metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(4-amino­phenyl­hydroxamato-κ2O,O′)copper(II) methanol disolvate

aHubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, People's Republic of China
*Correspondence e-mail: cingym@163.com

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 17 October 2017; accepted 6 January 2018; online 12 January 2018)

In the title complex, [Cu(C7H7N2O2)2]·2CH3OH, the metal centre is coordinated by two 4-amino­phenyl­hydroxamate bidentate ligands, in a distorted square-planar geometry. The asymmetric unit is completed by two methanol solvent mol­ecules, which are involved in hydrogen bonding with N—H functionalities of the free hydroxamate groups. The crystal structure also features N—H⋯O bonds formed by the NH2 groups, and O—H⋯O hydrogen bonds with the methanol solvent mol­ecules as donors.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The asymmetric unit of the title compound consists of a CuII metal centre bound to two bidentate 4-Apha ligands (4-AphaH is 4-amino­phenyl­hydroxamic acid) in a distorted square-planar geometry, to form [Cu(4-Apha)2]. A weak inter­action exists between two neighbouring [Cu(4-Apha)2] mol­ecules, forming a contact between the metal and the free amino NH2 group of the ligand 4-Apha (Fig. 1[link]). The compound crystallizes with two methanol mol­ecules for each [Cu(4-Apha)2] complex in the crystal. The Cu—O bond lengths range from 1.9208 (13) to 1.9583 (14) Å, which agrees well with the values observed in related structures (e.g. Chen et al., 2015[Chen, Y., Gao, Q., Chen, W., Gao, D., Li, Y., Liu, W. & Li, W. (2015). Chem. Asian J. 10, 411-421.]; Gaynor et al., 2001[Gaynor, D., Starikova, Z. A., Haase, W. & Nolan, K. B. (2001). J. Chem. Soc. Dalton Trans. pp. 1578-1581.]). The apical Cu⋯N contact is 2.487 (2) Å, which is larger than that reported for five-coordinated CuII complexes (e.g. Applegate et al., 2003[Applegate, B. E., Barckholtz, T. A. & Miller, T. A. (2003). Chem. Soc. Rev. 32, 38-49.]). It may be thus be considered as a weak inter­action between the CuII ion and the NH2 group, which was not observed in the hydrate of the same complex (Gaynor et al., 2001[Gaynor, D., Starikova, Z. A., Haase, W. & Nolan, K. B. (2001). J. Chem. Soc. Dalton Trans. pp. 1578-1581.]). The Cu⋯Cu distance in the centrosymmetric pseudo-dimers resulting from these contacts is 8.8174 (8) Å.

[Figure 1]
Figure 1
The structure of title complex, with displacement ellipsoids drawn at the 30% probability level. Two complexes are represented, in order to emphasize contacts involving the NH2 group in the ligand (dashed bonds). [Symmetry code: (A) −x, 1 − y, 1 − z.]

In the crystal, N—H⋯O hydrogen bonds are formed between the NH2 groups of 4-Apha as hydrogen-bond donors and O atoms of the O—N(H)– hydroxamate groups as hydrogen-bond acceptors. The methanol solvent mol­ecules are connected to the [Cu(4-Apha)2] complex mol­ecules through N—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular network structure (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5 0.86 2.05 2.848 (2) 154
N3—H3⋯O6i 0.86 2.03 2.840 (2) 157
N2—H2B⋯O2ii 0.85 (3) 2.30 (3) 3.147 (3) 175 (2)
N4—H4A⋯O4iii 0.81 (3) 2.34 (3) 3.149 (3) 171 (3)
O5—H5A⋯O2iv 0.82 1.93 2.745 (2) 179
O6—H6A⋯O4v 0.82 1.94 2.756 (2) 173
Symmetry codes: (i) x-1, y-1, z+1; (ii) x, y+1, z; (iii) x, y-1, z; (iv) -x+1, -y, -z+1; (v) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
Crystal packing of title complex, viewed down the a axis, with hydrogen bonds drawn as dashed lines.

