C5179.0 (2)C9—C10—C11—C121.5 (6)
C2—C1—C6—S1172.4 (2)C10—C11—C12—C131.7 (7)
N1—C1—C6—S14.5 (4)C11—C12—C13—C80.7 (6)
C7—S1—C6—C598.0 (2)C9—C8—C13—C120.5 (5)
C7—S1—C6—C187.6 (2)N2—C8—C13—C12179.4 (3)
C8—N2—C7—O17.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O10.952.322.928 (4)121
N1—H1N2···O1i0.87 (4)2.15 (4)2.896 (3)143 (3)
N2—H2N···N1ii0.86 (4)2.14 (4)2.993 (3)173 (4)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The title compound was synthesized by Şengül Dilem Doğan, Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey.

Funding information

RJB is grateful for funding from NSF (award 1205608) and the Partnership for Reduced Dimensional Materials for partial funding of this research, to Howard University Nanoscience Facility for access to liquid nitro­gen, and the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer.

References

First citationAbe, D., Sasanuma, Y. & Sato, H. (2011). Acta Cryst. E67, o961.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBelkhir, K., Shen, H., Chen, J., Jegat, C. & Taha, M. (2015). Eur. Polym. J. 66, 290–300.  Web of Science CrossRef CAS Google Scholar
First citationEl-Azab, A. S., Abdel-Aziz, A. A.-M., El-Subbagh, H. I., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o1074–o1075.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD. (2015). CrysAlis PRO. Rigaku Oxford Diffraction, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTorrico-Vallejos, S., Erben, M. F., Hey-Hawkins, E. & Della Védova, C. O. (2011). Tetrahedron Lett. 52, 5352–5354.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]