metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Acetamide-κO){2,2′,2′′-boranetriyltris[6-tert-butyl-4-methyl­pyridazine-3(2H)-thione]-κ4B,S,S′,S′′}copper(I) tri­fluoro­methane­sulfonate chloro­form disolvate

aInstitute of Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
*Correspondence e-mail: ferdinand.belaj@uni-graz.at

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 20 December 2017; accepted 6 January 2018; online 12 January 2018)

In the title solvated complex salt, [Cu(C27H39BN6S3)(C2H5NO)](CF3O3S)·2CHCl3, the CuI atom is coordinated by the three S atoms of the pyridazine-3-thione rings in the equatorial plane [Cu—S = 2.3072 (4)–2.3280 (4) Å] and the B atom of the scorpionate ligand and the O atom of an acetamide ligand as the apices of a trigonal bipyramid [Cu—B = 2.0456 (16) Å and Cu—O = 1.9957 (11) Å]. The amide group of the latter ligand is involved in a bifurcated hydrogen bond to the tri­fluoro­methane­sulfonate anion.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Since the first description of a metallaboratrane complex (Hill et al., 1999[Hill, A. F., Owen, G. R., White, A. J. P. & Williams, D. J. (1999). Angew. Chem. Int. Ed. 38, 2759-2761.]), this class of compounds has been used extensively in coordination chemistry (Amgoune & Bourissou, 2011[Amgoune, A. & Bourissou, D. (2011). Chem. Commun. 47, 859-871.]; Bouhadir & Bourissou, 2016[Bouhadir, G. & Bourissou, D. (2016). Chem. Soc. Rev. 45, 1065-1079.]). Their Z-type coordination mode provides an entry into electronically inter­esting metal atoms, which recently were successfully used in catalytic di­nitro­gen reduction (Anderson et al., 2013[Anderson, J. S., Rittle, J. & Peters, J. C. (2013). Nature, 501, 84-87.]). Our group is focusing on thio­pyridazine-based soft scorpionates and their related metallaboratrane complexes (Nuss et al., 2011a[Nuss, G., Saischek, G., Harum, B. N., Volpe, M., Belaj, F. & Mösch-Zanetti, N. C. (2011a). Inorg. Chem. 50, 12632-12640.],b[Nuss, G., Saischek, G., Harum, B. N., Volpe, M., Gatterer, K., Belaj, F. & Mösch-Zanetti, N. C. (2011b). Inorg. Chem. 50, 1991-2001.]; Holler et al., 2016[Holler, S., Tüchler, M., Belaj, F., Veiros, L. F., Kirchner, K. & Mösch-Zanetti, N. C. (2016). Inorg. Chem. 55, 4980-4991.], 2017[Holler, S., Tüchler, M., Knaus, A. M., Belaj, F. & Mösch-Zanetti, N. C. (2017). Polyhedron, 125, 122-129.]). In an attempted synthesis of the boratrane complex {2,2′,2′′-boranetriyltris[6-tert-butyl-4-methyl­pyridazine-3(2H)-thione]}(tri­fluoro­methane­sulfonato)­copper(I) (= [Cu{B(PnMe,tBu)3}(OTf)]), described in the literature by our group (Holler et al., 2016[Holler, S., Tüchler, M., Belaj, F., Veiros, L. F., Kirchner, K. & Mösch-Zanetti, N. C. (2016). Inorg. Chem. 55, 4980-4991.]), the title compound formed serendipitously by reaction with residual acetamide from the aceto­nitrile solvent.

As in the boratrane complexes [Cu{B(PnMe,tBu)3}X] (X = Cl, OTf, N3, NCS) the CuI atom in the title compound (Fig. 1[link]) has a slightly distorted trigonal–bipyramidal environment (Table 1[link]) with a rather short Cu—B distance comparable to 2.0432 (14) Å observed in the tri­fluoro­methane­sulfonate complex (Holler et al., 2016[Holler, S., Tüchler, M., Belaj, F., Veiros, L. F., Kirchner, K. & Mösch-Zanetti, N. C. (2016). Inorg. Chem. 55, 4980-4991.]). Not the tri­fluoro­methane­sulfonate anion but the neutral acetamide mol­ecule [Cu1—O1 1.9957 (11) Å] occupies the axial position opposite to the B atom. In the other boratrane complexes [Cu{B(PnMe,tBu)3}X] with more polarizing ligands, the Cu—B distance is distinctly longer [e.g. 2.065 (2) Å for X = Cl, 2.068 (4) Å for X = N3, 2.0667 (13) Å for X = NCS]. One H atom of the NH2 group shows a bifurcated hydrogen bond (Table 2[link]) to the tri­fluoro­methane­sulfonate anion (Fig. 1[link]), the other one is not able to build a hydrogen bond. A non-classical hydrogen-bonding inter­action can be assumed between C5 of a chloro­form solvent mol­ecule and the tri­fluoro­methane­sulfonate anion (Table 2[link]).

