metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis{μ-ethyl 4-[(4-hy­dr­oxy­phen­yl)diazen­yl]benzoate-κO}bis­­[aqua­(4-{[4-(eth­­oxy­carbon­yl)phen­yl]diazen­yl}phenolato-κO){ethyl 4-[(4-hy­droxyphen­yl)diazen­yl]benzoate-κO}potassium]

CROSSMARK_Color_square_no_text.svg

aLaboratório de Físico-Química Aplicada e Tecnológica, Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900, Rio Grande-RS, Brazil, and bLaboratório de Materiais Inorgânicos, Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria-RS, Brazil
*Correspondence e-mail: julianovicenti@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 31 October 2017; accepted 24 November 2017; online 30 November 2017)

The two potassium cations in the dinuclear mol­ecule of [K2{OC(C14H13ON2)O}2{OC(C14H13ON2)OH}4(H2O)2] are connected through a double bridge involving two centrosymmetrically related ethyl-4-(phenyl­azophenol)benzoate ligands. Each cation is also bound to a further non-bridging ligand, one ethyl-4-(phenyl­azophenolate)benzoate anion and a water mol­ecule, leading to a distorted fivefold coordination. The two uncharged ligands are almost planar, whereas in the anionic ligand the aromatic systems display a dihedral angle of 21.14 (11)°. A supra­molecular network formed by hydrogen-bonding inter­actions between phenolate anions, phenol groups and water mol­ecules connects the dimeric species along [001]. Hirshfeld surface calculations revealed the following contributions related to inter­molecular inter­actions: C⋯H (24.4%), O⋯H (13.2%) and N⋯H (7.4%). The azo fragment is disordered over two sets of sites [occupancy ratio 0.824 (15):0.176 (5)].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Azo dyes are a well known family of organic dyes including the azo group (—N=N—) bonded to aromatic ring systems (Zhang et al., 2013[Zhang, L., Cole, J. M., Waddell, P. G., Low, K. S. & Liu, X. (2013). ACS Sustainable Chem. Eng. 1, 1440-1452.]). There are several compounds reported containing even more than one azo chromophore per mol­ecule, also linked to heterocyclic systems (Patni & Patni, 2016[Patni, N. & Patni, M. (2016). Chem. Sin. 2, 93-100.]). The compounds are commonly prepared through a coupling reaction between an arene­diazo­nium salt and typically aromatic phenols or amines, although other substituents such as carboxyl­ates or aldehydes can also be present (Purtas et al., 2017[Purtas, F., Sayin, K., Ceyhan, G., Kose, M. & Kurtoglu, M. (2017). J. Mol. Struct. 1137, 461-475.]). Besides the wide application of these compounds in both textile and paint industries, the mol­ecular structures of the azo dyes can be modified and tuned to act as ligands in coordination chemistry. For instance, the choice of an appropriate metal ion can lead to new materials with remarkable properties, such as optical active media for lens production, recording of optical holograms or data storage (Davidenko et al., 2008[Davidenko, N. A., Davidenko, I. I., Savchenko, I. A. & Popenaka, A. N. (2008). Theor. Exp. Chem. 44, 160-164.]).

The asymmetric unit of the title compound contains one potassium cation, one ethyl-4-(phenyl­azophenolate)benzoate anion OC(C14H13ON2)O, two neutral ethyl-4-(phenyl­azophenol)benzoate ligands OC(C14H13ON2)OH, and one water mol­ecule (Fig. 1[link]). The anion coordinates through the carbonyl oxygen atom, presenting a C44—O6phenolic distance of 1.309 (2) Å shorter than expected but compatible with a phenolate moiety due to resonance effects (Suter & Nonella, 1998[Suter, H. U. & Nonella, M. J. (1998). J. Phys. Chem. A, 102, 10128-10133.]). One of the neutral ethyl-4-(phenyl­azophenol)benzoate ligands is terminal and coordinates exclusively via the ester carbonyl group (C9—O8 = 1.127 (2) Å), whereas the second is bridging and coordinates through both phenol [C24—O3 = 1.325 (2) Å] and ester carbonyl [C3—O2 = 1.215 (2) Å] groups. A double bridge between two cations is formed by a third ethyl-4-(phenyl­azophenol)benzoate ligand generated by an inversion operation (2 – x, 1 – y, 1 – z), leading to dimeric species (Fig. 2[link]). The fivefold coordination environment of the cation was computed by the method of Addison et al. (1984[Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The resulting τ5 index was found to be 0.56, indicating a coordination sphere between a trigonal bipyramid (τ5 = 1) and a square pyramid (τ5 = 0).

