organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Bromo-6-nitro-1-(prop-2-en-1-yl)-1H-indazole

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des médicaments, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: jalilmostafa202@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 December 2017; accepted 22 December 2017; online 9 January 2018)

The asymmetric unit of the title compound, C10H8BrN3O2, contains two independent mol­ecules differing primarily in the orientations of the allyl substituents [N—C—C=C torsion angles = −125.4 (16) and 116.0 (16)°]. The crystal packing involves slipped ππ stacking of indazole units, together with weak C—H⋯O and C—H⋯Br hydrogen bonds. The crystal studied was refined as a two-component twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Studies of the structure and physicochemical properties of the indazole ring have been reviewed (Abbassi et al., 2014[Abbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423-431.]; Li et al., 2003[Li, X., Chu, S., Feher, V. A., Khalili, M., Nie, Z., Margosiak, S., Nikulin, V., Levin, J., Sprankle, K. G., Tedder, M. E., Almassy, R., Appelt, K. & Yager, K. M. (2003). J. Med. Chem. 46, 5663-5673.]). As a continuation of our studies of indazole derivatives (Mohamed Abdelahi et al., 2017[Mohamed Abdelahi, M. M., El Bakri, Y., Benchidmi, M., Essassi, E. M. & &Mague, J. T. (2017). IUCrData, 2, x170432.]), we now report the synthesis and structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The asymmetric unit showing 50% probability ellipsoids.

The asymmetric unit consists of two independent mol­ecules differing primarily in the orientations of the allyl group. Thus, the torsion angles N2—N1—C8—C9 and N5—N4—C18—C19 are, respectively, −77.9 (15) and −71.9 (15)° while the N1—C8—C9—C10 and N4—C18—C19—C20 torsion angles are, respectively, −125.4 (16) and 116.0 (16)°.

In the crystal, offset ππ stacking inter­actions between the N1/N2/C1/C2/C7 ring and the N4/N5/C11/C12/C17 ring at −x + [{3\over 2}], y − [{1\over 2}], −z + [{1\over 2}] form dimers with a dihedral angle between the ring planes of 3.9 (8)° and a centroid–centroid distance of 3.494 (8) Å. These dimers are arranged into two sets of oblique stacks, generally along the a-axis direction, by C4—H4⋯O1 and C18—H1B⋯O4 hydrogen bonds (Table 1[link] and Figs. 2[link]–4[link][link]). The normals to the stacks are inclined by +/-30.0 (8)° to [100] and by 44.7 (8)° to each other. Weak C—H⋯Br inter­actions are also observed (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.46 3.304 (16) 147
C18—H18B⋯O4ii 0.99 2.59 3.578 (16) 174
C9—H9⋯Br1iii 0.95 3.09 3.814 (11) 134
C18—H18A⋯Br1iv 0.99 2.91 3.770 (14) 146
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Detail of the inter­molecular inter­actions. C—H⋯O and C—H⋯Br hydrogen bonds and the π-stacking inter­actions are shown, respectively, as black, light-orange and brown dashed lines.
[Figure 3]
Figure 3
Packing viewed along the a-axis direction with inter­molecular inter­actions shown as in Fig. 2[link]
[Figure 4]
Figure 4
Packing viewed along the b-axis direction with inter­molecular inter­actions shown as in Fig. 2[link]

Synthesis and crystallization

Allyl bromide (0.8 g, 5 mmol), potassium carbonate (1.24 g, 9 mmol) and a catalytic qu­antity of tetra-n-butyl­ammonium iodide were added to a solution of 3-bromo-6-nitro-1H-indazole (0.6 g, 3 mmol) in tetra­hydro­furan (30 ml). The mixture was stirred at room temperature for 48 h. The solution was then filtered and the solvent removed under reduced pressure. The residue was recrystallized from ethanol solution to afford the title compound as pale-orange plates (yield: 67%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The model was refined as a two-component twin. The largest residual peaks in the final difference map are not in chemically reasonable positions to represent additional atoms. Possible sources may be inadequacies in the absorption corrections due to the large absorption coefficient and difficulties in accurately measuring the dimensions of the small crystal or a small amount of `whole mol­ecule disorder' (ca 3%) with these peaks representing alternate locations of the bromine atoms but with peaks for the remainder of those mol­ecules too small to be located confidently.