Table 1
Selected bond lengths (Å)

Cu1—O1 1.9957 (11) B1—N32 1.537 (2)
Cu1—B1 2.0456 (16) S1—C13 1.7102 (15)
Cu1—S1 2.3072 (4) S2—C23 1.7069 (15)
Cu1—S2 2.3280 (4) S3—C33 1.7129 (15)
Cu1—S3 2.3245 (4) O1—C1 1.2531 (19)
B1—N12 1.530 (2) N1—C1 1.330 (2)
B1—N22 1.536 (2)    

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O42 0.88 2.48 (1) 3.196 (3) 140 (1)
N1—H1⋯O43 0.88 2.47 (1) 3.282 (2) 154 (2)
C5—H5⋯O43 1.00 2.21 3.171 (2) 160
[Figure 1]
Figure 1
Stereoscopic plot of the mol­ecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 50% probability level. The H atoms of the methyl groups were omitted for clarity and hydrogen bonds are indicated by dotted lines.

Synthesis and crystallization

During an attempted synthesis of [Cu{B(PnMe,tBu)3}(OTf)] (Holler et al., 2016[Holler, S., Tüchler, M., Belaj, F., Veiros, L. F., Kirchner, K. & Mösch-Zanetti, N. C. (2016). Inorg. Chem. 55, 4980-4991.]), the title compound crystallized due to residual acetamide in the used aceto­nitrile solvent. AgOTf (21.4 mg, 0.083 mmol) and [Cu{B(PnMe,tBu)3}Cl] (54.4 mg, 0.083 mmol) were suspended in anhydrous aceto­nitrile (4 ml). The reaction mixture was stirred at room temperature for 90 min, the resulting suspension was centrifuged and filtered. The solvent was removed in vacuo to obtain an orange solid. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a CDCl3 solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Cu(C27H39BN6S3)(C2H5NO)](CF3O3S)·2CHCl3
Mr 1065.05
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.7516 (5), 14.0606 (7), 17.5108 (8)
α, β, γ (°) 77.6301 (12), 88.5283 (12), 84.3407 (13)
V3) 2333.8 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.05
Crystal size (mm) 0.30 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012) APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.781, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 67349, 13577, 11705
Rint 0.042
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.078, 1.04
No. of reflections 13577
No. of parameters 559
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.92, −0.84
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012) APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and modified ORTEP (Johnson, 1965[Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: modified ORTEP (Johnson, 1965); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(Acetamide-κO){2,2',2''-boranetriyltris[6-tert-butyl-4-methylpyridazine-3(2H)-thione]-κ4B,S,S',S''}copper(I) trifluoromethanesulfonate chloroform disolvate top
Crystal data top
[Cu(C27H39BN6S3)(C2H5NO)](CF3O3S)·2CHCl3Z = 2
Mr = 1065.05F(000) = 1092
Triclinic, P1Dx = 1.516 Mg m3
a = 9.7516 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.0606 (7) ÅCell parameters from 9907 reflections
c = 17.5108 (8) Åθ = 2.4–30.9°
α = 77.6301 (12)°µ = 1.05 mm1
β = 88.5283 (12)°T = 100 K
γ = 84.3407 (13)°Needle, orange
V = 2333.8 (2) Å30.30 × 0.30 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
13577 independent reflections
Radiation source: Incoatec microfocus sealed tube11705 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.042
φ and ω scansθmax = 30.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1311
Tmin = 0.781, Tmax = 1.000k = 1919
67349 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: mixed
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0255P)2 + 2.2891P]
where P = (Fo2 + 2Fc2)/3
13577 reflections(Δ/σ)max = 0.001
559 parametersΔρmax = 0.92 e Å3
2 restraintsΔρmin = 0.84 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The non-hydrogen atoms were refined with anisotropic displacement parameters without any constraints.

The positions of the H atoms of the NH2 group were taken from a difference Fourier map, the N-H distances were fixed to 0.88 Å, and the H atoms were refined with common isotropic displacement parameters without any constraints to the bond angles (DFIX of SHELXL).

The H atoms of the tertiary C-H groups were refined with individual isotropic displacement parameter and all Cl-C-H angles equal at a C-H distance of 1.00 Å (AFIX 13 of SHELXL).

The H atoms of the pyridazine rings were put at the external bisectors of the C-C-C angles at C-H distances of 0.95 Å and common isotropic displacement parameters were refined for the H atoms of the same phenyl group (AFIX 43 of SHELXL).

The H atoms of the methyl group C2 are disordered over two orientations and were refined with site occupation factors of 0.5 at two positions rotated from each other by 60 ° with common isotropic displacement parameters for the H atoms and idealized geometry with tetrahedral angles, enabling rotation around the C-C bond, and C-H distances of 0.98 Å (AFIX 127 of SHELXL).

