organic compounds
1-(2-Isopropyl-4,7-dimethyl-3-nitronaphthalen-1-yl)ethanone
aLaboratoire de Chimie des Substances Naturelles, Unité Associé au CNRST (URAC16), Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, Université Cadi Ayyad, 40000 Marrakech, Morocco, and bLaboratoire de Chimie Appliquée des Matériaux, Centres des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: mazoir17@gmail.com
The title compound, C17H19NO3, was synthesized in four steps from a mixture of α-, β- and γ-himachalene, which was isolated from an essential oil of the Atlas cedar (Cedrus Atlantica). The dihedral angle between the two rings of the naphthalene unit is 1.38 (9)°. The nitro group and the acetyl group lie almost normal to the mean plane of the naphthalene unit, making dihedral angles of 79.35 (16)° and 89.75 (17)°, respectively, and are inclined to one another by 52.9 (2)°. There is an intramolecular C—H⋯O hydrogen bond present involving a nitro O atom and the H atom of the methyl C atom of the isopropyl group, forming an S(7) ring motif. In the crystal, molecules are linked by pairs of C—H⋯π interactions, forming inversion dimers. There are no other significant intermolecular interactions present.
Keywords: crystal structure; β-himachalene; Atlas cedar; hydrogen bonds; crystal structure.
CCDC reference: 1816715
Structure description
Our work is in the context of the valorization of the most abundant essential oils in Morocco, such as that of Atlas cedar (Cedrus Atlantica). This oil is made up mainly (75%) of bicyclics sesquiterpene hydrocarbons, among which are found the compounds α-, β- and γ-himachalene (El Haib et al., 2011; Loubidi et al., 2014). The reactivity of these sesquiterpenes and their derivatives have been studied extensively by our team in order to prepare new products having biological proprieties (El Haib et al., 2011; Zaki et al., 2014; Benharref et al., 2016,2017; Ait Elhad et al., 2017). Indeed, these compounds have been tested, using the food poisoning technique, for their potential antifungal activity against the phytopathogen botrytis cinera (Daoubi et al., 2004). Herein, we report on the of the title compound.
The molecular structure is illustrated in Fig. 1. The naphthalene ring system is approximately planar with a maximum deviation from planarity of 0.0242 (13) Å for atom C9. The dihedral angle between the two rings is 1.38 (9)°. The nitro group (N/O1/O2) and the acetyl group (C11/O3/C15) lie almost normal to the mean plane of the naphthalene unit, making dihedral angles of 79.35 (16) and 89.75 (17)°, respectively, and are inclined to one another by 52.9 (2)°.
In the crystal, molecules are linked by pairs of C—H⋯π interactions, forming inversion dimers (Table 1, Fig. 2). There are no other significant intermolecular interactions present.
Synthesis and crystallization
3 g (15 mmol) of 1,6-dimethyl-4-iso-propylenaphtalene (Benharref et al., 2016; Ait Elhad et al., 2017) dissolved in 50 ml of dichloromethane with 1.4 g (15 mmol) of aluminium chloride (AlCl3) and one equivalent of acetyl chloride (CH3COCl) was stirred at 273 K for 2 h. After addition of 40 ml water, the reaction mixture was extracted (3 × 20 ml) with dichloromethane. The organic phases were combined, dried over sodium sulfate and then concentrated in vacuo. on silica gel column with hexane–ethyl acetate (99/1) as of the