Table 2
Experimental details

Crystal data
Chemical formula C10H8BrN3O2
Mr 282.10
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 7.5971 (4), 9.9501 (5), 28.5690 (13)
β (°) 95.086 (2)
V3) 2151.08 (18)
Z 8
Radiation type Cu Kα
μ (mm−1) 5.14
Crystal size (mm) 0.25 × 0.09 × 0.04
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.])
Tmin, Tmax 0.36, 0.82
No. of measured, independent and observed [I > 2σ(I)] reflections 7880, 7639, 7050
Rint 0.050
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.217, 1.19
No. of reflections 7639
No. of parameters 290
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.30, −1.22
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-Bromo-6-nitro-1-(prop-2-en-1-yl)-1H-indazole top
Crystal data top
C10H8BrN3O2F(000) = 1120
Mr = 282.10Dx = 1.742 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 7.5971 (4) ÅCell parameters from 7120 reflections
b = 9.9501 (5) Åθ = 3.1–72.2°
c = 28.5690 (13) ŵ = 5.14 mm1
β = 95.086 (2)°T = 150 K
V = 2151.08 (18) Å3Plate, pale orange
Z = 80.25 × 0.09 × 0.04 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
7639 independent reflections
Radiation source: INCOATEC IµS micro–focus source7050 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.050
Detector resolution: 10.4167 pixels mm-1θmax = 72.3°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 1212
Tmin = 0.36, Tmax = 0.82l = 3434
7880 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.217H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0535P)2 + 28.3909P]
where P = (Fo2 + 2Fc2)/3
7639 reflections(Δ/σ)max < 0.001
290 parametersΔρmax = 1.30 e Å3
0 restraintsΔρmin = 1.22 e Å3
Special details top

