metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[μ-N,N′-(pyridine-2,6-di­yl)bis­­(tri­methyl­silyl­amido)-1κ2N1,N2;2:3κ2N6:N6]bis­­(tetra­hydro­furan)-2:3κ2O-1-nickel(II)-2,3-lithium(I)

aDepartment of Chemistry and Biochemistry, Georgia Southern University, Savannah, GA 31419, USA
*Correspondence e-mail: gary.guillet@armstrong.edu

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 13 December 2017; accepted 9 January 2018; online 12 January 2018)

The title complex, [Li2Ni(C11H21N3Si2)2(C4H8O)2], is a trimetallic complex of two LiI cations and a NiII cation bridged by two N,N′-(pyridine-2,6-di­yl)bis(tri­methyl­silyl­amide) ligands that crystallizes in the Fdd2 space group. The mol­ecule has C2 rotational symmetry, with the NiII cation located on the twofold axis. The coordination sphere of the NiII cation is composed of two amido N and two pyridyl N-atom donors in a distorted square-planar geometry. The LiI cations are coordinated by two amido N-atom donors and a tetra­hydro­furan mol­ecule with a long inter­action with a pyridyl N-atom donor. The coordinating tetra­hydro­furan ligand and a tri­methyl­silyl group are disordered. Intra- or inter­molecular hydrogen bonding, as well as ππ stacking, are not observed between the mol­ecules, likely indicating that weak electrostatic inter­actions are the dominant feature leading to the crystal structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title complex (Fig. 1[link]) represents a unique mixed trimetallic complex of LiI and NiII. There are a number of multimetallic complexes supported by 2,6-bis­(tri­alkyl­silyl­amido)­pyridines (see: Glatz & Kempe, 2008a[Glatz, G. & Kempe, R. (2008a). Z. Kristallogr. New Cryst. Struct. 223, 307-308.],b[Glatz, G. & Kempe, R. (2008b). Z. Kristallogr. New Cryst. Struct. 223, 313-315.],c[Glatz, G. & Kempe, R. (2008c). Z. Kristallogr. New Cryst. Struct. 223, 309-310.]; Huang et al., 2012[Huang, Y.-L., Lu, D.-Y., Yu, H.-C., Yu, J. K., Hsu, C.-W., Kuo, T.-S., Lee, G.-H., Wang, Y. & Tsai, Y.-C. (2012). Angew. Chem. Int. Ed. 51, 7781-7785.]), but to the best of the authors' knowledge this is the first with NiII and the first with an alkali metal and a transition metal cation. Although there are multiple metals in close proximity, there is no indication of a metal-to-metal inter­action with an Li1⋯Ni1 distance of 3.20 (2) Å.

[Figure 1]
Figure 1
Structure of the title complex. H atoms and the minor disorder components of the disordered SiMe3 group and THF molecule were omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) [{3\over 2}] − x, [{1\over 2}] − y, z].

The Ni1 dication is in a special position on a twofold rotation axis. The coordination geometry about Ni1 is best described as distorted square planar. Ni1 is coordinated by pyridyl atoms N1 and N1i with bond distances of 1.952 (6) Å and to the amido atoms N2 and N2i with bond distances of 1.911 (6) Å [symmetry code: (i) [{3\over 2}] − x, [{1\over 2}] − y, z]. The extent of distortion from planarity about Ni1 can be described by the distance of N1i or N2i from the plane defined by Ni1, N1, C1, and N2. For N1i this distance is 0.38 (1) Å and for N2i it is 0.52 (1) Å. The angle N1—Ni1—N2 is 69.6 (3)°, a typical value for a bidentate 2-silyl­amido­pyridine. The angles N1—Ni—N1i and N2—Ni—N2i are 115.3 (4)° and 109.0 (4)°, respectively.