residue obtained allowed us to obtain the title product [1-(2-isopropyl-4,7-dimethylnaphthalen-1-yl)ethanone] in 55% yield (2 g; 8.33 mmol). In a 100 ml reactor equipped with a magnetic stirrer and a dropping funnel, were introduced 20 ml of dichloromethane, 2 ml of nitric acid and 3 ml of concentrated sulfuric acid. After cooling, 1 g (4 mmol) of of 1-(2-isopropyl-4,7-dimethylnaphthalen-1-yl)ethanone dissolved in 10 ml of dichloromethane were added dropwise through a dropping funnel. The reaction mixture was stirred for 4 h, then 50 ml of ice–water were added and the mixture was extracted with dichloromethane. The organic layers were combined, washed with water (3 × 10 ml) and dried over sodium sulfate and then concentrated in vacuo. The residue was subjected to on a column of silica gel with hexane–ethyl acetate (98:2) as to obtain the title compound, which was recrystallized from its ethyl acetate solution.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1816715
https://doi.org/10.1107/S2414314618000834/bx4010sup1.cif
contains datablocks I, block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618000834/bx4010Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618000834/bx4010Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014/7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).C17H19NO3 | F(000) = 608 |
Mr = 285.33 | Dx = 1.273 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 11.172 (7) Å | Cell parameters from 3039 reflections |
b = 8.532 (5) Å | θ = 2.6–26.4° |
c = 16.287 (14) Å | µ = 0.09 mm−1 |
β = 106.54 (3)° | T = 170 K |
V = 1488.3 (18) Å3 | Plate, colourless |
Z = 4 | 0.50 × 0.45 × 0.15 mm |
Bruker X8 APEX diffractometer | 2710 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed X-ray tube | Rint = 0.030 |
φ and ω scans | θmax = 26.4°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −13→13 |
Tmin = 0.811, Tmax = 1.0 | k = −10→10 |
53166 measured reflections | l = −20→20 |
3039 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.127 | w = 1/[σ2(Fo2) + (0.0605P)2 + 0.6136P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
3039 reflections | Δρmax = 0.26 e Å−3 |
196 parameters | Δρmin = −0.25 e Å−3 |
0 restraints | Extinction correction: SHELXL-2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.014 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.10207 (11) | 0.94498 (15) | 0.28104 (8) | 0.0265 (3) | |
C2 | −0.06720 (11) | 0.81421 (15) | 0.33627 (8) | 0.0248 (3) | |
C3 | −0.09475 (12) | 0.81565 (16) | 0.41605 (8) | 0.0293 (3) | |
H3 | −0.0714 | 0.7283 | 0.4533 | 0.035* | |
C4 | −0.15427 (12) | 0.93988 (17) | 0.44081 (9) | 0.0328 (3) | |
C5 | −0.18796 (14) | 1.06889 (18) | 0.38536 (10) | 0.0379 (3) | |
H5 | −0.2291 | 1.1556 | 0.4020 | 0.045* | |
C6 | −0.16279 (13) | 1.07237 (17) | 0.30799 (10) | 0.0350 (3) | |
H6 | −0.1863 | 1.1613 | 0.2719 | 0.042* | |
C7 | −0.07567 (12) | 0.94410 (15) | 0.20035 (8) | 0.0275 (3) | |
C8 | −0.01491 (11) | 0.81585 (15) | 0.18140 (8) | 0.0255 (3) | |
C9 | 0.02572 (11) | 0.68362 (15) | 0.23498 (8) | 0.0253 (3) | |
C10 | −0.00404 (11) | 0.68558 (15) | 0.31139 (8) | 0.0251 (3) | |
C11 | 0.02958 (14) | 0.54943 (16) | 0.37334 (9) | 0.0321 (3) | |
C12 | 0.10052 (13) | 0.54700 (16) | 0.21429 (9) | 0.0310 (3) | |
H12 | 0.0992 | 0.4634 | 0.2570 | 0.037* | |
C13 | 0.04528 (15) | 0.47259 (18) | 0.12646 (10) | 0.0397 (4) | |