[Figure 1]
Figure 1
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Crystal packing diagram of the title compound showing hydrogen-bonding inter­actions.

The two uncharged ethyl-4-(phenyl­azophenol)benzoate ligands are almost planar, with r.m.s. deviations of 0.0236 Å (monodentate ligand) and 0.0591 Å (bridging ligand) for all non-hydrogen atoms. The dihedral angles between the phenyl rings are 2.53 (9)° (C51 ring and C61 ring) and 2.49 (9)° (C11 ring and C21 ring). The azo fragment N3/N4 of the ethyl-4-(phenyl­azophenolate)benzoate anion is disordered over two sets of sites, and the whole anion is not planar (r.m.s. deviation of 0.1696). Notably, the dihedral angle between the phenyl rings (C31 and C41 rings) is 21.14 (11)°.

The dimers follow a zigzag arrangement along [001] (Fig. 2[link]). The dinuclear entities are connected through classical hydrogen bonding inter­actions involving phenolate anions, phenol groups and coordinating water mol­ecules. Likewise, weak C—H⋯O inter­actions are also present (Table 1[link]). In order to analyse the hydrogen-bonding contribution qu­anti­tatively, a Hirshfeld surface calculation was performed. The contribution of C⋯H is 24.4% for non-classic inter­actions, whereas classic bonding related to O⋯H and N⋯H corres­pond to 13.2% and 7.4%, respectively (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C63—H63⋯O6i 0.95 2.49 3.427 (3) 169
C8—H8B⋯O9ii 0.99 2.64 3.476 (3) 142
C4—H4C⋯O9iii 0.98 2.57 3.301 (3) 131
O1W—H1W⋯N4iv 0.81 (3) 2.15 (3) 2.895 (3) 153 (3)
O1W—H1W⋯N31iv 0.81 (3) 2.11 (4) 2.898 (13) 166 (3)
O9—H9⋯O1Wii 0.98 (4) 1.74 (4) 2.709 (3) 171 (3)
O1W—H2W⋯O6v 0.84 (3) 1.84 (3) 2.635 (2) 156 (3)
O3—H3⋯O6v 0.88 (3) 1.63 (3) 2.490 (2) 163 (3)
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y, -z+1; (iii) -x+2, -y+1, -z+1; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
The dimeric structure of the title compound comprising double bridging ethyl 4-(phenyl­azophenol)benzoate units. The inset shows the calculated Hirshfeld surface and two-dimensional fingerprint plots.

Synthesis and crystallization

To 1.5 g (3.33 mmol) of ethyl-4-(phenyl­azophenol)benzoate dissolved in 10.0 ml of methanol were added 0.560 g (9.99 mmol) of KOH dissolved in 5.0 m of methanol. The reaction mixture was kept under constant stirring at room temperature for two h. The solvent was then partially evapor­ated under reduced pressure, affording orange block-like single crystals of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The azo fragment comprising atoms N3 and N4 was found to be disordered over two sets of sites [occupancy ratio 0.824 (15):0.176 (5)]. The disorder was treated by using PART instruction in SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Table 2
Experimental details

Crystal data
Chemical formula [K2(C15H14N2O3)4(C15H13N2O3)2(H2O)2]
Mr 1733.91