The coordination about Li1 is best described as distorted tetra­hedral with one bond significantly longer than the other three. Li1 has typical bond lengths to amido atoms N3 and N3i, N3—Li1 = 2.085 (17) Å and N3i—Li1 = 2.031 (18) Å, and ethereal O1—Li1 = 1.854 (19) Å. On the other hand, the bond length to the pyridyl atom N1, N1—Li1 = 2.473 (17) Å, is significantly longer. Li1 is lifted only slightly out of the trigonal plane O1, N3, and N3i by 0.12 (2) Å towards N1. The three bond angles in the trigonal plane about Li1 sum to 358.9°. The behaviour of Li1 could be described as a trigonal plane that is capped by N1. It is hoped that the title complex could be a useful synthon for heterometallic transition metal complexes.

Synthesis and crystallization

For this synthesis, bis-2,6-(tri­methyl­silyl­amino)­pyridine (H2L) is li­thia­ted with n-butyl­lithium in tetra­hydro­furan (THF) prior to reaction with transition metals. The li­thia­ted starting material (Li4L2·4THF, 0.151 g, 0.184 mmol) was dissolved in 5 ml of THF and NiCl2 (0.048 g, 0.368 mmol) was added directly to the reaction mixture. The reaction proceeded overnight and in that time the solution turned from pale yellow to black with concomitant LiCl precipitation. The solvent was removed under vacuum, the residue taken up in 5 ml of diethyl ether, and then filtered through celite. The resulting solution was allowed to evaporate slowly until crystal formation began, at which point the reaction was cooled to −30°C to induce further crystallization. The title complex was isolated as dark-purple block-shaped crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. One SiMe3 group is disordered over two positions, Si2/C9/C10/C11 and Si2A/C9A/C10A/C11A, with site occupancies converging to 0.70 (7) and 0.30 (7). The solvated THF mol­ecule is disordered over two positions, C12/C13/C14/C15 and C12A/C13A/C14A/C15A, with site occupancies converging to 0.70 (1) and 0.30 (1). The thermal displacement parameters for O1/C12/C13/C14/C15/C12A/C13A/C14A/C15A were constrained.

Table 1
Experimental details

Crystal data
Chemical formula [Li2Ni(C11H21N3Si2)2(C4H8O)2]
Mr 719.77
Crystal system, space group Orthorhombic, Fdd2
Temperature (K) 170
a, b, c (Å) 21.023 (7), 28.508 (9), 13.566 (4)
V3) 8129 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.63
Crystal size (mm) 0.4 × 0.29 × 0.18
 
Data collection
Diffractometer Rigaku XtaLAB mini
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.733, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 17664, 3717, 3041
Rint 0.075
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.156, 1.05
No. of reflections 3717
No. of parameters 239
No. of restraints 207
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.34
Absolute structure Flack x determined using 1094 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.022 (14)
Computer programs: CrystalClear (Rigaku, 2009[Rigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 2009); cell refinement: CrystalClear (Rigaku, 2009); data reduction: CrystalClear (Rigaku, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis[µ-N,N'-(pyridine-2,6-diyl)bis(trimethylsilylamido)-1κ2N1,N2;2:3κ2N6:N6]bis(tetrahydrofuran)-2:3κ2O-1-nickel(II)-2,3-lithium(I) top
Crystal data top
[Li2Ni(C11H21N3Si2)2(C4H8O)2]Dx = 1.176 Mg m3
Mr = 719.77Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 3922 reflections
a = 21.023 (7) Åθ = 1.9–25.4°
b = 28.508 (9) ŵ = 0.63 mm1
c = 13.566 (4) ÅT = 170 K
V = 8129 (4) Å3Block, clear dark violet
Z = 80.4 × 0.29 × 0.18 mm
F(000) = 3088
Data collection top
Rigaku XtaLAB mini
diffractometer
3717 independent reflections
Radiation source: Sealed Tube3041 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.075
Detector resolution: 13.6612 pixels mm-1θmax = 25.4°, θmin = 2.4°
profile data from ω–scansh = 2525
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
k = 3434
Tmin = 0.733, Tmax = 1.000l = 1616
17664 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0788P)2 + 9.9425P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3717 reflectionsΔρmax = 0.42 e Å3
239 parametersΔρmin = 0.34 e Å3
207 restraintsAbsolute structure: Flack x determined using 1094 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.022 (14)
Special details top