Experimental. Analysis of 329 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the monoclinic system and to be twinned by a 180° rotation about the c* axis. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.5670 (2)0.14543 (15)0.47380 (4)0.0448 (5)
O10.4189 (17)0.4609 (11)0.2213 (3)0.052 (3)
O20.2730 (18)0.2752 (12)0.2166 (3)0.061 (3)
N10.6482 (14)0.4618 (10)0.3968 (3)0.029 (3)
N20.6614 (15)0.3910 (11)0.4374 (3)0.033 (3)
N30.3656 (16)0.3548 (12)0.2383 (3)0.034 (3)
C10.582 (2)0.2767 (12)0.4274 (4)0.031 (3)
C20.5133 (18)0.2658 (12)0.3802 (4)0.026 (3)
C30.4215 (18)0.1720 (13)0.3514 (4)0.028 (3)
H30.3915440.0874880.3639540.033*
C40.3747 (17)0.1995 (12)0.3060 (4)0.025 (3)
H40.3128480.1346510.2864570.030*
C50.4187 (16)0.3267 (13)0.2873 (4)0.024 (3)
C60.5098 (16)0.4257 (12)0.3134 (4)0.026 (3)
H60.5400980.5094400.3003220.031*
C70.5544 (15)0.3920 (12)0.3613 (4)0.022 (3)
C80.703 (2)0.6038 (13)0.3969 (4)0.036 (3)
H8A0.8162240.6132030.4165930.043*
H8B0.7240450.6301390.3644140.043*
C90.5749 (19)0.6947 (12)0.4142 (4)0.030 (3)
H90.5372390.6767540.4443680.036*
C100.508 (2)0.7977 (14)0.3921 (5)0.044 (4)
H10A0.5417060.8193640.3617630.053*
H10B0.4241280.8522630.4060660.053*
Br20.29479 (19)0.94236 (14)0.02996 (4)0.0338 (4)
O30.7297 (14)0.7347 (10)0.2791 (3)0.044 (3)
O40.6462 (16)0.9375 (10)0.2877 (3)0.047 (3)
N40.5227 (15)0.6482 (11)0.1051 (3)0.032 (3)
N50.4444 (16)0.7016 (11)0.0653 (3)0.032 (3)
N60.6590 (16)0.8373 (12)0.2639 (3)0.032 (3)
C110.3999 (17)0.8278 (14)0.0754 (4)0.028 (3)
C120.4494 (18)0.8587 (13)0.1237 (4)0.030 (3)
C130.4325 (18)0.9707 (13)0.1528 (4)0.029 (3)
H130.3745071.0500830.1411200.035*
C140.5014 (17)0.9617 (13)0.1977 (4)0.030 (3)
H140.4945021.0361670.2182440.036*
C150.5842 (18)0.8410 (14)0.2143 (4)0.031 (3)
C160.5987 (18)0.7294 (13)0.1879 (4)0.027 (3)
H160.6525620.6494260.2004200.033*
C170.5295 (18)0.7390 (12)0.1410 (4)0.026 (3)
C180.598 (2)0.5136 (13)0.1044 (4)0.035 (3)
H18A0.6737290.5076400.0780860.042*
H18B0.6735450.4992520.1339340.042*
C190.468 (2)0.4073 (14)0.0994 (5)0.044 (4)
H190.3921670.3952150.1237030.053*
C200.450 (2)0.3270 (16)0.0632 (5)0.051 (4)
H20A0.5242620.3369540.0383490.061*
H20B0.3624540.2586010.0616580.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0687 (11)0.0364 (8)0.0294 (6)0.0046 (9)0.0052 (8)0.0051 (5)
O10.071 (8)0.051 (7)0.033 (4)0.008 (6)0.006 (5)0.007 (4)
O20.076 (9)0.071 (8)0.032 (5)0.014 (8)0.017 (6)0.008 (5)
N10.038 (7)0.027 (6)0.023 (4)0.007 (6)0.004 (4)0.006 (4)
N20.034 (7)0.037 (7)0.029 (5)0.005 (6)0.005 (5)0.001 (4)
N30.030 (6)0.038 (7)0.033 (5)0.006 (7)0.002 (5)0.004 (5)
C10.042 (8)0.023 (7)0.027 (5)0.009 (7)0.003 (6)0.000 (5)
C20.021 (6)0.025 (6)0.035 (6)0.003 (7)0.014 (5)0.004 (5)
C30.028 (7)0.017 (6)0.038 (6)0.005 (6)0.002 (6)0.002 (5)
C40.019 (6)0.023 (6)0.032 (5)0.007 (6)0.004 (5)0.008 (4)
C50.020 (7)0.020 (6)0.033 (6)0.002 (6)0.005 (5)0.003 (5)
C60.019 (7)0.021 (6)0.038 (6)0.008 (6)0.003 (5)0.000 (5)