The H atoms of the other methyl groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometries with tetrahedral angles, enabling rotation around the C-C bond, and C-H distances of 0.98 Å (AFIX 137 of SHELXL).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.60968 (2)0.20838 (2)0.38078 (2)0.00951 (4)
B10.71205 (17)0.29107 (12)0.29100 (9)0.0088 (3)
S10.57399 (4)0.35515 (3)0.42048 (2)0.01168 (7)
N110.65149 (13)0.44467 (9)0.19758 (7)0.0095 (2)
N120.64043 (13)0.39511 (9)0.27274 (7)0.0087 (2)
C130.59286 (15)0.43478 (11)0.33301 (8)0.0093 (3)
C140.56363 (16)0.53826 (11)0.31957 (9)0.0104 (3)
C150.57755 (16)0.58927 (11)0.24415 (9)0.0117 (3)
H150.55970.65850.23240.013 (3)*
C160.61860 (15)0.53951 (11)0.18313 (8)0.0095 (3)
C110.52055 (18)0.58650 (12)0.38631 (9)0.0156 (3)
H1110.51290.65770.36780.030 (4)*
H1120.58950.56730.42790.030 (4)*
H1130.43120.56600.40670.030 (4)*
C100.62200 (16)0.59086 (11)0.09690 (8)0.0112 (3)
C170.72883 (18)0.53512 (13)0.05234 (9)0.0158 (3)
H1710.72750.56710.00320.024 (3)*
H1720.70620.46750.05820.024 (3)*
H1730.82080.53520.07360.024 (3)*
C180.47721 (18)0.59089 (13)0.06413 (9)0.0170 (3)
H1810.41000.62760.09210.022 (3)*
H1820.45360.52340.07110.022 (3)*
H1830.47580.62170.00830.022 (3)*
C190.6576 (2)0.69636 (13)0.08720 (10)0.0203 (4)
H1910.74670.69670.11170.026 (3)*
H1920.58610.73340.11230.026 (3)*
H1930.66270.72650.03140.026 (3)*
S20.47375 (4)0.18882 (3)0.27889 (2)0.01202 (7)
N210.81967 (13)0.25598 (10)0.17063 (7)0.0104 (2)
N220.70889 (13)0.24464 (9)0.21931 (7)0.0086 (2)
C230.59319 (15)0.20611 (11)0.20547 (8)0.0095 (3)
C240.58048 (16)0.18098 (11)0.13119 (9)0.0118 (3)
C250.68960 (17)0.19529 (11)0.08072 (9)0.0125 (3)
H250.68440.18120.03020.013 (3)*
C260.81106 (16)0.23107 (11)0.10295 (8)0.0107 (3)
C210.45413 (18)0.13648 (14)0.11430 (10)0.0192 (3)
H2110.46120.12300.06160.030 (4)*
H2120.37250.18200.11760.030 (4)*
H2130.44610.07530.15260.030 (4)*
C200.93890 (17)0.23879 (13)0.05078 (9)0.0149 (3)
C271.0515 (2)0.28196 (18)0.08835 (11)0.0293 (5)
H2711.01710.34710.09610.035 (4)*
H2721.13270.28710.05400.035 (4)*
H2731.07690.23930.13900.035 (4)*
C280.9908 (2)0.13528 (15)0.04119 (12)0.0295 (4)
H2811.00960.09300.09280.038 (4)*
H2821.07560.13780.00980.038 (4)*
H2830.92040.10900.01480.038 (4)*
C290.90288 (19)0.30397 (14)0.02973 (10)0.0219 (4)
H2910.82920.27740.05330.031 (4)*
H2920.98460.30570.06360.031 (4)*
H2930.87180.37040.02370.031 (4)*
S30.82167 (4)0.11527 (3)0.39188 (2)0.01176 (7)
N310.92069 (14)0.37649 (9)0.29250 (7)0.0106 (2)
N320.86078 (13)0.29183 (9)0.31774 (7)0.0088 (2)
C330.92504 (16)0.20649 (11)0.35591 (8)0.0101 (3)
C341.07121 (16)0.19957 (12)0.36420 (9)0.0123 (3)
C351.13219 (16)0.28460 (12)0.34005 (9)0.0136 (3)
H351.22870.28440.34660.013 (3)*
C361.05351 (16)0.37346 (11)0.30531 (9)0.0112 (3)
C311.15042 (17)0.10264 (12)0.39708 (10)0.0179 (3)
H3111.15050.06030.35930.033 (4)*
H3121.10680.07150.44590.033 (4)*
H3131.24550.11300.40750.033 (4)*
C301.11954 (17)0.46933 (12)0.27993 (9)0.0142 (3)
C371.01312 (19)0.55349 (13)0.24390 (11)0.0223 (4)
H3710.97160.53820.19810.029 (4)*
H3721.05850.61380.22790.029 (4)*
H3730.94120.56230.28260.029 (4)*
C381.1822 (2)0.49394 (14)0.35226 (11)0.0226 (4)
H3811.11030.49780.39190.028 (3)*
H3821.22120.55700.33730.028 (3)*
H3831.25510.44280.37370.028 (3)*
C391.2336 (2)0.45756 (15)0.21951 (12)0.0266 (4)
H3911.30340.40500.24280.034 (4)*
H3921.27660.51890.20350.034 (4)*