Refinement. H atoms bonded to C atoms were included at calculated positions using a riding model, with aromatic, methylene, and methyl C—H bond lengths of 0.93, 0.97 and 0.96 Å, respectively, and Uiso(H) set to 1.2Uequiv(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.75000.25000.42790 (10)0.0421 (3)
Si10.67645 (12)0.30931 (11)0.24185 (18)0.0736 (8)
O10.7103 (5)0.3553 (3)0.6360 (8)0.131 (3)
N10.6730 (3)0.2608 (2)0.5049 (5)0.0469 (14)
N20.6842 (3)0.2750 (2)0.3461 (5)0.0545 (16)
N30.6770 (3)0.2341 (3)0.6654 (5)0.0603 (17)
C10.6418 (3)0.2746 (3)0.4207 (6)0.0508 (16)
C20.5769 (4)0.2841 (4)0.4233 (7)0.074 (2)
H20.55570.29520.36790.089*
C30.5451 (4)0.2765 (4)0.5106 (7)0.077 (3)
H30.50190.28330.51410.092*
C40.5749 (4)0.2593 (3)0.5915 (6)0.067 (2)
H40.55180.25320.64860.080*
C50.6415 (3)0.2504 (3)0.5892 (6)0.0485 (17)
C60.7539 (5)0.3125 (5)0.1748 (9)0.109 (4)
H6A0.77530.34120.19160.163*
H6B0.74630.31160.10500.163*
H6C0.78000.28630.19330.163*
C70.6143 (6)0.2860 (5)0.1556 (8)0.114 (4)
H7A0.61730.25250.15270.170*
H7B0.62090.29890.09100.170*
H7C0.57290.29480.17900.170*
C80.6535 (7)0.3702 (4)0.2800 (10)0.115 (4)
H8A0.61290.36940.31240.173*
H8B0.65080.38990.22280.173*
H8C0.68490.38250.32440.173*
Li10.7346 (7)0.2929 (6)0.6448 (12)0.069 (4)
Si20.6452 (16)0.2234 (19)0.778 (3)0.068 (6)0.30 (7)
C90.603 (2)0.271 (2)0.847 (3)0.074 (10)0.30 (7)
H9A0.63180.28600.89220.112*0.30 (7)
H9B0.56780.25820.88320.112*0.30 (7)
H9C0.58720.29430.80130.112*0.30 (7)
C100.7127 (19)0.201 (3)0.856 (3)0.075 (11)0.30 (7)
H10A0.72410.17020.83460.112*0.30 (7)
H10B0.69990.20050.92350.112*0.30 (7)
H10C0.74870.22170.84840.112*0.30 (7)
C110.587 (2)0.174 (2)0.760 (4)0.075 (11)0.30 (7)
H11A0.55000.18570.72730.113*0.30 (7)
H11B0.57550.16150.82320.113*0.30 (7)
H11C0.60660.15000.72100.113*0.30 (7)
C120.6601 (11)0.3780 (7)0.6872 (16)0.131 (3)0.701 (12)
H12A0.67600.40170.73220.157*0.701 (12)
H12B0.63390.35580.72310.157*0.701 (12)
C130.6251 (10)0.3992 (6)0.6035 (17)0.131 (3)0.701 (12)
H13A0.59780.42460.62500.157*0.701 (12)
H13B0.59990.37610.56850.157*0.701 (12)
C140.6842 (10)0.4183 (6)0.5366 (18)0.131 (3)0.701 (12)
H14A0.67070.42340.46910.157*0.701 (12)
H14B0.70060.44750.56290.157*0.701 (12)
C150.7315 (10)0.3823 (6)0.5413 (19)0.131 (3)0.701 (12)