H13A | −0.0442 | 0.4544 | 0.1172 | 0.060* | |
H13B | 0.0871 | 0.3725 | 0.1238 | 0.060* | |
H13C | 0.0575 | 0.5430 | 0.0820 | 0.060* | |
C14 | 0.23845 (14) | 0.5897 (2) | 0.22909 (10) | 0.0430 (4) | |
H14A | 0.2454 | 0.6733 | 0.1894 | 0.064* | |
H14B | 0.2845 | 0.4972 | 0.2191 | 0.064* | |
H14C | 0.2736 | 0.6259 | 0.2882 | 0.064* | |
C15 | 0.15202 (16) | 0.5564 (2) | 0.43893 (10) | 0.0463 (4) | |
H15A | 0.1455 | 0.6226 | 0.4866 | 0.069* | |
H15B | 0.2143 | 0.6006 | 0.4136 | 0.069* | |
H15C | 0.1775 | 0.4504 | 0.4601 | 0.069* | |
C16 | −0.18325 (16) | 0.9376 (2) | 0.52558 (11) | 0.0439 (4) | |
H16A | −0.2550 | 0.8690 | 0.5216 | 0.066* | |
H16B | −0.2029 | 1.0441 | 0.5403 | 0.066* | |
H16C | −0.1107 | 0.8982 | 0.5700 | 0.066* | |
C17 | −0.11145 (16) | 1.08268 (18) | 0.14152 (10) | 0.0420 (4) | |
H17A | −0.0784 | 1.0689 | 0.0923 | 0.063* | |
H17B | −0.0766 | 1.1784 | 0.1724 | 0.063* | |
H17C | −0.2026 | 1.0911 | 0.1214 | 0.063* | |
O1 | 0.11116 (11) | 0.85261 (15) | 0.09187 (7) | 0.0492 (3) | |
O2 | −0.08085 (11) | 0.78675 (15) | 0.03444 (6) | 0.0472 (3) | |
O3 | −0.04474 (13) | 0.44427 (14) | 0.37083 (8) | 0.0550 (4) | |
N | 0.00735 (11) | 0.81813 (14) | 0.09622 (7) | 0.0323 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0209 (6) | 0.0288 (6) | 0.0280 (6) | −0.0004 (5) | 0.0044 (5) | −0.0026 (5) |
C2 | 0.0209 (6) | 0.0273 (6) | 0.0262 (6) | −0.0037 (5) | 0.0068 (5) | −0.0034 (5) |
C3 | 0.0284 (6) | 0.0325 (7) | 0.0290 (7) | −0.0051 (5) | 0.0117 (5) | −0.0032 (5) |
C4 | 0.0266 (6) | 0.0414 (8) | 0.0331 (7) | −0.0057 (6) | 0.0128 (5) | −0.0102 (6) |
C5 | 0.0323 (7) | 0.0400 (8) | 0.0423 (8) | 0.0064 (6) | 0.0123 (6) | −0.0117 (6) |
C6 | 0.0338 (7) | 0.0330 (7) | 0.0362 (7) | 0.0071 (6) | 0.0065 (6) | −0.0021 (6) |
C7 | 0.0244 (6) | 0.0283 (7) | 0.0276 (6) | −0.0004 (5) | 0.0039 (5) | 0.0018 (5) |
C8 | 0.0243 (6) | 0.0306 (7) | 0.0221 (6) | −0.0032 (5) | 0.0074 (5) | 0.0000 (5) |
C9 | 0.0237 (6) | 0.0267 (6) | 0.0262 (6) | −0.0008 (5) | 0.0083 (5) | −0.0014 (5) |
C10 | 0.0253 (6) | 0.0258 (6) | 0.0245 (6) | −0.0022 (5) | 0.0076 (5) | −0.0002 (5) |
C11 | 0.0429 (8) | 0.0288 (7) | 0.0291 (7) | 0.0046 (6) | 0.0176 (6) | 0.0017 (5) |
C12 | 0.0357 (7) | 0.0306 (7) | 0.0298 (7) | 0.0065 (6) | 0.0142 (5) | 0.0021 (5) |
C13 | 0.0488 (9) | 0.0341 (8) | 0.0390 (8) | 0.0005 (6) | 0.0170 (7) | −0.0077 (6) |
C14 | 0.0328 (7) | 0.0578 (10) | 0.0395 (8) | 0.0107 (7) | 0.0120 (6) | −0.0007 (7) |
C15 | 0.0490 (9) | 0.0556 (10) | 0.0330 (8) | 0.0120 (8) | 0.0099 (7) | 0.0148 (7) |
C16 | 0.0433 (8) | 0.0542 (10) | 0.0421 (9) | −0.0050 (7) | 0.0247 (7) | −0.0136 (7) |
C17 | 0.0534 (9) | 0.0355 (8) | 0.0365 (8) | 0.0099 (7) | 0.0120 (7) | 0.0088 (6) |
O1 | 0.0473 (7) | 0.0620 (8) | 0.0476 (7) | −0.0069 (6) | 0.0286 (5) | 0.0047 (6) |
O2 | 0.0514 (7) | 0.0611 (7) | 0.0252 (5) | 0.0026 (6) | 0.0047 (5) | −0.0013 (5) |
O3 | 0.0716 (9) | 0.0391 (6) | 0.0562 (8) | −0.0137 (6) | 0.0211 (6) | 0.0103 (5) |
N | 0.0378 (6) | 0.0338 (6) | 0.0274 (6) | 0.0017 (5) | 0.0130 (5) | 0.0038 (5) |
C1—C6 | 1.4156 (19) | C12—C13 | 1.526 (2) |
C1—C2 | 1.4165 (19) | C12—C14 | 1.534 (2) |
C1—C7 | 1.426 (2) | C12—H12 | 1.0000 |
C2—C3 | 1.418 (2) | C13—H13A | 0.9800 |
C2—C10 | 1.4246 (19) | C13—H13B | 0.9800 |
C3—C4 | 1.372 (2) | C13—H13C | 0.9800 |
C3—H3 | 0.9500 | C14—H14A | 0.9800 |
C4—C5 | 1.405 (2) | C14—H14B | 0.9800 |
C4—C16 | 1.505 (2) | C14—H14C | 0.9800 |