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.241 (2), 10.241 (2), 45.261 (9)
β (°) 91.31 (3)
V3) 4282.2 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.30 × 0.26 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Numerical (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.701, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 89218, 13099, 9788
Rint 0.050
(sin θ/λ)max−1) 0.716
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.158, 1.05
No. of reflections 13099
No. of parameters 594
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.93, −0.69
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2006), Mercury (Macrae et al., 2006) and CrystalExplorer17 (Turner et al., 2017); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis{µ-ethyl 4-[(4-hydroxyphenyl)diazenyl]benzoate-κO}bis[aqua(4-{[4-(ethoxycarbonyl)phenyl]diazenyl}phenolato-κO){ethyl 4-[(4-hydroxyphenyl)diazenyl]benzoate-κO}potassium] top
Crystal data top
[K2(C15H14N2O3)4(C15H13N2O3)2(H2O)2]F(000) = 1816
Mr = 1733.91Dx = 1.345 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.241 (2) ÅCell parameters from 9137 reflections
b = 10.241 (2) Åθ = 2.3–30.6°
c = 45.261 (9) ŵ = 0.19 mm1
β = 91.31 (3)°T = 100 K
V = 4282.2 (15) Å3Block, orange
Z = 20.30 × 0.26 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
13099 independent reflections
Radiation source: fine-focus sealed tube9788 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 30.6°, θmin = 2.2°
Absorption correction: numerical
(SADABS; Bruker, 2014)
h = 1313
Tmin = 0.701, Tmax = 0.746k = 1414
89218 measured reflectionsl = 6464
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: mixed
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0494P)2 + 6.316P]
where P = (Fo2 + 2Fc2)/3
13099 reflections(Δ/σ)max = 0.001
594 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = 0.69 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Hydrogen atoms of the water molecule and the phenol OH groups were located from a difference Fourier map, while all other hydrogen atoms were calculated at idealized positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
K11.27684 (5)0.37517 (5)0.36022 (2)0.02488 (11)
O1W1.20241 (17)0.16449 (16)0.32369 (3)0.0244 (3)
O10.31758 (15)0.34718 (14)0.60941 (3)0.0209 (3)
O41.27370 (15)0.70828 (14)0.29247 (3)0.0228 (3)
O81.28617 (16)0.23893 (14)0.40874 (3)0.0230 (3)
O30.99472 (16)0.38866 (16)0.37042 (3)0.0249 (3)
O71.43811 (16)0.07337 (15)0.41841 (3)0.0242 (3)
O20.48657 (16)0.49718 (16)0.62057 (3)0.0255 (3)
O60.07140 (15)0.71962 (16)0.16708 (3)0.0249 (3)
O90.74694 (18)0.07815 (17)0.65459 (4)0.0310 (4)
O51.23235 (17)0.51173 (17)0.31213 (4)0.0328 (4)
N20.75278 (17)0.42064 (16)0.48120 (4)0.0190 (3)
N60.99329 (18)0.14434 (16)0.54520 (4)0.0198 (3)
N10.64857 (17)0.34744 (16)0.48747 (4)0.0186 (3)
N51.09568 (18)0.06925 (16)0.53849 (4)0.0197 (3)
N40.6031 (5)0.6895 (2)0.22523 (8)0.0190 (8)0.824 (15)
