organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(2-Iso­propyl-4,7-di­methyl-3-nitro­naphthalen-1-yl)ethanone

aLaboratoire de Chimie des Substances Naturelles, Unité Associé au CNRST (URAC16), Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, Université Cadi Ayyad, 40000 Marrakech, Morocco, and bLaboratoire de Chimie Appliquée des Matériaux, Centres des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: mazoir17@gmail.com

Edited by I. Brito, University of Antofagasta, Chile (Received 29 December 2017; accepted 12 January 2018; online 19 January 2018)

The title compound, C17H19NO3, was synthesized in four steps from a mixture of α-, β- and γ-himachalene, which was isolated from an essential oil of the Atlas cedar (Cedrus Atlantica). The dihedral angle between the two rings of the naphthalene unit is 1.38 (9)°. The nitro group and the acetyl group lie almost normal to the mean plane of the naphthalene unit, making dihedral angles of 79.35 (16)° and 89.75 (17)°, respectively, and are inclined to one another by 52.9 (2)°. There is an intra­molecular C—H⋯O hydrogen bond present involving a nitro O atom and the H atom of the methyl C atom of the isopropyl group, forming an S(7) ring motif. In the crystal, mol­ecules are linked by pairs of C—H⋯π inter­actions, forming inversion dimers. There are no other significant inter­molecular inter­actions present.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Our work is in the context of the valorization of the most abundant essential oils in Morocco, such as that of Atlas cedar (Cedrus Atlantica). This oil is made up mainly (75%) of bicyclics sesquiterpene hydro­carbons, among which are found the compounds α-, β- and γ-himachalene (El Haib et al., 2011[El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101-108.]; Loubidi et al., 2014[Loubidi, M., Agustin, D., Benharref, A. & Poli, R. (2014). C. R. Chim. 17, 549-556.]). The reactivity of these sesquiterpenes and their derivatives have been studied extensively by our team in order to prepare new products having biological proprieties (El Haib et al., 2011[El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101-108.]; Zaki et al., 2014[Zaki, M., Benharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2014). Acta Cryst. E70, o444.]; Benharref et al., 2016[Benharref, A., Oukhrib, A., Ait Elhad, M., El Ammari, L., Saadi, M. & Berraho, M. (2016). IUCrData, 1, x160703.],2017[Benharref, A., El Ammari, L., Saadi, M., Mazoir, N., Daran, J.-C. & Berraho, M. (2017). IUCrData, 2, x170584.]; Ait Elhad et al., 2017[Ait Elhad, M., Benharref, A., Taourirte, M., Daran, J.-C., Oukhrib, A. & Berraho, M. (2017). IUCrData, 2, x170368.]). Indeed, these compounds have been tested, using the food poisoning technique, for their potential anti­fungal activity against the phytopathogen botrytis cinera (Daoubi et al., 2004[Daoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest Manag. Sci. 60, 927-932.]). Herein, we report on the crystal structure of the title compound.

The mol­ecular structure is illustrated in Fig. 1[link]. The naphthalene ring system is approximately planar with a maximum deviation from planarity of 0.0242 (13) Å for atom C9. The dihedral angle between the two rings is 1.38 (9)°. The nitro group (N/O1/O2) and the acetyl group (C11/O3/C15) lie almost normal to the mean plane of the naphthalene unit, making dihedral angles of 79.35 (16) and 89.75 (17)°, respectively, and are inclined to one another by 52.9 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intra­molecular C—H⋯O hydrogen bond (see Table 1[link]) is shown as a dashed line.

In the crystal, mol­ecules are linked by pairs of C—H⋯π inter­actions, forming inversion dimers (Table 1[link], Fig. 2[link]). There are no other significant inter­molecular inter­actions present.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O1 0.98 2.40 3.200 (3) 139
C16—H16CCgi 0.98 2.92 3.591 (4) 127
Symmetry code: (i) -x+1, -y+1, -z.
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. The intra­molecular hydrogen bonds are shown as dashed lines and the C—H⋯π inter­actions as green lines (see Table 1[link]; the H atom involved is shown as a blue ball).