H3931.19370.44120.17370.034 (4)*
O10.50619 (12)0.13097 (9)0.46848 (6)0.0141 (2)
N10.63787 (18)0.15133 (13)0.56714 (8)0.0269 (4)
H10.6497 (17)0.1481 (11)0.61732 (17)0.051 (6)*
H20.7028 (4)0.1743 (7)0.5345 (3)0.051 (6)*
C10.52584 (18)0.12306 (12)0.54010 (9)0.0156 (3)
C20.4219 (2)0.08140 (15)0.59873 (11)0.0253 (4)
H210.44490.09180.65030.030 (5)*0.5
H220.42240.01110.60090.030 (5)*0.5
H230.33010.11400.58350.030 (5)*0.5
H260.35340.05280.57280.030 (5)*0.5
H270.37590.13340.62220.030 (5)*0.5
H280.46810.03060.63960.030 (5)*0.5
S40.69763 (4)0.19514 (3)0.76954 (2)0.01869 (9)
O410.6850 (2)0.26256 (18)0.81963 (14)0.0783 (9)
O420.78492 (18)0.22124 (16)0.70386 (10)0.0559 (6)
O430.57126 (17)0.16211 (15)0.74994 (10)0.0497 (5)
C40.7908 (2)0.08710 (15)0.82866 (13)0.0307 (5)
F410.8094 (2)0.01563 (11)0.79042 (13)0.0813 (7)
F420.7206 (2)0.05371 (16)0.89335 (10)0.0805 (7)
F430.91260 (13)0.10607 (10)0.85081 (8)0.0353 (3)
C50.27392 (19)0.09671 (13)0.79934 (10)0.0181 (3)
H50.37180.10100.78150.018 (5)*
Cl510.20528 (5)0.00752 (3)0.75860 (2)0.01963 (8)
Cl520.27224 (5)0.06392 (3)0.90262 (2)0.02408 (9)
Cl530.18189 (7)0.21172 (3)0.76548 (3)0.03567 (13)
C60.00360 (19)0.27671 (14)0.58025 (10)0.0211 (4)
H60.02900.28560.63310.016 (5)*
Cl610.12433 (5)0.33344 (3)0.51087 (3)0.02413 (9)
Cl620.15851 (6)0.33209 (5)0.55838 (3)0.04365 (15)
Cl630.02976 (5)0.15066 (4)0.58212 (3)0.03120 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01068 (9)0.01070 (9)0.00664 (8)0.00324 (7)0.00189 (6)0.00010 (6)
B10.0098 (7)0.0090 (7)0.0072 (7)0.0021 (6)0.0010 (5)0.0006 (6)
S10.01605 (18)0.01208 (17)0.00631 (15)0.00111 (14)0.00136 (13)0.00095 (13)
N110.0104 (6)0.0114 (6)0.0060 (5)0.0025 (5)0.0000 (4)0.0003 (4)
N120.0091 (6)0.0096 (6)0.0068 (5)0.0011 (5)0.0004 (4)0.0006 (4)
C130.0075 (6)0.0126 (7)0.0076 (6)0.0014 (5)0.0010 (5)0.0017 (5)
C140.0099 (7)0.0119 (7)0.0100 (6)0.0011 (5)0.0005 (5)0.0037 (5)
C150.0136 (7)0.0096 (7)0.0117 (7)0.0003 (5)0.0004 (5)0.0018 (5)
C160.0085 (6)0.0110 (7)0.0088 (6)0.0021 (5)0.0009 (5)0.0011 (5)
C110.0219 (8)0.0147 (8)0.0114 (7)0.0011 (6)0.0020 (6)0.0058 (6)
C100.0144 (7)0.0113 (7)0.0074 (6)0.0022 (6)0.0001 (5)0.0006 (5)
C170.0181 (8)0.0180 (8)0.0104 (7)0.0009 (6)0.0029 (6)0.0019 (6)
C180.0166 (8)0.0225 (9)0.0107 (7)0.0007 (6)0.0035 (6)0.0014 (6)
C190.0331 (10)0.0139 (8)0.0138 (7)0.0082 (7)0.0039 (7)0.0008 (6)
S20.00963 (17)0.01723 (19)0.00919 (16)0.00386 (14)0.00166 (12)0.00178 (13)
N210.0100 (6)0.0108 (6)0.0091 (5)0.0009 (5)0.0034 (4)0.0001 (5)
N220.0097 (6)0.0086 (6)0.0073 (5)0.0020 (5)0.0018 (4)0.0010 (4)
C230.0104 (7)0.0082 (7)0.0088 (6)0.0007 (5)0.0003 (5)0.0004 (5)
C240.0141 (7)0.0105 (7)0.0104 (6)0.0013 (6)0.0021 (5)0.0010 (5)
C250.0171 (8)0.0122 (7)0.0082 (6)0.0011 (6)0.0004 (5)0.0025 (5)
C260.0123 (7)0.0098 (7)0.0088 (6)0.0001 (5)0.0017 (5)0.0003 (5)
C210.0180 (8)0.0275 (9)0.0142 (7)0.0092 (7)0.0024 (6)0.0060 (7)
C200.0135 (7)0.0198 (8)0.0100 (7)0.0002 (6)0.0039 (5)0.0013 (6)
C270.0162 (9)0.0540 (14)0.0196 (9)0.0135 (9)0.0071 (7)0.0085 (9)
C280.0294 (11)0.0261 (10)0.0289 (10)0.0072 (8)0.0147 (8)0.0028 (8)
C290.0217 (9)0.0276 (10)0.0125 (7)0.0012 (7)0.0051 (6)0.0037 (7)
S30.01200 (17)0.00877 (17)0.01345 (17)0.00237 (13)0.00103 (13)0.00051 (13)
N310.0127 (6)0.0099 (6)0.0094 (6)0.0043 (5)0.0018 (5)0.0015 (5)
N320.0093 (6)0.0088 (6)0.0083 (5)0.0028 (5)0.0016 (4)0.0012 (4)