N410.553 (3)0.6257 (12)0.2396 (3)0.022 (4)0.176 (15)
N30.6216 (5)0.6131 (2)0.24702 (8)0.0206 (9)0.824 (15)
N310.665 (3)0.6882 (13)0.2334 (4)0.026 (4)0.176 (15)
C110.4813 (2)0.40352 (18)0.57239 (4)0.0169 (4)
C240.9343 (2)0.38920 (19)0.39736 (4)0.0186 (4)
C140.5950 (2)0.37235 (18)0.51635 (4)0.0170 (3)
C210.8101 (2)0.40234 (18)0.45282 (4)0.0172 (4)
C511.2699 (2)0.12855 (18)0.45474 (4)0.0183 (4)
C230.8278 (2)0.29877 (19)0.40525 (4)0.0198 (4)
H230.7982740.2327220.3916660.024*
C30.4304 (2)0.42201 (19)0.60299 (4)0.0177 (4)
C91.3302 (2)0.15315 (18)0.42524 (4)0.0194 (4)
C610.9366 (2)0.12062 (19)0.57348 (4)0.0188 (4)
C541.1494 (2)0.09357 (18)0.50966 (4)0.0183 (4)
C61.1915 (2)0.6053 (2)0.29772 (4)0.0215 (4)
C220.7657 (2)0.30535 (19)0.43269 (4)0.0197 (4)
H220.6930830.2443930.4379100.024*
C150.6489 (2)0.47054 (19)0.53493 (4)0.0193 (4)
H150.7238880.5266430.5285740.023*
C640.8110 (2)0.0899 (2)0.62814 (5)0.0224 (4)
C120.4253 (2)0.30763 (19)0.55331 (4)0.0197 (4)
H120.3487990.2527460.5594660.024*
C440.1954 (2)0.7087 (2)0.18141 (4)0.0224 (4)
C311.0441 (2)0.6151 (2)0.28387 (4)0.0221 (4)
C521.3218 (2)0.02940 (19)0.47333 (4)0.0200 (4)
H521.3982850.0256340.4672450.024*
C620.9815 (2)0.01903 (19)0.59217 (4)0.0195 (4)
H621.0549920.0394860.5861500.023*
C130.4819 (2)0.29296 (19)0.52538 (4)0.0200 (4)
H130.4432800.2284250.5123490.024*
C260.9178 (2)0.49068 (19)0.44501 (5)0.0211 (4)
H260.9490800.5555840.4587310.025*
C160.5917 (2)0.48523 (19)0.56273 (4)0.0198 (4)
H160.6281110.5519370.5754530.024*
C551.0957 (2)0.19174 (19)0.49087 (4)0.0207 (4)
H551.0187880.2464020.4969150.025*
C561.1556 (2)0.20817 (19)0.46357 (4)0.0205 (4)
H561.1190610.2739760.4506190.025*
C630.9193 (2)0.0038 (2)0.61932 (4)0.0209 (4)
H630.9498620.0651840.6320440.025*
C250.9794 (2)0.4845 (2)0.41753 (5)0.0225 (4)
H251.0523590.5451510.4123800.027*
C531.2606 (2)0.01194 (19)0.50075 (4)0.0204 (4)
H531.2946050.0557950.5134580.025*
C650.7645 (2)0.1902 (2)0.60946 (5)0.0241 (4)
H650.6906450.2484210.6154480.029*
C660.8266 (2)0.2047 (2)0.58212 (5)0.0225 (4)
H660.7940700.2720760.5691650.027*
C20.2632 (2)0.3610 (2)0.63923 (4)0.0225 (4)
H2A0.2296330.4515800.6424600.027*
H2B0.3410260.3413770.6539630.027*
C321.0009 (2)0.7238 (2)0.26758 (5)0.0274 (4)
H321.0652670.7949990.2650690.033*
C430.3165 (2)0.7844 (2)0.17357 (5)0.0288 (5)
H430.3084130.8425330.1572510.035*
C51.4195 (2)0.7053 (2)0.30541 (5)0.0253 (4)
H5A1.4733640.6289600.2979640.030*
H5B1.4155620.6990490.3272020.030*
C360.9485 (2)0.5108 (3)0.28754 (5)0.0305 (5)
H360.9783090.4367770.2987580.037*
C450.2121 (2)0.6226 (2)0.20566 (5)0.0279 (5)
H450.1325590.5704300.2114650.033*
C81.4990 (2)0.0952 (2)0.38945 (5)0.0262 (4)
H8A1.5442840.1826400.3885770.031*
H8B1.4221800.0898380.3738810.031*
C420.4458 (2)0.7755 (3)0.18914 (6)0.0330 (5)
H420.5252250.8285670.1836760.040*
C410.4612 (2)0.6903 (2)0.21262 (5)0.0310 (5)
C460.3432 (3)0.6133 (2)0.22108 (5)0.0317 (5)
H460.3531570.5549770.2373250.038*