Synthesis and crystallization

3 g (15 mmol) of 1,6-dimethyl-4-iso-propyl­enaphtalene (Benharref et al., 2016[Benharref, A., Oukhrib, A., Ait Elhad, M., El Ammari, L., Saadi, M. & Berraho, M. (2016). IUCrData, 1, x160703.]; Ait Elhad et al., 2017[Ait Elhad, M., Benharref, A., Taourirte, M., Daran, J.-C., Oukhrib, A. & Berraho, M. (2017). IUCrData, 2, x170368.]) dissolved in 50 ml of di­chloro­methane with 1.4 g (15 mmol) of aluminium chloride (AlCl3) and one equivalent of acetyl chloride (CH3COCl) was stirred at 273 K for 2 h. After addition of 40 ml water, the reaction mixture was extracted (3 × 20 ml) with di­chloro­methane. The organic phases were combined, dried over sodium sulfate and then concentrated in vacuo. Chromatography on silica gel column with hexa­ne–ethyl acetate (99/1) as eluent of the residue obtained allowed us to obtain the title product [1-(2-isopropyl-4,7-di­methyl­naphthalen-1-yl)ethanone] in 55% yield (2 g; 8.33 mmol). In a 100 ml reactor equipped with a magnetic stirrer and a dropping funnel, were introduced 20 ml of di­chloro­methane, 2 ml of nitric acid and 3 ml of concentrated sulfuric acid. After cooling, 1 g (4 mmol) of of 1-(2-isopropyl-4,7-di­methyl­naphthalen-1-yl)ethanone dissolved in 10 ml of di­chloro­methane were added dropwise through a dropping funnel. The reaction mixture was stirred for 4 h, then 50 ml of ice–water were added and the mixture was extracted with di­chloro­methane. The organic layers were combined, washed with water (3 × 10 ml) and dried over sodium sulfate and then concentrated in vacuo. The residue was subjected to chromatography on a column of silica gel with hexa­ne–ethyl acetate (98:2) as eluent, to obtain the title compound, which was recrystallized from its ethyl acetate solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H19NO3
Mr 285.33
Crystal system, space group Monoclinic, P21/n
Temperature (K) 170
a, b, c (Å) 11.172 (7), 8.532 (5), 16.287 (14)
β (°) 106.54 (3)
V3) 1488.3 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.50 × 0.45 × 0.15
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.811, 1.0
No. of measured, independent and observed [I > 2σ(I)] reflections 53166, 3039, 2710
Rint 0.030
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.127, 1.08
No. of reflections 3039
No. of parameters 196
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.25
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014/7 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014/7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