Synthesis and crystallization

A mixture of 4-AphaH (0.0306 g, 0.2 mmol), Cu(CH3COO)2·H2O (0.0199 g, 0.1 mmol) and methanol (1 ml) was sealed in a 6 ml Pyrex tube. The tube was heated to 323 K for a day under autogenous pressure. Slow cooling of the resultant solution to room temperature gave green rod-shaped crystals [yield 0.0230 g (56% based on Cu)].

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C7H7N2O2)2]·2CH4O
Mr 429.92
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 288
a, b, c (Å) 7.3969 (7), 9.7196 (10), 13.6589 (14)
α, β, γ (°) 75.309 (1), 82.904 (1), 83.066 (1)
V3) 938.53 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.20
Crystal size (mm) 0.30 × 0.24 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2005[Bruker. (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.714, 0.795
No. of measured, independent and observed [I > 2σ(I)] reflections 6568, 3301, 2962
Rint 0.016
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 1.03
No. of reflections 3301
No. of parameters 264
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.29
Computer programs: APEX2 and SAINT (Bruker, 2005[Bruker. (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis(4-aminobenzhydroxamato-κ2O,O')copper(II) methanol disolvate top
Crystal data top
[Cu(C7H7N2O2)2]·2CH4OZ = 2
Mr = 429.92F(000) = 446
Triclinic, P1Dx = 1.521 Mg m3
a = 7.3969 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7196 (10) ÅCell parameters from 3706 reflections
c = 13.6589 (14) Åθ = 2.8–27.3°
α = 75.309 (1)°µ = 1.20 mm1
β = 82.904 (1)°T = 288 K
γ = 83.066 (1)°Rod, green
V = 938.53 (16) Å30.30 × 0.24 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
2962 reflections with I > 2σ(I)
φ and ω scansRint = 0.016
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
θmax = 25.0°, θmin = 2.4°
Tmin = 0.714, Tmax = 0.795h = 88
6568 measured reflectionsk = 1111
3301 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: mixed
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.4758P]
where P = (Fo2 + 2Fc2)/3
3301 reflections(Δ/σ)max = 0.001
264 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.29 e Å3
Special details top