H15A0.77380.39540.54850.157*0.701 (12)
H15B0.73030.36230.48340.157*0.701 (12)
Si2A0.6446 (6)0.2070 (8)0.7699 (10)0.062 (3)0.70 (7)
C9A0.6048 (10)0.2500 (13)0.8547 (15)0.084 (6)0.70 (7)
H9AA0.63480.27360.87410.126*0.70 (7)
H9AB0.58950.23390.91210.126*0.70 (7)
H9AC0.56970.26450.82120.126*0.70 (7)
C10A0.7124 (10)0.1789 (14)0.837 (2)0.092 (7)0.70 (7)
H10D0.71970.14810.81130.138*0.70 (7)
H10E0.70220.17670.90610.138*0.70 (7)
H10F0.75000.19760.82910.138*0.70 (7)
C11A0.5866 (11)0.1586 (10)0.739 (2)0.091 (6)0.70 (7)
H11D0.56530.16580.67850.136*0.70 (7)
H11E0.55580.15590.79120.136*0.70 (7)
H11F0.60910.12950.73260.136*0.70 (7)
C12A0.638 (2)0.3589 (11)0.672 (5)0.131 (3)0.299 (12)
H12C0.60850.34930.62040.157*0.299 (12)
H12D0.63030.34090.73090.157*0.299 (12)
C13A0.635 (2)0.4091 (11)0.690 (4)0.131 (3)0.299 (12)
H13C0.64450.41650.75800.157*0.299 (12)
H13D0.59420.42210.67200.157*0.299 (12)
C14A0.6915 (19)0.4276 (11)0.616 (4)0.131 (3)0.299 (12)
H14C0.67550.43050.54910.157*0.299 (12)
H14D0.70710.45800.63720.157*0.299 (12)
C15A0.7421 (18)0.3929 (14)0.620 (5)0.131 (3)0.299 (12)
H15C0.76540.39120.55870.157*0.299 (12)
H15D0.77150.39930.67380.157*0.299 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0426 (6)0.0483 (6)0.0355 (6)0.0009 (6)0.0000.000
Si10.0678 (15)0.107 (2)0.0465 (13)0.0204 (14)0.0037 (11)0.0264 (13)
O10.165 (7)0.080 (4)0.148 (7)0.008 (4)0.003 (6)0.025 (4)
N10.041 (3)0.060 (3)0.040 (3)0.002 (3)0.004 (3)0.010 (3)
N20.048 (4)0.076 (5)0.039 (3)0.007 (3)0.000 (3)0.012 (3)
N30.047 (3)0.090 (4)0.043 (4)0.006 (3)0.001 (3)0.021 (3)
C10.046 (4)0.060 (4)0.047 (4)0.004 (3)0.005 (4)0.007 (4)
C20.056 (5)0.112 (7)0.054 (5)0.017 (4)0.003 (5)0.016 (5)
C30.045 (4)0.122 (8)0.063 (6)0.017 (5)0.005 (4)0.018 (6)
C40.050 (5)0.104 (7)0.047 (4)0.004 (4)0.005 (4)0.013 (5)
C50.037 (4)0.063 (4)0.045 (4)0.004 (3)0.001 (3)0.009 (4)
C60.097 (7)0.151 (11)0.078 (7)0.026 (6)0.024 (6)0.052 (8)
C70.106 (8)0.171 (11)0.064 (7)0.023 (7)0.022 (6)0.021 (7)
C80.144 (10)0.101 (7)0.100 (8)0.050 (7)0.024 (7)0.047 (6)
Li10.062 (8)0.083 (10)0.062 (9)0.015 (7)0.003 (7)0.008 (8)
Si20.059 (6)0.092 (17)0.054 (8)0.026 (10)0.008 (5)0.025 (10)
C90.076 (17)0.10 (2)0.047 (16)0.026 (15)0.012 (13)0.027 (15)
C100.066 (12)0.12 (3)0.036 (16)0.022 (15)0.008 (10)0.045 (17)