1-(-2-Isopropyl-4,7-dimethyl-3-nitronaphthalen-1-yl)ethanone top
Crystal data top
C17H19NO3F(000) = 608
Mr = 285.33Dx = 1.273 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.172 (7) ÅCell parameters from 3039 reflections
b = 8.532 (5) Åθ = 2.6–26.4°
c = 16.287 (14) ŵ = 0.09 mm1
β = 106.54 (3)°T = 170 K
V = 1488.3 (18) Å3Plate, colourless
Z = 40.50 × 0.45 × 0.15 mm
Data collection top
Bruker X8 APEX
diffractometer
2710 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.030
φ and ω scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.811, Tmax = 1.0k = 1010
53166 measured reflectionsl = 2020
3039 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0605P)2 + 0.6136P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3039 reflectionsΔρmax = 0.26 e Å3
196 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL-2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.10207 (11)0.94498 (15)0.28104 (8)0.0265 (3)
C20.06720 (11)0.81421 (15)0.33627 (8)0.0248 (3)
C30.09475 (12)0.81565 (16)0.41605 (8)0.0293 (3)
H30.07140.72830.45330.035*
C40.15427 (12)0.93988 (17)0.44081 (9)0.0328 (3)
C50.18796 (14)1.06889 (18)0.38536 (10)0.0379 (3)
H50.22911.15560.40200.045*
C60.16279 (13)1.07237 (17)0.30799 (10)0.0350 (3)
H60.18631.16130.27190.042*
C70.07567 (12)0.94410 (15)0.20035 (8)0.0275 (3)
C80.01491 (11)0.81585 (15)0.18140 (8)0.0255 (3)
C90.02572 (11)0.68362 (15)0.23498 (8)0.0253 (3)
C100.00404 (11)0.68558 (15)0.31139 (8)0.0251 (3)
C110.02958 (14)0.54943 (16)0.37334 (9)0.0321 (3)
C120.10052 (13)0.54700 (16)0.21429 (9)0.0310 (3)
H120.09920.46340.25700.037*
C130.04528 (15)0.47259 (18)0.12646 (10)0.0397 (4)
H13A0.04420.45440.11720.060*
H13B0.08710.37250.12380.060*
H13C0.05750.54300.08200.060*
C140.23845 (14)0.5897 (2)0.22909 (10)0.0430 (4)
H14A0.24540.67330.18940.064*
H14B0.28450.49720.21910.064*
H14C0.27360.62590.28820.064*
C150.15202 (16)0.5564 (2)0.43893 (10)0.0463 (4)
H15A0.14550.62260.48660.069*
H15B0.21430.60060.41360.069*
H15C0.17750.45040.46010.069*
C160.18325 (16)0.9376 (2)0.52558 (11)0.0439 (4)
H16A0.25500.86900.52160.066*
H16B0.20291.04410.54030.066*
H16C0.11070.89820.57000.066*
C170.11145 (16)1.08268 (18)0.14152 (10)0.0420 (4)
H17A0.07841.06890.09230.063*
H17B0.07661.17840.17240.063*
H17C0.20261.09110.12140.063*
O10.11116 (11)0.85261 (15)0.09187 (7)0.0492 (3)
O20.08085 (11)0.78675 (15)0.03444 (6)0.0472 (3)
O30.04474 (13)0.44427 (14)0.37083 (8)0.0550 (4)
N0.00735 (11)0.81813 (14)0.09622 (7)0.0323 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0209 (6)0.0288 (6)0.0280 (6)0.0004 (5)0.0044 (5)0.0026 (5)
C20.0209 (6)0.0273 (6)0.0262 (6)0.0037 (5)0.0068 (5)0.0034 (5)
C30.0284 (6)0.0325 (7)0.0290 (7)0.0051 (5)0.0117 (5)0.0032 (5)
C40.0266 (6)0.0414 (8)0.0331 (7)0.0057 (6)0.0128 (5)0.0102 (6)
C50.0323 (7)0.0400 (8)0.0423 (8)0.0064 (6)0.0123 (6)0.0117 (6)
C60.0338 (7)0.0330 (7)0.0362 (7)0.0071 (6)0.0065 (6)0.0021 (6)
C70.0244 (6)0.0283 (7)0.0276 (6)0.0004 (5)0.0039 (5)0.0018 (5)
C80.0243 (6)0.0306 (7)0.0221 (6)0.0032 (5)0.0074 (5)0.0000 (5)
C90.0237 (6)0.0267 (6)0.0262 (6)0.0008 (5)0.0083 (5)0.0014 (5)
C100.0253 (6)0.0258 (6)0.0245 (6)0.0022 (5)0.0076 (5)0.0002 (5)
C110.0429 (8)0.0288 (7)0.0291 (7)0.0046 (6)0.0176 (6)0.0017 (5)
C120.0357 (7)0.0306 (7)0.0298 (7)0.0065 (6)0.0142 (5)0.0021 (5)
C130.0488 (9)0.0341 (8)0.0390 (8)0.0005 (6)0.0170 (7)0.0077 (6)
C140.0328 (7)0.0578 (10)0.0395 (8)0.0107 (7)0.0120 (6)0.0007 (7)