Refinement. Hydrogen atoms of the non-coordinating amine group N4 were found in a difference map and refined with free coordinates and isotropic displacement parameters. Other H atoms were placed geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.96 (methyl), O—H = 0.82 and N—H = 0.86 Å. For these H atoms, isotropic displacement parameters were based on Ueq parameters of their carrier atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.03678 (3)0.05781 (2)0.68807 (2)0.02744 (10)
N10.2586 (2)0.17752 (17)0.52451 (13)0.0308 (4)
H10.32540.19470.46740.037*
C10.2397 (3)0.4293 (2)0.52501 (14)0.0243 (4)
O10.1102 (2)0.24819 (14)0.65777 (10)0.0308 (3)
O20.2065 (2)0.04134 (14)0.56879 (11)0.0315 (3)
C20.1814 (3)0.5281 (2)0.58312 (15)0.0322 (5)
H20.13540.49590.65060.039*
N20.2485 (3)0.87055 (19)0.39870 (17)0.0351 (4)
H2A0.322 (3)0.894 (3)0.355 (2)0.037 (8)*
H2B0.233 (3)0.920 (3)0.442 (2)0.044 (7)*
N30.1200 (2)0.07629 (17)0.87137 (13)0.0317 (4)
H30.17200.09610.93250.038*
C30.1903 (3)0.6722 (2)0.54304 (16)0.0327 (5)
H3A0.14960.73610.58330.039*
O30.0158 (2)0.13922 (14)0.72716 (10)0.0326 (3)
O40.0667 (2)0.05964 (14)0.82653 (10)0.0336 (3)
C40.2600 (3)0.7229 (2)0.44265 (15)0.0265 (4)
N40.2531 (4)0.7465 (2)0.9708 (2)0.0553 (6)
H4A0.212 (4)0.803 (3)0.937 (2)0.068 (10)*
H4B0.278 (4)0.772 (3)1.024 (2)0.059 (11)*
C50.3258 (3)0.6242 (2)0.38504 (16)0.0328 (5)
H50.37740.65610.31870.039*
O50.5020 (2)0.13785 (19)0.35327 (13)0.0499 (4)
H5A0.58890.08480.37720.075*
C60.3151 (3)0.4798 (2)0.42554 (16)0.0312 (5)
H60.35860.41560.38600.037*
O60.7664 (3)0.9217 (2)0.07809 (12)0.0518 (5)
H6A0.85340.92080.11020.078*
C70.2038 (3)0.2796 (2)0.57141 (14)0.0244 (4)
C80.1372 (3)0.3207 (2)0.86329 (15)0.0258 (4)
C90.1021 (3)0.4174 (2)0.80218 (17)0.0403 (5)
H90.05330.38590.73510.048*
C100.1370 (4)0.5572 (2)0.83750 (18)0.0427 (6)
H100.10860.61970.79520.051*
C110.2148 (3)0.6064 (2)0.93641 (17)0.0343 (5)
C120.2552 (3)0.5096 (2)0.99779 (17)0.0420 (6)
H120.30890.54021.06390.050*
C130.2166 (3)0.3693 (2)0.96193 (16)0.0378 (5)
H130.24390.30661.00420.045*
C140.0894 (3)0.1740 (2)0.81866 (15)0.0254 (4)
C150.5618 (4)0.2259 (3)0.25923 (19)0.0568 (7)
H15A0.46020.28830.23130.085*
H15B0.61230.16780.21340.085*
H15C0.65370.28180.26870.085*
C160.6166 (4)0.8733 (4)0.1456 (2)0.0762 (10)
H16A0.64450.77510.17980.114*
H16B0.51200.88140.10850.114*
H16C0.59020.93000.19470.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03733 (16)0.01877 (14)0.02422 (14)0.00400 (10)0.00401 (10)0.00424 (10)
N10.0383 (10)0.0180 (8)0.0316 (9)0.0039 (7)0.0101 (8)0.0033 (7)
C10.0237 (10)0.0219 (10)0.0266 (10)0.0018 (8)0.0026 (8)0.0046 (8)
O10.0421 (8)0.0229 (7)0.0264 (7)0.0064 (6)0.0054 (6)0.0065 (6)
O20.0414 (8)0.0165 (7)0.0334 (8)0.0046 (6)0.0078 (6)0.0047 (6)
C20.0443 (13)0.0260 (10)0.0240 (10)0.0043 (9)0.0061 (9)0.0058 (8)