C41.4926 (3)0.8298 (2)0.29658 (5)0.0314 (5)
H4A1.5914170.8314220.3049020.047*
H4B1.4958160.8346800.2749790.047*
H4C1.4382730.9044560.3040860.047*
C330.8616 (3)0.7271 (3)0.25492 (5)0.0333 (5)
H330.8305430.8013230.2438960.040*
C340.7678 (2)0.6214 (3)0.25847 (5)0.0321 (5)
C10.1402 (3)0.2674 (2)0.64255 (5)0.0319 (5)
H1A0.1017830.2749630.6624820.048*
H1B0.0636040.2878640.6279390.048*
H1C0.1745900.1780630.6394000.048*
C350.8103 (3)0.5148 (3)0.27491 (5)0.0344 (5)
H350.7454290.4440490.2776240.041*
C71.6105 (3)0.0094 (3)0.38500 (6)0.0403 (6)
H7A1.6541810.0019270.3656430.060*
H7B1.6857250.0029890.4005390.060*
H7C1.5641750.0953710.3859100.060*
H2W1.113 (4)0.176 (3)0.3215 (7)0.049 (9)*
H1W1.232 (3)0.183 (3)0.3076 (7)0.043 (8)*
H90.775 (4)0.006 (4)0.6632 (7)0.059 (10)*
H30.962 (3)0.321 (3)0.3600 (7)0.047 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0214 (2)0.0310 (2)0.0220 (2)0.00758 (18)0.00356 (16)0.00664 (18)
O1W0.0173 (7)0.0361 (8)0.0199 (7)0.0005 (6)0.0055 (6)0.0033 (6)
O10.0178 (6)0.0241 (7)0.0209 (7)0.0035 (5)0.0028 (5)0.0042 (5)
O40.0204 (7)0.0252 (7)0.0227 (7)0.0005 (6)0.0035 (6)0.0031 (6)
O80.0284 (8)0.0199 (7)0.0205 (7)0.0033 (6)0.0012 (6)0.0041 (5)
O30.0211 (7)0.0316 (8)0.0222 (7)0.0040 (6)0.0043 (6)0.0011 (6)
O70.0230 (7)0.0248 (7)0.0250 (7)0.0017 (6)0.0041 (6)0.0031 (6)
O20.0236 (7)0.0332 (8)0.0198 (7)0.0089 (6)0.0003 (6)0.0053 (6)
O60.0173 (7)0.0350 (8)0.0223 (7)0.0013 (6)0.0003 (5)0.0027 (6)
O90.0302 (8)0.0347 (9)0.0284 (8)0.0035 (7)0.0091 (7)0.0014 (7)
O50.0256 (8)0.0374 (9)0.0352 (9)0.0012 (7)0.0051 (7)0.0185 (7)
N20.0174 (8)0.0186 (8)0.0210 (8)0.0007 (6)0.0017 (6)0.0002 (6)
N60.0208 (8)0.0185 (8)0.0199 (8)0.0035 (6)0.0029 (6)0.0005 (6)
N10.0178 (8)0.0178 (7)0.0201 (8)0.0004 (6)0.0002 (6)0.0000 (6)
N50.0207 (8)0.0186 (8)0.0197 (8)0.0040 (6)0.0022 (6)0.0006 (6)
N40.0153 (16)0.0230 (11)0.0187 (15)0.0028 (10)0.0029 (12)0.0030 (9)
N410.027 (10)0.028 (5)0.011 (5)0.009 (5)0.003 (6)0.006 (4)
N30.0190 (19)0.0254 (12)0.0175 (13)0.0021 (10)0.0015 (12)0.0028 (9)
N310.022 (9)0.033 (6)0.023 (7)0.002 (5)0.003 (6)0.001 (5)
C110.0161 (8)0.0165 (8)0.0180 (9)0.0014 (7)0.0011 (7)0.0009 (7)
C240.0135 (8)0.0219 (9)0.0205 (9)0.0023 (7)0.0005 (7)0.0025 (7)
C140.0160 (8)0.0160 (8)0.0190 (9)0.0016 (7)0.0012 (7)0.0007 (7)
C210.0151 (8)0.0183 (9)0.0182 (9)0.0014 (7)0.0006 (7)0.0003 (7)
C510.0208 (9)0.0158 (8)0.0183 (9)0.0057 (7)0.0028 (7)0.0007 (7)
C230.0183 (9)0.0205 (9)0.0204 (9)0.0014 (7)0.0014 (7)0.0015 (7)
C30.0140 (8)0.0192 (9)0.0200 (9)0.0023 (7)0.0014 (7)0.0002 (7)
C90.0201 (9)0.0157 (8)0.0222 (9)0.0065 (7)0.0011 (7)0.0010 (7)
C610.0191 (9)0.0176 (8)0.0197 (9)0.0047 (7)0.0029 (7)0.0006 (7)
C540.0203 (9)0.0163 (8)0.0181 (9)0.0052 (7)0.0038 (7)0.0008 (7)
C60.0210 (9)0.0271 (10)0.0165 (9)0.0005 (8)0.0017 (7)0.0036 (7)
C220.0185 (9)0.0202 (9)0.0204 (9)0.0020 (7)0.0000 (7)0.0018 (7)
C150.0202 (9)0.0164 (8)0.0212 (9)0.0038 (7)0.0003 (7)0.0008 (7)