C150.0490 (9)0.0556 (10)0.0330 (8)0.0120 (8)0.0099 (7)0.0148 (7)
C160.0433 (8)0.0542 (10)0.0421 (9)0.0050 (7)0.0247 (7)0.0136 (7)
C170.0534 (9)0.0355 (8)0.0365 (8)0.0099 (7)0.0120 (7)0.0088 (6)
O10.0473 (7)0.0620 (8)0.0476 (7)0.0069 (6)0.0286 (5)0.0047 (6)
O20.0514 (7)0.0611 (7)0.0252 (5)0.0026 (6)0.0047 (5)0.0013 (5)
O30.0716 (9)0.0391 (6)0.0562 (8)0.0137 (6)0.0211 (6)0.0103 (5)
N0.0378 (6)0.0338 (6)0.0274 (6)0.0017 (5)0.0130 (5)0.0038 (5)
Geometric parameters (Å, º) top
C1—C61.4156 (19)C12—C131.526 (2)
C1—C21.4165 (19)C12—C141.534 (2)
C1—C71.426 (2)C12—H121.0000
C2—C31.418 (2)C13—H13A0.9800
C2—C101.4246 (19)C13—H13B0.9800
C3—C41.372 (2)C13—H13C0.9800
C3—H30.9500C14—H14A0.9800
C4—C51.405 (2)C14—H14B0.9800
C4—C161.505 (2)C14—H14C0.9800
C5—C61.367 (2)C15—H15A0.9800
C5—H50.9500C15—H15B0.9800
C6—H60.9500C15—H15C0.9800
C7—C81.3685 (19)C16—H16A0.9800
C7—C171.503 (2)C16—H16B0.9800
C8—C91.4195 (19)C16—H16C0.9800
C8—N1.478 (2)C17—H17A0.9800
C9—C101.377 (2)C17—H17B0.9800
C9—C121.5268 (19)C17—H17C0.9800
C10—C111.514 (2)O1—N1.2180 (18)
C11—O31.2152 (19)O2—N1.2210 (18)
C11—C151.478 (2)
C6—C1—C2118.51 (13)C13—C12—H12105.9
C6—C1—C7122.20 (12)C9—C12—H12105.9
C2—C1—C7119.30 (12)C14—C12—H12105.9
C1—C2—C3118.88 (12)C12—C13—H13A109.5
C1—C2—C10119.67 (12)C12—C13—H13B109.5
C3—C2—C10121.44 (12)H13A—C13—H13B109.5
C4—C3—C2121.74 (13)C12—C13—H13C109.5
C4—C3—H3119.1H13A—C13—H13C109.5
C2—C3—H3119.1H13B—C13—H13C109.5
C3—C4—C5118.68 (14)C12—C14—H14A109.5
C3—C4—C16120.57 (14)C12—C14—H14B109.5
C5—C4—C16120.75 (14)H14A—C14—H14B109.5
C6—C5—C4121.43 (13)C12—C14—H14C109.5
C6—C5—H5119.3H14A—C14—H14C109.5
C4—C5—H5119.3H14B—C14—H14C109.5
C5—C6—C1120.77 (14)C11—C15—H15A109.5
C5—C6—H6119.6C11—C15—H15B109.5
C1—C6—H6119.6H15A—C15—H15B109.5
C8—C7—C1117.25 (12)C11—C15—H15C109.5
C8—C7—C17122.99 (13)H15A—C15—H15C109.5
C1—C7—C17119.74 (12)H15B—C15—H15C109.5
C7—C8—C9126.10 (12)C4—C16—H16A109.5
C7—C8—N115.34 (11)C4—C16—H16B109.5
C9—C8—N118.55 (12)H16A—C16—H16B109.5
C10—C9—C8115.40 (12)C4—C16—H16C109.5
C10—C9—C12119.80 (11)H16A—C16—H16C109.5
C8—C9—C12124.78 (12)H16B—C16—H16C109.5
C9—C10—C2122.22 (12)C7—C17—H17A109.5
C9—C10—C11121.01 (12)C7—C17—H17B109.5
C2—C10—C11116.77 (12)H17A—C17—H17B109.5
O3—C11—C15122.47 (14)C7—C17—H17C109.5
O3—C11—C10120.43 (14)H17A—C17—H17C109.5
C15—C11—C10117.00 (13)H17B—C17—H17C109.5
C13—C12—C9115.08 (12)O1—N—O2124.29 (13)
C13—C12—C14111.48 (12)O1—N—C8118.38 (12)
C9—C12—C14111.86 (12)O2—N—C8117.32 (12)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14A···O10.982.403.200 (3)139
C16—H16C···Cgi0.982.923.591 (4)127
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAit Elhad, M., Benharref, A., Taourirte, M., Daran, J.-C., Oukhrib, A. & Berraho, M. (2017). IUCrData, 2, x170368.  Google Scholar
First citationBenharref, A., El Ammari, L., Saadi, M., Mazoir, N., Daran, J.-C. & Berraho, M. (2017). IUCrData, 2, x170584.  Google Scholar
First citationBenharref, A., Oukhrib, A., Ait Elhad, M., El Ammari, L., Saadi, M. & Berraho, M. (2016). IUCrData, 1, x160703.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLoubidi, M., Agustin, D., Benharref, A. & Poli, R. (2014). C. R. Chim. 17, 549–556.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaki, M., Benharref, A., El Ammari, L., Saadi, M. & Berraho, M. (2014). Acta Cryst. E70, o444.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]