N20.0472 (12)0.0221 (9)0.0344 (11)0.0087 (8)0.0006 (10)0.0037 (8)
N30.0467 (11)0.0220 (8)0.0255 (9)0.0121 (8)0.0085 (8)0.0056 (7)
C30.0428 (12)0.0244 (10)0.0320 (11)0.0025 (9)0.0020 (9)0.0121 (9)
O30.0487 (9)0.0214 (7)0.0249 (7)0.0038 (6)0.0081 (6)0.0061 (6)
O40.0534 (9)0.0203 (7)0.0268 (7)0.0119 (6)0.0078 (7)0.0064 (6)
C40.0269 (10)0.0218 (10)0.0305 (11)0.0053 (8)0.0046 (8)0.0038 (8)
N40.0826 (18)0.0269 (11)0.0549 (16)0.0194 (11)0.0102 (14)0.0085 (12)
C50.0405 (12)0.0287 (11)0.0265 (11)0.0062 (9)0.0054 (9)0.0042 (9)
O50.0409 (10)0.0530 (11)0.0472 (10)0.0031 (8)0.0088 (8)0.0060 (8)
C60.0376 (12)0.0251 (10)0.0305 (11)0.0028 (9)0.0050 (9)0.0101 (9)
O60.0601 (11)0.0650 (12)0.0333 (9)0.0213 (10)0.0019 (8)0.0134 (8)
C70.0245 (10)0.0219 (10)0.0258 (10)0.0022 (8)0.0025 (8)0.0043 (8)
C80.0304 (11)0.0207 (10)0.0256 (10)0.0024 (8)0.0003 (8)0.0058 (8)
C90.0583 (15)0.0292 (11)0.0310 (11)0.0080 (10)0.0111 (10)0.0083 (9)
C100.0638 (16)0.0254 (11)0.0402 (13)0.0071 (10)0.0067 (11)0.0147 (10)
C110.0383 (12)0.0236 (10)0.0403 (12)0.0067 (9)0.0038 (10)0.0049 (9)
C120.0600 (16)0.0318 (12)0.0312 (12)0.0154 (11)0.0106 (11)0.0043 (10)
C130.0547 (14)0.0274 (11)0.0323 (12)0.0099 (10)0.0074 (10)0.0115 (9)
C140.0266 (10)0.0230 (10)0.0260 (10)0.0009 (8)0.0008 (8)0.0062 (8)
C150.0502 (16)0.0701 (19)0.0414 (14)0.0071 (14)0.0022 (12)0.0045 (13)
C160.065 (2)0.114 (3)0.0594 (19)0.0310 (19)0.0109 (16)0.0355 (19)
Geometric parameters (Å, º) top
Cu1—O11.9208 (13)N4—H4B0.72 (3)
Cu1—O31.9271 (14)C5—C61.379 (3)
Cu1—O41.9543 (14)C5—H50.9300
Cu1—O21.9583 (14)O5—C151.404 (3)
N1—C71.311 (2)O5—H5A0.8200
N1—O21.387 (2)C6—H60.9300
N1—H10.8600O6—C161.397 (3)
C1—C61.392 (3)O6—H6A0.8200
C1—C21.394 (3)C8—C131.390 (3)
C1—C71.474 (3)C8—C91.390 (3)
O1—C71.277 (2)C8—C141.468 (3)
C2—C31.375 (3)C9—C101.366 (3)
C2—H20.9300C9—H90.9300
N2—C41.405 (3)C10—C111.390 (3)
N2—H2A0.76 (3)C10—H100.9300
N2—H2B0.85 (3)C11—C121.395 (3)
N3—C141.314 (2)C12—C131.379 (3)
N3—O41.390 (2)C12—H120.9300
N3—H30.8600C13—H130.9300
C3—C41.390 (3)C15—H15A0.9600
C3—H3A0.9300C15—H15B0.9600
O3—C141.279 (2)C15—H15C0.9600
C4—C51.397 (3)C16—H16A0.9600
N4—C111.375 (3)C16—H16B0.9600
N4—H4A0.81 (3)C16—H16C0.9600
O1—Cu1—O3173.99 (6)C5—C6—H6119.6
O1—Cu1—O494.34 (6)C1—C6—H6119.6
O3—Cu1—O484.02 (6)C16—O6—H6A109.5
O1—Cu1—O283.76 (5)O1—C7—N1118.48 (17)
O3—Cu1—O296.14 (5)O1—C7—C1119.60 (17)
O4—Cu1—O2163.24 (6)N1—C7—C1121.86 (17)
C7—N1—O2118.74 (16)C13—C8—C9117.67 (19)
C7—N1—H1120.6C13—C8—C14124.68 (18)
O2—N1—H1120.6C9—C8—C14117.64 (18)
C6—C1—C2118.05 (18)C10—C9—C8122.1 (2)
C6—C1—C7124.74 (17)C10—C9—H9119.0
C2—C1—C7117.04 (17)C8—C9—H9119.0
C7—O1—Cu1111.62 (12)C9—C10—C11120.3 (2)
N1—O2—Cu1106.16 (10)C9—C10—H10119.8
C3—C2—C1121.52 (19)C11—C10—H10119.8
C3—C2—H2119.2N4—C11—C10120.0 (2)
C1—C2—H2119.2N4—C11—C12121.8 (2)