C5—C6 | 1.367 (2) | C15—H15A | 0.9800 |
C5—H5 | 0.9500 | C15—H15B | 0.9800 |
C6—H6 | 0.9500 | C15—H15C | 0.9800 |
C7—C8 | 1.3685 (19) | C16—H16A | 0.9800 |
C7—C17 | 1.503 (2) | C16—H16B | 0.9800 |
C8—C9 | 1.4195 (19) | C16—H16C | 0.9800 |
C8—N | 1.478 (2) | C17—H17A | 0.9800 |
C9—C10 | 1.377 (2) | C17—H17B | 0.9800 |
C9—C12 | 1.5268 (19) | C17—H17C | 0.9800 |
C10—C11 | 1.514 (2) | O1—N | 1.2180 (18) |
C11—O3 | 1.2152 (19) | O2—N | 1.2210 (18) |
C11—C15 | 1.478 (2) | ||
C6—C1—C2 | 118.51 (13) | C13—C12—H12 | 105.9 |
C6—C1—C7 | 122.20 (12) | C9—C12—H12 | 105.9 |
C2—C1—C7 | 119.30 (12) | C14—C12—H12 | 105.9 |
C1—C2—C3 | 118.88 (12) | C12—C13—H13A | 109.5 |
C1—C2—C10 | 119.67 (12) | C12—C13—H13B | 109.5 |
C3—C2—C10 | 121.44 (12) | H13A—C13—H13B | 109.5 |
C4—C3—C2 | 121.74 (13) | C12—C13—H13C | 109.5 |
C4—C3—H3 | 119.1 | H13A—C13—H13C | 109.5 |
C2—C3—H3 | 119.1 | H13B—C13—H13C | 109.5 |
C3—C4—C5 | 118.68 (14) | C12—C14—H14A | 109.5 |
C3—C4—C16 | 120.57 (14) | C12—C14—H14B | 109.5 |
C5—C4—C16 | 120.75 (14) | H14A—C14—H14B | 109.5 |
C6—C5—C4 | 121.43 (13) | C12—C14—H14C | 109.5 |
C6—C5—H5 | 119.3 | H14A—C14—H14C | 109.5 |
C4—C5—H5 | 119.3 | H14B—C14—H14C | 109.5 |
C5—C6—C1 | 120.77 (14) | C11—C15—H15A | 109.5 |
C5—C6—H6 | 119.6 | C11—C15—H15B | 109.5 |
C1—C6—H6 | 119.6 | H15A—C15—H15B | 109.5 |
C8—C7—C1 | 117.25 (12) | C11—C15—H15C | 109.5 |
C8—C7—C17 | 122.99 (13) | H15A—C15—H15C | 109.5 |
C1—C7—C17 | 119.74 (12) | H15B—C15—H15C | 109.5 |
C7—C8—C9 | 126.10 (12) | C4—C16—H16A | 109.5 |
C7—C8—N | 115.34 (11) | C4—C16—H16B | 109.5 |
C9—C8—N | 118.55 (12) | H16A—C16—H16B | 109.5 |
C10—C9—C8 | 115.40 (12) | C4—C16—H16C | 109.5 |
C10—C9—C12 | 119.80 (11) | H16A—C16—H16C | 109.5 |
C8—C9—C12 | 124.78 (12) | H16B—C16—H16C | 109.5 |
C9—C10—C2 | 122.22 (12) | C7—C17—H17A | 109.5 |
C9—C10—C11 | 121.01 (12) | C7—C17—H17B | 109.5 |
C2—C10—C11 | 116.77 (12) | H17A—C17—H17B | 109.5 |
O3—C11—C15 | 122.47 (14) | C7—C17—H17C | 109.5 |
O3—C11—C10 | 120.43 (14) | H17A—C17—H17C | 109.5 |
C15—C11—C10 | 117.00 (13) | H17B—C17—H17C | 109.5 |
C13—C12—C9 | 115.08 (12) | O1—N—O2 | 124.29 (13) |
C13—C12—C14 | 111.48 (12) | O1—N—C8 | 118.38 (12) |
C9—C12—C14 | 111.86 (12) | O2—N—C8 | 117.32 (12) |
Cg is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14A···O1 | 0.98 | 2.40 | 3.200 (3) | 139 |
C16—H16C···Cgi | 0.98 | 2.92 | 3.591 (4) | 127 |
Symmetry code: (i) −x+1, −y+1, −z. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.
References
Ait Elhad, M., Benharref, A., Taourirte, M., Daran, J.-C., Oukhrib, A. & Berraho, M. (2017). IUCrData, 2, x170368. Google Scholar
Benharref, A., El Ammari, L., Saadi, M., Mazoir, N., Daran, J.-C. & Berraho, M. (2017). IUCrData, 2, x170584. Google Scholar
Benharref, A., Oukhrib, A., Ait Elhad, M., El Ammari, L., Saadi, M. & Berraho, M. (2016). IUCrData, 1, x160703. Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Daoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest Manag. Sci. 60, 927–932. Web of Science CrossRef PubMed CAS Google Scholar
El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Loubidi, M., Agustin, D., Benharref, A. & Poli, R. (2014). C. R. Chim. 17, 549–556. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zaki, M., Benharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2014). Acta Cryst. E70, o444. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.