C330.0117 (7)0.0106 (7)0.0082 (6)0.0020 (5)0.0018 (5)0.0021 (5)
C340.0116 (7)0.0124 (7)0.0120 (7)0.0003 (6)0.0006 (5)0.0015 (5)
C350.0092 (7)0.0159 (8)0.0152 (7)0.0012 (6)0.0006 (5)0.0025 (6)
C360.0116 (7)0.0119 (7)0.0100 (6)0.0032 (6)0.0014 (5)0.0015 (5)
C310.0132 (8)0.0141 (8)0.0238 (8)0.0022 (6)0.0003 (6)0.0003 (6)
C300.0132 (7)0.0126 (7)0.0165 (7)0.0055 (6)0.0004 (6)0.0004 (6)
C370.0193 (9)0.0136 (8)0.0307 (9)0.0064 (7)0.0058 (7)0.0054 (7)
C380.0253 (9)0.0180 (8)0.0254 (9)0.0082 (7)0.0079 (7)0.0026 (7)
C390.0251 (10)0.0245 (10)0.0295 (10)0.0109 (8)0.0135 (8)0.0019 (8)
O10.0168 (6)0.0157 (6)0.0094 (5)0.0055 (4)0.0024 (4)0.0000 (4)
N10.0345 (9)0.0319 (9)0.0142 (7)0.0096 (7)0.0064 (6)0.0008 (6)
C10.0220 (8)0.0126 (7)0.0107 (7)0.0007 (6)0.0025 (6)0.0005 (6)
C20.0342 (11)0.0234 (9)0.0161 (8)0.0046 (8)0.0118 (7)0.0003 (7)
S40.01392 (19)0.0259 (2)0.01742 (19)0.00031 (16)0.00234 (15)0.00779 (16)
O410.0784 (15)0.0889 (16)0.0795 (15)0.0601 (13)0.0531 (13)0.0693 (14)
O420.0315 (9)0.0828 (15)0.0354 (9)0.0050 (9)0.0045 (7)0.0264 (9)
O430.0292 (9)0.0682 (13)0.0457 (10)0.0266 (8)0.0211 (7)0.0134 (9)
C40.0354 (11)0.0243 (10)0.0314 (10)0.0098 (9)0.0130 (9)0.0011 (8)
F410.1206 (17)0.0260 (8)0.1020 (15)0.0210 (9)0.0678 (13)0.0290 (9)
F420.0704 (12)0.1111 (16)0.0433 (9)0.0553 (12)0.0201 (8)0.0445 (10)
F430.0242 (6)0.0349 (7)0.0446 (7)0.0012 (5)0.0162 (5)0.0035 (6)
C50.0244 (9)0.0165 (8)0.0129 (7)0.0054 (7)0.0006 (6)0.0004 (6)
Cl510.0286 (2)0.01408 (18)0.01680 (18)0.00217 (16)0.00037 (15)0.00460 (14)
Cl520.0418 (3)0.0175 (2)0.01294 (18)0.00320 (18)0.00092 (17)0.00309 (15)
Cl530.0603 (4)0.0128 (2)0.0336 (3)0.0020 (2)0.0247 (2)0.00196 (18)
C60.0194 (8)0.0268 (9)0.0172 (8)0.0071 (7)0.0055 (6)0.0021 (7)
Cl610.0251 (2)0.0273 (2)0.02019 (19)0.00107 (17)0.00861 (16)0.00619 (17)
Cl620.0293 (3)0.0593 (4)0.0372 (3)0.0246 (3)0.0087 (2)0.0117 (3)
Cl630.0311 (3)0.0285 (2)0.0338 (3)0.0043 (2)0.0091 (2)0.0082 (2)
Geometric parameters (Å, º) top
Cu1—O11.9957 (11)C29—H2910.98
Cu1—B12.0456 (16)C29—H2920.98
Cu1—S12.3072 (4)C29—H2930.98
Cu1—S22.3280 (4)S3—C331.7129 (15)
Cu1—S32.3245 (4)N31—C361.315 (2)
B1—N121.530 (2)N31—N321.3609 (17)
B1—N221.536 (2)N32—C331.3450 (19)
B1—N321.537 (2)C33—C341.428 (2)
S1—C131.7102 (15)C34—C351.368 (2)
N11—C161.312 (2)C34—C311.505 (2)
N11—N121.3580 (17)C35—C361.424 (2)
N12—C131.3476 (19)C35—H350.95
C13—C141.424 (2)C36—C301.526 (2)
C14—C151.371 (2)C31—H3110.98
C14—C111.503 (2)C31—H3120.98
C15—C161.427 (2)C31—H3130.98
C15—H150.95C30—C371.532 (2)
C16—C101.529 (2)C30—C391.537 (2)
C11—H1110.98C30—C381.538 (2)
C11—H1120.98C37—H3710.98
C11—H1130.98C37—H3720.98
C10—C191.530 (2)C37—H3730.98
C10—C181.538 (2)C38—H3810.98
C10—C171.539 (2)C38—H3820.98
C17—H1710.98C38—H3830.98
C17—H1720.98C39—H3910.98
C17—H1730.98C39—H3920.98
C18—H1810.98C39—H3930.98
C18—H1820.98O1—C11.2531 (19)
C18—H1830.98N1—C11.330 (2)
C19—H1910.98N1—H10.88
C19—H1920.98N1—H20.88
C19—H1930.98C1—C21.494 (2)
S2—C231.7069 (15)C2—H210.98
N21—C261.3128 (19)C2—H220.98
N21—N221.3592 (17)C2—H230.98
N22—C231.3476 (19)C2—H260.98
C23—C241.430 (2)C2—H270.98
C24—C251.368 (2)C2—H280.98
C24—C211.499 (2)S4—O411.4180 (18)
C25—C261.426 (2)S4—O421.4186 (17)
C25—H250.95S4—O431.4335 (15)
C26—C201.525 (2)S4—C41.819 (2)
C21—H2110.98C4—F411.318 (3)
C21—H2120.98C4—F431.328 (2)
C21—H2130.98C4—F421.330 (3)
C20—C271.532 (3)C5—Cl531.7613 (19)
C20—C281.535 (3)C5—Cl511.7616 (17)