C110.065 (15)0.10 (2)0.06 (2)0.030 (14)0.010 (13)0.026 (16)
C120.165 (7)0.080 (4)0.148 (7)0.008 (4)0.003 (6)0.025 (4)
C130.165 (7)0.080 (4)0.148 (7)0.008 (4)0.003 (6)0.025 (4)
C140.165 (7)0.080 (4)0.148 (7)0.008 (4)0.003 (6)0.025 (4)
C150.165 (7)0.080 (4)0.148 (7)0.008 (4)0.003 (6)0.025 (4)
Si2A0.051 (3)0.089 (7)0.046 (3)0.015 (4)0.001 (2)0.026 (4)
C9A0.078 (10)0.116 (14)0.056 (8)0.010 (9)0.025 (7)0.024 (9)
C10A0.065 (8)0.128 (17)0.084 (14)0.007 (9)0.002 (7)0.044 (12)
C11A0.087 (10)0.103 (12)0.082 (14)0.036 (9)0.005 (10)0.033 (10)
C12A0.165 (7)0.080 (4)0.148 (7)0.008 (4)0.003 (6)0.025 (4)
C13A0.165 (7)0.080 (4)0.148 (7)0.008 (4)0.003 (6)0.025 (4)
C14A0.165 (7)0.080 (4)0.148 (7)0.008 (4)0.003 (6)0.025 (4)
C15A0.165 (7)0.080 (4)0.148 (7)0.008 (4)0.003 (6)0.025 (4)
Geometric parameters (Å, º) top
Ni1—N1i1.952 (6)Si2—C111.88 (2)
Ni1—N11.952 (6)C9—H9A0.9600
Ni1—N21.911 (6)C9—H9B0.9600
Ni1—N2i1.911 (6)C9—H9C0.9600
Ni1—C1i2.382 (7)C10—H10A0.9600
Ni1—C12.382 (7)C10—H10B0.9600
Ni1—Li1i3.202 (16)C10—H10C0.9600
Ni1—Li13.202 (16)C11—H11A0.9600
Si1—N21.727 (7)C11—H11B0.9600
Si1—C61.868 (10)C11—H11C0.9600
Si1—C71.875 (11)C12—H12A0.9700
Si1—C81.875 (12)C12—H12B0.9700
O1—Li11.854 (19)C12—C131.48 (2)
O1—C121.42 (2)C13—H13A0.9700
O1—C151.56 (2)C13—H13B0.9700
O1—C12A1.60 (4)C13—C141.63 (3)
O1—C15A1.28 (4)C14—H14A0.9700
N1—C11.374 (10)C14—H14B0.9700
N1—C51.353 (10)C14—C151.43 (2)
N1—Li12.473 (17)C15—H15A0.9700
N2—C11.349 (10)C15—H15B0.9700
N3—C51.356 (10)Si2A—Li1i3.05 (2)
N3—Li1i2.031 (18)Si2A—C9A1.880 (15)
N3—Li12.085 (17)Si2A—C10A1.872 (13)
N3—Si21.70 (3)Si2A—C11A1.887 (14)
N3—Si2A1.753 (14)C9A—H9AA0.9600
C1—C21.391 (10)C9A—H9AB0.9600
C2—H20.9300C9A—H9AC0.9600
C2—C31.378 (13)C10A—H10D0.9600
C3—H30.9300C10A—H10E0.9600
C3—C41.355 (12)C10A—H10F0.9600
C4—H40.9300C11A—H11D0.9600
C4—C51.424 (11)C11A—H11E0.9600
C6—H6A0.9600C11A—H11F0.9600
C6—H6B0.9600C12A—H12C0.9700
C6—H6C0.9600C12A—H12D0.9700
C7—H7A0.9600C12A—C13A1.45 (3)
C7—H7B0.9600C13A—H13C0.9700
C7—H7C0.9600C13A—H13D0.9700
C8—H8A0.9600C13A—C14A1.64 (3)
C8—H8B0.9600C14A—H14C0.9700
C8—H8C0.9600C14A—H14D0.9700
Li1—N3i2.031 (17)C14A—C15A1.46 (3)
Si2—Li1i3.14 (4)C15A—H15C0.9700
Si2—C91.88 (2)C15A—H15D0.9700
Si2—C101.88 (2)