C4—N2—H2A114.5 (19)C10—C11—C12118.23 (19)
C4—N2—H2B113.1 (17)C13—C12—C11121.0 (2)
H2A—N2—H2B114 (3)C13—C12—H12119.5
C14—N3—O4118.81 (16)C11—C12—H12119.5
C14—N3—H3120.6C12—C13—C8120.7 (2)
O4—N3—H3120.6C12—C13—H13119.7
C2—C3—C4120.31 (19)C8—C13—H13119.7
C2—C3—H3A119.8O3—C14—N3118.59 (17)
C4—C3—H3A119.8O3—C14—C8120.23 (17)
C14—O3—Cu1111.93 (12)N3—C14—C8121.17 (17)
N3—O4—Cu1106.62 (10)O5—C15—H15A109.5
C3—C4—C5118.57 (18)O5—C15—H15B109.5
C3—C4—N2119.88 (19)H15A—C15—H15B109.5
C5—C4—N2121.31 (19)O5—C15—H15C109.5
C11—N4—H4A119 (2)H15A—C15—H15C109.5
C11—N4—H4B117 (3)H15B—C15—H15C109.5
H4A—N4—H4B119 (3)O6—C16—H16A109.5
C6—C5—C4120.75 (19)O6—C16—H16B109.5
C6—C5—H5119.6H16A—C16—H16B109.5
C4—C5—H5119.6O6—C16—H16C109.5
C15—O5—H5A109.5H16A—C16—H16C109.5
C5—C6—C1120.71 (18)H16B—C16—H16C109.5
C7—N1—O2—Cu15.9 (2)C2—C1—C7—N1177.68 (19)
C6—C1—C2—C32.6 (3)C13—C8—C9—C102.4 (4)
C7—C1—C2—C3172.86 (19)C14—C8—C9—C10178.2 (2)
C1—C2—C3—C40.5 (3)C8—C9—C10—C111.9 (4)
C14—N3—O4—Cu11.8 (2)C9—C10—C11—N4178.6 (2)
C2—C3—C4—C52.1 (3)C9—C10—C11—C120.2 (4)
C2—C3—C4—N2172.4 (2)N4—C11—C12—C13179.7 (2)
C3—C4—C5—C62.6 (3)C10—C11—C12—C130.9 (4)
N2—C4—C5—C6171.8 (2)C11—C12—C13—C80.3 (4)
C4—C5—C6—C10.5 (3)C9—C8—C13—C121.3 (3)
C2—C1—C6—C52.1 (3)C14—C8—C13—C12179.4 (2)
C7—C1—C6—C5173.02 (19)Cu1—O3—C14—N30.6 (2)
Cu1—O1—C7—N19.8 (2)Cu1—O3—C14—C8179.01 (14)
Cu1—O1—C7—C1167.22 (13)O4—N3—C14—O31.7 (3)
O2—N1—C7—O12.5 (3)O4—N3—C14—C8177.93 (17)
O2—N1—C7—C1174.52 (16)C13—C8—C14—O3179.6 (2)
C6—C1—C7—O1169.77 (19)C9—C8—C14—O31.0 (3)
C2—C1—C7—O15.4 (3)C13—C8—C14—N30.0 (3)
C6—C1—C7—N17.2 (3)C9—C8—C14—N3179.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.862.052.848 (2)154
N3—H3···O6i0.862.032.840 (2)157
N2—H2B···O2ii0.85 (3)2.30 (3)3.147 (3)175 (2)
N4—H4A···O4iii0.81 (3)2.34 (3)3.149 (3)171 (3)
O5—H5A···O2iv0.821.932.745 (2)179
O6—H6A···O4v0.821.942.756 (2)173
O6—H6A···N3v0.822.703.391 (2)143
Symmetry codes: (i) x1, y1, z+1; (ii) x, y+1, z; (iii) x, y1, z; (iv) x+1, y, z+1; (v) x+1, y+1, z+1.
 

Funding information

This research was supported by the Natural Science Foundation of Hubei Province (No. 2016CFB147), the Foundation of Hubei Educational Committee (No. D20172904) and Doctoral Fund Project of Huanggang Normal University (grant No. 2015001803).

References

First citationApplegate, B. E., Barckholtz, T. A. & Miller, T. A. (2003). Chem. Soc. Rev. 32, 38–49.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker. (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y., Gao, Q., Chen, W., Gao, D., Li, Y., Liu, W. & Li, W. (2015). Chem. Asian J. 10, 411–421.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGaynor, D., Starikova, Z. A., Haase, W. & Nolan, K. B. (2001). J. Chem. Soc. Dalton Trans. pp. 1578–1581.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]