C20—C291.536 (2)C5—Cl521.7681 (17)
C27—H2710.98C5—H51.00
C27—H2720.98C6—Cl631.759 (2)
C27—H2730.98C6—Cl621.7634 (19)
C28—H2810.98C6—Cl611.7706 (18)
C28—H2820.98C6—H61.00
C28—H2830.98
O1—Cu1—B1178.41 (6)H281—C28—H282109.5
O1—Cu1—S196.36 (4)C20—C28—H283109.5
O1—Cu1—S297.59 (3)H281—C28—H283109.5
O1—Cu1—S3100.60 (4)H282—C28—H283109.5
B1—Cu1—S182.30 (5)C20—C29—H291109.5
B1—Cu1—S282.29 (5)C20—C29—H292109.5
B1—Cu1—S380.87 (5)H291—C29—H292109.5
S1—Cu1—S2117.067 (16)C20—C29—H293109.5
S1—Cu1—S3122.661 (16)H291—C29—H293109.5
S2—Cu1—S3114.275 (16)H292—C29—H293109.5
N12—B1—N22110.36 (12)C33—S3—Cu198.89 (5)
N12—B1—N32110.22 (12)C36—N31—N32116.77 (13)
N22—B1—N32111.05 (12)C33—N32—N31125.63 (13)
N12—B1—Cu1108.99 (10)C33—N32—B1117.40 (12)
N22—B1—Cu1108.41 (10)N31—N32—B1116.49 (12)
N32—B1—Cu1107.74 (10)N32—C33—C34118.20 (14)
C13—S1—Cu1100.03 (5)N32—C33—S3116.16 (11)
C16—N11—N12117.27 (12)C34—C33—S3125.63 (12)
C13—N12—N11125.30 (13)C35—C34—C33116.28 (14)
C13—N12—B1118.21 (12)C35—C34—C31123.32 (15)
N11—N12—B1115.52 (12)C33—C34—C31120.40 (14)
N12—C13—C14118.27 (13)C34—C35—C36121.12 (14)
N12—C13—S1116.41 (11)C34—C35—H35119.4
C14—C13—S1125.32 (11)C36—C35—H35119.4
C15—C14—C13116.65 (13)N31—C36—C35121.54 (14)
C15—C14—C11123.18 (14)N31—C36—C30116.77 (14)
C13—C14—C11120.17 (13)C35—C36—C30121.69 (14)
C14—C15—C16120.70 (14)C34—C31—H311109.5
C14—C15—H15119.6C34—C31—H312109.5
C16—C15—H15119.6H311—C31—H312109.5
N11—C16—C15121.49 (13)C34—C31—H313109.5
N11—C16—C10115.32 (13)H311—C31—H313109.5
C15—C16—C10123.14 (13)H312—C31—H313109.5
C14—C11—H111109.5C36—C30—C37111.35 (13)
C14—C11—H112109.5C36—C30—C39109.45 (14)
H111—C11—H112109.5C37—C30—C39109.13 (15)
C14—C11—H113109.5C36—C30—C38108.56 (13)
H111—C11—H113109.5C37—C30—C38108.75 (15)
H112—C11—H113109.5C39—C30—C38109.59 (15)
C16—C10—C19111.28 (12)C30—C37—H371109.5
C16—C10—C18106.94 (12)C30—C37—H372109.5
C19—C10—C18109.35 (14)H371—C37—H372109.5
C16—C10—C17110.15 (13)C30—C37—H373109.5
C19—C10—C17109.19 (14)H371—C37—H373109.5
C18—C10—C17109.90 (13)H372—C37—H373109.5
C10—C17—H171109.5C30—C38—H381109.5
C10—C17—H172109.5C30—C38—H382109.5
H171—C17—H172109.5H381—C38—H382109.5
C10—C17—H173109.5C30—C38—H383109.5
H171—C17—H173109.5H381—C38—H383109.5
H172—C17—H173109.5H382—C38—H383109.5
C10—C18—H181109.5C30—C39—H391109.5
C10—C18—H182109.5C30—C39—H392109.5
H181—C18—H182109.5H391—C39—H392109.5
C10—C18—H183109.5C30—C39—H393109.5
H181—C18—H183109.5H391—C39—H393109.5
H182—C18—H183109.5H392—C39—H393109.5
C10—C19—H191109.5C1—O1—Cu1126.57 (11)
C10—C19—H192109.5C1—N1—H1122.0 (10)
H191—C19—H192109.5C1—N1—H2120.0 (5)
C10—C19—H193109.5H1—N1—H2118.0 (11)
H191—C19—H193109.5O1—C1—N1122.19 (15)
H192—C19—H193109.5O1—C1—C2120.47 (16)
C23—S2—Cu198.58 (5)N1—C1—C2117.35 (15)
C26—N21—N22117.27 (13)C1—C2—H21109.5
C23—N22—N21125.56 (12)C1—C2—H22109.5
C23—N22—B1118.35 (12)H21—C2—H22109.5
N21—N22—B1115.68 (12)C1—C2—H23109.5
N22—C23—C24117.84 (13)H21—C2—H23109.5
N22—C23—S2117.35 (11)H22—C2—H23109.5
C24—C23—S2124.79 (12)C1—C2—H26109.5
C25—C24—C23116.89 (14)C1—C2—H27109.5
C25—C24—C21123.78 (14)H26—C2—H27109.5
C23—C24—C21119.26 (14)C1—C2—H28109.5
C24—C25—C26120.82 (14)H26—C2—H28109.5
C24—C25—H25119.6H27—C2—H28109.5
C26—C25—H25119.6O41—S4—O42114.45 (17)
N21—C26—C25121.43 (14)O41—S4—O43115.73 (14)
N21—C26—C20116.74 (14)O42—S4—O43112.91 (12)
C25—C26—C20121.79 (13)O41—S4—C4103.43 (11)
C24—C21—H211109.5O42—S4—C4103.86 (11)