C70.010 (6)0.027 (6)0.030 (5)0.009 (6)0.004 (5)0.006 (4)
C80.042 (9)0.029 (7)0.035 (6)0.012 (7)0.002 (6)0.008 (5)
C90.037 (8)0.024 (6)0.030 (5)0.005 (7)0.004 (6)0.005 (5)
C100.041 (9)0.039 (9)0.053 (8)0.000 (8)0.005 (8)0.009 (6)
Br20.0371 (7)0.0342 (7)0.0288 (5)0.0009 (7)0.0042 (6)0.0048 (5)
O30.058 (7)0.045 (6)0.028 (4)0.022 (6)0.005 (5)0.007 (4)
O40.070 (7)0.041 (6)0.031 (4)0.005 (6)0.001 (5)0.012 (4)
N40.037 (7)0.030 (6)0.028 (5)0.001 (6)0.003 (4)0.001 (4)
N50.038 (7)0.039 (6)0.020 (4)0.001 (6)0.001 (5)0.002 (4)
N60.032 (7)0.039 (7)0.025 (4)0.001 (6)0.006 (5)0.008 (5)
C110.022 (6)0.036 (8)0.024 (5)0.014 (7)0.003 (5)0.001 (5)
C120.028 (7)0.030 (7)0.030 (5)0.003 (7)0.000 (5)0.006 (5)
C130.030 (7)0.024 (6)0.033 (6)0.002 (7)0.000 (5)0.003 (5)
C140.024 (7)0.028 (7)0.037 (6)0.012 (7)0.004 (5)0.001 (5)
C150.037 (8)0.039 (8)0.018 (5)0.005 (7)0.002 (5)0.004 (5)
C160.029 (7)0.026 (6)0.025 (5)0.005 (7)0.001 (5)0.008 (5)
C170.026 (7)0.021 (6)0.030 (5)0.010 (6)0.005 (5)0.007 (5)
C180.044 (9)0.028 (7)0.033 (6)0.003 (7)0.004 (6)0.005 (5)
C190.050 (10)0.034 (8)0.048 (7)0.002 (8)0.002 (7)0.006 (6)
C200.053 (10)0.041 (8)0.055 (8)0.005 (10)0.018 (8)0.014 (7)
Geometric parameters (Å, º) top
Br1—C11.872 (12)Br2—C111.854 (12)
O1—N31.244 (15)O3—N61.216 (14)
O2—N31.195 (15)O4—N61.217 (14)
N1—N21.352 (13)N4—N51.344 (14)
N1—C71.376 (14)N4—C171.364 (15)
N1—C81.472 (16)N4—C181.456 (17)
N2—C11.307 (16)N5—C111.339 (17)
N3—C51.451 (15)N6—C151.480 (13)
C1—C21.406 (17)C11—C121.432 (15)
C2—C31.391 (18)C12—C131.402 (17)
C2—C71.413 (17)C12—C171.407 (18)
C3—C41.342 (16)C13—C141.345 (16)
C3—H30.9500C13—H130.9500
C4—C51.424 (17)C14—C151.418 (19)
C4—H40.9500C14—H140.9500
C5—C61.383 (17)C15—C161.352 (18)
C6—C71.420 (15)C16—C171.399 (16)
C6—H60.9500C16—H160.9500
C8—C91.448 (19)C18—C191.44 (2)
C8—H8A0.9900C18—H18A0.9900
C8—H8B0.9900C18—H18B0.9900
C9—C101.285 (18)C19—C201.304 (19)
C9—H90.9500C19—H190.9500
C10—H10A0.9500C20—H20A0.9500
C10—H10B0.9500C20—H20B0.9500
N2—N1—C7111.3 (10)N5—N4—C17111.0 (10)
N2—N1—C8120.0 (9)N5—N4—C18119.7 (9)
C7—N1—C8127.8 (10)C17—N4—C18129.1 (10)
C1—N2—N1105.6 (9)C11—N5—N4106.8 (9)
O2—N3—O1123.9 (11)O3—N6—O4122.8 (10)
O2—N3—C5118.3 (11)O3—N6—C15119.0 (11)
O1—N3—C5117.9 (11)O4—N6—C15118.2 (11)
N2—C1—C2113.6 (11)N5—C11—C12111.1 (11)
N2—C1—Br1120.6 (9)N5—C11—Br2121.8 (8)
C2—C1—Br1125.8 (10)C12—C11—Br2127.1 (10)
C3—C2—C1138.1 (12)C13—C12—C17121.7 (10)
C3—C2—C7119.1 (11)C13—C12—C11135.4 (12)
C1—C2—C7102.9 (11)C17—C12—C11102.9 (11)
C4—C3—C2120.8 (12)C14—C13—C12117.6 (12)
C4—C3—H3119.6C14—C13—H13121.2
C2—C3—H3119.6C12—C13—H13121.2
C3—C4—C5119.5 (11)C13—C14—C15119.9 (12)
C3—C4—H4120.3C13—C14—H14120.0
C5—C4—H4120.3C15—C14—H14120.0
C6—C5—C4123.7 (11)C16—C15—C14124.4 (10)
C6—C5—N3117.8 (11)C16—C15—N6118.0 (12)
C4—C5—N3118.6 (11)C14—C15—N6117.6 (11)
C5—C6—C7114.6 (11)C15—C16—C17115.8 (12)
C5—C6—H6122.7C15—C16—H16122.1