N1—Ni1—N1i115.3 (4)C9—Si2—Li1i140.8 (16)
N1—Ni1—C1i149.4 (3)C10—Si2—Li1i70.4 (15)
N1i—Ni1—C1i35.2 (3)C10—Si2—C9108.9 (18)
N1i—Ni1—C1149.4 (3)C11—Si2—Li1i109.7 (18)
N1—Ni1—C135.2 (3)C11—Si2—C9107.5 (17)
N1—Ni1—Li150.5 (3)C11—Si2—C10108.1 (18)
N1i—Ni1—Li1i50.5 (3)Si2—C9—H9A109.5
N1—Ni1—Li1i69.7 (3)Si2—C9—H9B109.5
N1i—Ni1—Li169.7 (3)Si2—C9—H9C109.5
N2i—Ni1—N1166.0 (3)H9A—C9—H9B109.5
N2i—Ni1—N1i69.6 (3)H9A—C9—H9C109.5
N2—Ni1—N1i166.0 (3)H9B—C9—H9C109.5
N2—Ni1—N169.6 (3)Si2—C10—H10A109.5
N2i—Ni1—N2109.0 (4)Si2—C10—H10B109.5
N2—Ni1—C134.5 (3)Si2—C10—H10C109.5
N2—Ni1—C1i141.0 (3)H10A—C10—H10B109.5
N2i—Ni1—C1141.0 (3)H10A—C10—H10C109.5
N2i—Ni1—C1i34.5 (3)H10B—C10—H10C109.5
N2i—Ni1—Li1138.5 (3)Si2—C11—H11A109.5
N2—Ni1—Li1i138.5 (3)Si2—C11—H11B109.5
N2i—Ni1—Li1i108.5 (4)Si2—C11—H11C109.5
N2—Ni1—Li1108.5 (4)H11A—C11—H11B109.5
C1—Ni1—C1i175.3 (4)H11A—C11—H11C109.5
C1—Ni1—Li1i104.3 (3)H11B—C11—H11C109.5
C1i—Ni1—Li1104.3 (3)O1—C12—H12A111.7
C1i—Ni1—Li1i80.2 (3)O1—C12—H12B111.7
C1—Ni1—Li180.2 (3)O1—C12—C13100.4 (16)
Li1i—Ni1—Li146.5 (6)H12A—C12—H12B109.5
N2—Si1—C6110.1 (4)C13—C12—H12A111.7
N2—Si1—C7112.1 (5)C13—C12—H12B111.7
N2—Si1—C8108.8 (5)C12—C13—H13A111.6
C6—Si1—C7108.7 (6)C12—C13—H13B111.6
C6—Si1—C8108.3 (6)C12—C13—C14100.6 (15)
C7—Si1—C8108.7 (6)H13A—C13—H13B109.4
C12—O1—Li1127.6 (12)C14—C13—H13A111.6
C12—O1—C15112.8 (13)C14—C13—H13B111.6
C15—O1—Li1116.7 (10)C13—C14—H14A110.7
C12A—O1—Li1107.8 (14)C13—C14—H14B110.7
C15A—O1—Li1132.1 (18)H14A—C14—H14B108.8
C15A—O1—C12A119 (2)C15—C14—C13105.4 (15)
Ni1—N1—Li192.0 (4)C15—C14—H14A110.7
C1—N1—Ni189.7 (5)C15—C14—H14B110.7
C1—N1—Li1141.5 (6)O1—C15—H15A111.5
C5—N1—Ni1145.4 (5)O1—C15—H15B111.5
C5—N1—C1122.2 (6)C14—C15—O1101.1 (15)
C5—N1—Li171.8 (5)C14—C15—H15A111.5
Si1—N2—Ni1139.1 (4)C14—C15—H15B111.5
C1—N2—Ni192.2 (4)H15A—C15—H15B109.4
C1—N2—Si1123.8 (5)N3—Si2A—Li1i39.4 (5)
C5—N3—Li1i121.9 (7)N3—Si2A—C9A112.3 (8)
C5—N3—Li186.7 (6)N3—Si2A—C10A106.7 (10)
C5—N3—Si2122.2 (14)N3—Si2A—C11A113.3 (10)
C5—N3—Si2A123.7 (7)C9A—Si2A—Li1i135.2 (7)
Li1i—N3—Li175.8 (8)C9A—Si2A—C11A108.9 (9)
Si2—N3—Li1119.6 (18)C10A—Si2A—Li1i68.9 (9)
Si2—N3—Li1i114.6 (15)C10A—Si2A—C9A108.6 (10)
Si2A—N3—Li1133.5 (9)C10A—Si2A—C11A106.7 (10)
Si2A—N3—Li1i107.4 (7)C11A—Si2A—Li1i114.6 (9)