C24—C21—H212109.5O43—S4—C4104.62 (10)
H211—C21—H212109.5F41—C4—F43108.8 (2)
C24—C21—H213109.5F41—C4—F42107.0 (2)
H211—C21—H213109.5F43—C4—F42107.10 (17)
H212—C21—H213109.5F41—C4—S4111.16 (15)
C26—C20—C27110.35 (13)F43—C4—S4111.75 (14)
C26—C20—C28107.82 (14)F42—C4—S4110.83 (18)
C27—C20—C28109.58 (16)Cl53—C5—Cl51110.00 (9)
C26—C20—C29110.21 (14)Cl53—C5—Cl52111.11 (10)
C27—C20—C29109.32 (15)Cl51—C5—Cl52110.97 (9)
C28—C20—C29109.54 (15)Cl53—C5—H5108.2
C20—C27—H271109.5Cl51—C5—H5108.2
C20—C27—H272109.5Cl52—C5—H5108.2
H271—C27—H272109.5Cl63—C6—Cl62110.81 (11)
C20—C27—H273109.5Cl63—C6—Cl61110.20 (9)
H271—C27—H273109.5Cl62—C6—Cl61110.20 (10)
H272—C27—H273109.5Cl63—C6—H6108.5
C20—C28—H281109.5Cl62—C6—H6108.5
C20—C28—H282109.5Cl61—C6—H6108.5
C16—N11—N12—C133.0 (2)N22—N21—C26—C20176.71 (13)
C16—N11—N12—B1165.51 (13)C24—C25—C26—N213.4 (2)
N22—B1—N12—C13158.33 (12)C24—C25—C26—C20174.30 (15)
N32—B1—N12—C1378.65 (16)N21—C26—C20—C273.7 (2)
Cu1—B1—N12—C1339.39 (15)C25—C26—C20—C27178.49 (16)
N22—B1—N12—N1132.30 (17)N21—C26—C20—C28115.97 (17)
N32—B1—N12—N1190.72 (14)C25—C26—C20—C2861.9 (2)
Cu1—B1—N12—N11151.23 (10)N21—C26—C20—C29124.51 (16)
N11—N12—C13—C146.4 (2)C25—C26—C20—C2957.7 (2)
B1—N12—C13—C14161.87 (13)C36—N31—N32—C331.5 (2)
N11—N12—C13—S1174.17 (11)C36—N31—N32—B1170.30 (13)
B1—N12—C13—S117.60 (17)N12—B1—N32—C33162.22 (12)
Cu1—S1—C13—N129.41 (12)N22—B1—N32—C3375.16 (16)
Cu1—S1—C13—C14171.16 (12)Cu1—B1—N32—C3343.41 (15)
N12—C13—C14—C154.3 (2)N12—B1—N32—N3125.27 (17)
S1—C13—C14—C15176.24 (12)N22—B1—N32—N3197.35 (15)
N12—C13—C14—C11175.42 (14)Cu1—B1—N32—N31144.07 (10)
S1—C13—C14—C114.0 (2)N31—N32—C33—C346.9 (2)
C13—C14—C15—C160.3 (2)B1—N32—C33—C34164.80 (13)
C11—C14—C15—C16179.91 (14)N31—N32—C33—S3172.11 (11)
N12—N11—C16—C152.2 (2)B1—N32—C33—S316.14 (17)
N12—N11—C16—C10175.47 (12)Cu1—S3—C33—N3214.42 (12)
C14—C15—C16—N113.8 (2)Cu1—S3—C33—C34164.56 (13)
C14—C15—C16—C10173.68 (14)N32—C33—C34—C357.2 (2)
N11—C16—C10—C19150.24 (14)S3—C33—C34—C35171.76 (12)
C15—C16—C10—C1932.2 (2)N32—C33—C34—C31172.15 (14)
N11—C16—C10—C1890.39 (16)S3—C33—C34—C318.9 (2)
C15—C16—C10—C1887.21 (17)C33—C34—C35—C362.8 (2)
N11—C16—C10—C1729.00 (18)C31—C34—C35—C36176.48 (15)
C15—C16—C10—C17153.41 (14)N32—N31—C36—C353.3 (2)
C26—N21—N22—C233.0 (2)N32—N31—C36—C30177.65 (13)
C26—N21—N22—B1169.56 (13)C34—C35—C36—N312.5 (2)
N12—B1—N22—C2381.11 (16)C34—C35—C36—C30178.49 (15)
N32—B1—N22—C23156.35 (13)N31—C36—C30—C370.6 (2)
Cu1—B1—N22—C2338.18 (16)C35—C36—C30—C37179.61 (15)
N12—B1—N22—N2192.02 (15)N31—C36—C30—C39120.15 (16)
N32—B1—N22—N2130.51 (17)C35—C36—C30—C3958.9 (2)
Cu1—B1—N22—N21148.69 (10)N31—C36—C30—C38120.28 (16)
N21—N22—C23—C244.6 (2)C35—C36—C30—C3860.7 (2)
B1—N22—C23—C24167.75 (13)Cu1—O1—C1—N113.2 (2)
N21—N22—C23—S2174.18 (11)Cu1—O1—C1—C2166.38 (12)
B1—N22—C23—S213.43 (18)O41—S4—C4—F41179.0 (2)
Cu1—S2—C23—N2213.88 (12)O42—S4—C4—F4161.2 (2)
Cu1—S2—C23—C24164.85 (12)O43—S4—C4—F4157.4 (2)
N22—C23—C24—C252.1 (2)O41—S4—C4—F4359.2 (2)
S2—C23—C24—C25176.67 (12)O42—S4—C4—F4360.60 (19)
N22—C23—C24—C21179.03 (14)O43—S4—C4—F43179.21 (17)
S2—C23—C24—C210.3 (2)O41—S4—C4—F4260.2 (2)
C23—C24—C25—C261.7 (2)O42—S4—C4—F42179.97 (17)
C21—C24—C25—C26175.14 (15)O43—S4—C4—F4261.42 (18)
N22—N21—C26—C251.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O420.882.48 (1)3.196 (3)140 (1)
N1—H1···O430.882.47 (1)3.282 (2)154 (2)
C5—H5···O431.002.213.171 (2)160
 