C7—C6—H6122.7C17—C16—H16122.1
N1—C7—C2106.5 (10)N4—C17—C16131.4 (12)
N1—C7—C6131.0 (11)N4—C17—C12108.1 (10)
C2—C7—C6122.5 (11)C16—C17—C12120.5 (11)
C9—C8—N1113.6 (12)C19—C18—N4114.3 (12)
C9—C8—H8A108.8C19—C18—H18A108.7
N1—C8—H8A108.8N4—C18—H18A108.7
C9—C8—H8B108.8C19—C18—H18B108.7
N1—C8—H8B108.8N4—C18—H18B108.7
H8A—C8—H8B107.7H18A—C18—H18B107.6
C10—C9—C8125.5 (13)C20—C19—C18123.5 (16)
C10—C9—H9117.2C20—C19—H19118.3
C8—C9—H9117.2C18—C19—H19118.3
C9—C10—H10A120.0C19—C20—H20A120.0
C9—C10—H10B120.0C19—C20—H20B120.0
H10A—C10—H10B120.0H20A—C20—H20B120.0
C7—N1—N2—C11.8 (14)C17—N4—N5—C110.1 (15)
C8—N1—N2—C1171.7 (12)C18—N4—N5—C11175.7 (12)
N1—N2—C1—C20.3 (15)N4—N5—C11—C120.4 (15)
N1—N2—C1—Br1179.8 (9)N4—N5—C11—Br2177.7 (9)
N2—C1—C2—C3179.7 (15)N5—C11—C12—C13178.5 (15)
Br1—C1—C2—C30 (3)Br2—C11—C12—C133 (2)
N2—C1—C2—C72.0 (16)N5—C11—C12—C170.7 (15)
Br1—C1—C2—C7178.0 (10)Br2—C11—C12—C17177.3 (10)
C1—C2—C3—C4179.1 (16)C17—C12—C13—C142 (2)
C7—C2—C3—C41.1 (19)C11—C12—C13—C14178.6 (14)
C2—C3—C4—C50 (2)C12—C13—C14—C151 (2)
C3—C4—C5—C61 (2)C13—C14—C15—C161 (2)
C3—C4—C5—N3179.5 (12)C13—C14—C15—N6179.5 (12)
O2—N3—C5—C6173.3 (12)O3—N6—C15—C160.3 (18)
O1—N3—C5—C66.5 (17)O4—N6—C15—C16180.0 (13)
O2—N3—C5—C46.8 (18)O3—N6—C15—C14179.4 (12)
O1—N3—C5—C4173.4 (12)O4—N6—C15—C140.2 (18)
C4—C5—C6—C71.2 (18)C14—C15—C16—C172 (2)
N3—C5—C6—C7178.9 (10)N6—C15—C16—C17178.6 (11)
N2—N1—C7—C23.0 (13)N5—N4—C17—C16179.5 (14)
C8—N1—C7—C2172.0 (12)C18—N4—C17—C164 (2)
N2—N1—C7—C6179.2 (12)N5—N4—C17—C120.6 (15)
C8—N1—C7—C612 (2)C18—N4—C17—C12175.6 (13)
C3—C2—C7—N1178.4 (11)C15—C16—C17—N4179.5 (13)
C1—C2—C7—N12.9 (13)C15—C16—C17—C121 (2)
C3—C2—C7—C61.8 (18)C13—C12—C17—N4178.6 (12)
C1—C2—C7—C6179.5 (12)C11—C12—C17—N40.8 (14)
C5—C6—C7—N1177.5 (12)C13—C12—C17—C161 (2)
C5—C6—C7—C21.8 (17)C11—C12—C17—C16179.3 (13)
N2—N1—C8—C977.9 (15)N5—N4—C18—C1971.9 (15)
C7—N1—C8—C990.1 (14)C17—N4—C18—C19113.4 (15)
N1—C8—C9—C10125.4 (16)N4—C18—C19—C20116.0 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.463.304 (16)147
C18—H18B···O4ii0.992.593.578 (16)174
C9—H9···Br1iii0.953.093.814 (11)134
C18—H18A···Br1iv0.992.913.770 (14)146
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The support of NSF-MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAbbassi, N., Rakib, E. M., Chicha, H., Bouissane, L., Hannioui, A., Aiello, C., Gangemi, R., Castagnola, P., Rosano, C. & Viale, M. (2014). Arch. Pharm. Chem. Life Sci. 347, 423–431.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, X., Chu, S., Feher, V. A., Khalili, M., Nie, Z., Margosiak, S., Nikulin, V., Levin, J., Sprankle, K. G., Tedder, M. E., Almassy, R., Appelt, K. & Yager, K. M. (2003). J. Med. Chem. 46, 5663–5673.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMohamed Abdelahi, M. M., El Bakri, Y., Benchidmi, M., Essassi, E. M. & &Mague, J. T. (2017). IUCrData, 2, x170432.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]