N1—C1—C2120.1 (8)Si2A—C9A—H9AA109.5
N2—C1—N1108.1 (6)Si2A—C9A—H9AB109.5
N2—C1—C2131.7 (8)Si2A—C9A—H9AC109.5
C1—C2—H2121.1H9AA—C9A—H9AB109.5
C3—C2—C1117.8 (8)H9AA—C9A—H9AC109.5
C3—C2—H2121.1H9AB—C9A—H9AC109.5
C2—C3—H3119.0Si2A—C10A—H10D109.5
C4—C3—C2122.0 (8)Si2A—C10A—H10E109.5
C4—C3—H3119.0Si2A—C10A—H10F109.5
C3—C4—H4120.0H10D—C10A—H10E109.5
C3—C4—C5120.0 (8)H10D—C10A—H10F109.5
C5—C4—H4120.0H10E—C10A—H10F109.5
N1—C5—N3116.8 (6)Si2A—C11A—H11D109.5
N1—C5—C4117.4 (7)Si2A—C11A—H11E109.5
N3—C5—C4125.7 (7)Si2A—C11A—H11F109.5
Si1—C6—H6A109.5H11D—C11A—H11E109.5
Si1—C6—H6B109.5H11D—C11A—H11F109.5
Si1—C6—H6C109.5H11E—C11A—H11F109.5
H6A—C6—H6B109.5O1—C12A—H12C112.0
H6A—C6—H6C109.5O1—C12A—H12D112.0
H6B—C6—H6C109.5H12C—C12A—H12D109.7
Si1—C7—H7A109.5C13A—C12A—O199 (2)
Si1—C7—H7B109.5C13A—C12A—H12C112.0
Si1—C7—H7C109.5C13A—C12A—H12D112.0
H7A—C7—H7B109.5C12A—C13A—H13C111.6
H7A—C7—H7C109.5C12A—C13A—H13D111.6
H7B—C7—H7C109.5C12A—C13A—C14A101 (2)
Si1—C8—H8A109.5H13C—C13A—H13D109.4
Si1—C8—H8B109.5C14A—C13A—H13C111.6
Si1—C8—H8C109.5C14A—C13A—H13D111.6
H8A—C8—H8B109.5C13A—C14A—H14C110.4
H8A—C8—H8C109.5C13A—C14A—H14D110.4
H8B—C8—H8C109.5H14C—C14A—H14D108.6
O1—Li1—N3128.2 (9)C15A—C14A—C13A106 (2)
O1—Li1—N3i128.6 (9)C15A—C14A—H14C110.4
O1—Li1—C5103.7 (8)C15A—C14A—H14D110.4
N3i—Li1—N3102.1 (8)O1—C15A—C14A101 (2)
N3—Li1—C534.0 (3)O1—C15A—H15C111.5
N3i—Li1—C5126.4 (8)O1—C15A—H15D111.5
N3—Si2—Li1i36.0 (10)C14A—C15A—H15C111.5
N3—Si2—C9120 (2)C14A—C15A—H15D111.5
N3—Si2—C10106 (2)H15C—C15A—H15D109.3
N3—Si2—C11106 (2)
Symmetry code: (i) x+3/2, y+1/2, z.
 

Funding information

The authors would like to thank Armstrong State University for funding.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGlatz, G. & Kempe, R. (2008a). Z. Kristallogr. New Cryst. Struct. 223, 307–308.  CAS Google Scholar
First citationGlatz, G. & Kempe, R. (2008b). Z. Kristallogr. New Cryst. Struct. 223, 313–315.  CAS Google Scholar
First citationGlatz, G. & Kempe, R. (2008c). Z. Kristallogr. New Cryst. Struct. 223, 309–310.  CAS Google Scholar
First citationHuang, Y.-L., Lu, D.-Y., Yu, H.-C., Yu, J. K., Hsu, C.-W., Kuo, T.-S., Lee, G.-H., Wang, Y. & Tsai, Y.-C. (2012). Angew. Chem. Int. Ed. 51, 7781–7785.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]