Acknowledgements

The authors gratefully acknowledge support from the Land Steiermark and from NAWI Graz.

References

First citationAmgoune, A. & Bourissou, D. (2011). Chem. Commun. 47, 859–871.  Web of Science CrossRef CAS Google Scholar
First citationAnderson, J. S., Rittle, J. & Peters, J. C. (2013). Nature, 501, 84–87.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBouhadir, G. & Bourissou, D. (2016). Chem. Soc. Rev. 45, 1065–1079.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2012) APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHill, A. F., Owen, G. R., White, A. J. P. & Williams, D. J. (1999). Angew. Chem. Int. Ed. 38, 2759–2761.  CrossRef CAS Google Scholar
First citationHoller, S., Tüchler, M., Belaj, F., Veiros, L. F., Kirchner, K. & Mösch-Zanetti, N. C. (2016). Inorg. Chem. 55, 4980–4991.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHoller, S., Tüchler, M., Knaus, A. M., Belaj, F. & Mösch-Zanetti, N. C. (2017). Polyhedron, 125, 122–129.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationNuss, G., Saischek, G., Harum, B. N., Volpe, M., Belaj, F. & Mösch-Zanetti, N. C. (2011a). Inorg. Chem. 50, 12632–12640.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNuss, G., Saischek, G., Harum, B. N., Volpe, M., Gatterer, K., Belaj, F. & Mösch-Zanetti, N. C. (2011b). Inorg. Chem. 50, 1991–2001.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]