C640.0190 (9)0.0245 (10)0.0239 (10)0.0047 (7)0.0021 (8)0.0018 (8)
C120.0170 (9)0.0206 (9)0.0214 (9)0.0027 (7)0.0012 (7)0.0021 (7)
C440.0182 (9)0.0294 (10)0.0197 (9)0.0091 (8)0.0009 (7)0.0046 (8)
C310.0186 (9)0.0331 (11)0.0145 (9)0.0025 (8)0.0009 (7)0.0001 (8)
C520.0196 (9)0.0178 (9)0.0225 (10)0.0024 (7)0.0021 (7)0.0001 (7)
C620.0176 (9)0.0191 (9)0.0216 (9)0.0024 (7)0.0013 (7)0.0001 (7)
C130.0190 (9)0.0200 (9)0.0210 (9)0.0032 (7)0.0007 (7)0.0039 (7)
C260.0198 (9)0.0188 (9)0.0248 (10)0.0020 (7)0.0006 (7)0.0030 (7)
C160.0221 (9)0.0169 (9)0.0202 (9)0.0021 (7)0.0028 (7)0.0003 (7)
C550.0228 (9)0.0177 (9)0.0214 (9)0.0002 (7)0.0023 (7)0.0010 (7)
C560.0237 (9)0.0164 (8)0.0211 (9)0.0007 (7)0.0032 (8)0.0031 (7)
C630.0198 (9)0.0200 (9)0.0228 (10)0.0034 (7)0.0010 (7)0.0019 (7)
C250.0189 (9)0.0209 (9)0.0278 (10)0.0043 (7)0.0024 (8)0.0009 (8)
C530.0222 (9)0.0169 (9)0.0220 (9)0.0027 (7)0.0036 (7)0.0046 (7)
C650.0193 (9)0.0241 (10)0.0287 (11)0.0011 (8)0.0008 (8)0.0029 (8)
C660.0209 (9)0.0193 (9)0.0271 (10)0.0017 (7)0.0040 (8)0.0009 (8)
C20.0196 (9)0.0289 (10)0.0190 (9)0.0026 (8)0.0016 (7)0.0024 (8)
C320.0271 (11)0.0328 (11)0.0223 (10)0.0068 (9)0.0020 (8)0.0006 (9)
C430.0200 (10)0.0344 (12)0.0321 (12)0.0049 (9)0.0020 (8)0.0021 (9)
C50.0173 (9)0.0330 (11)0.0257 (10)0.0013 (8)0.0009 (8)0.0001 (9)
C360.0241 (10)0.0438 (13)0.0237 (11)0.0050 (10)0.0014 (8)0.0053 (9)
C450.0254 (10)0.0354 (12)0.0231 (10)0.0082 (9)0.0036 (8)0.0002 (9)
C80.0249 (10)0.0271 (10)0.0270 (11)0.0052 (8)0.0063 (8)0.0002 (8)
C420.0203 (10)0.0412 (13)0.0375 (13)0.0073 (9)0.0011 (9)0.0058 (10)
C410.0219 (10)0.0399 (13)0.0311 (12)0.0105 (9)0.0018 (9)0.0125 (10)
C460.0383 (13)0.0377 (12)0.0189 (10)0.0168 (10)0.0029 (9)0.0020 (9)
C40.0261 (11)0.0327 (12)0.0355 (12)0.0048 (9)0.0066 (9)0.0038 (10)
C330.0368 (13)0.0385 (13)0.0242 (11)0.0185 (10)0.0073 (9)0.0025 (9)
C340.0202 (10)0.0500 (14)0.0260 (11)0.0052 (10)0.0006 (8)0.0154 (10)
C10.0280 (11)0.0352 (12)0.0330 (12)0.0098 (9)0.0121 (9)0.0082 (10)
C350.0240 (11)0.0500 (15)0.0291 (12)0.0063 (10)0.0005 (9)0.0000 (10)
C70.0334 (13)0.0367 (13)0.0514 (16)0.0020 (11)0.0182 (12)0.0014 (12)
Geometric parameters (Å, º) top
K1—O82.6016 (16)C64—C631.399 (3)
K1—O52.6121 (18)C12—C131.387 (3)
K1—O32.6614 (16)C12—H120.9500
K1—O2i2.6754 (17)C44—C431.413 (3)
K1—O1W2.7947 (19)C44—C451.414 (3)
K1—H2W3.07 (3)C31—C321.388 (3)
K1—H32.96 (3)C31—C361.398 (3)
O1W—H2W0.84 (3)C52—C531.387 (3)
O1W—H1W0.81 (3)C52—H520.9500
O1—C31.331 (2)C62—C631.378 (3)
O1—C21.458 (2)C62—H620.9500
O4—C61.325 (3)C13—H130.9500
O4—C51.457 (2)C26—C251.381 (3)
O8—C91.217 (2)C26—H260.9500
O3—C241.353 (2)C16—H160.9500
O3—H30.88 (3)C55—C561.376 (3)
O7—C91.331 (2)C55—H550.9500
O7—C81.455 (2)C56—H560.9500
O2—C31.215 (2)C63—H630.9500
O6—C441.309 (2)C25—H250.9500
O9—C641.352 (3)C53—H530.9500
O9—H90.98 (4)C65—C661.384 (3)
O5—C61.214 (3)C65—H650.9500
N2—N11.258 (2)C66—H660.9500
N2—C211.413 (2)C2—C11.498 (3)
N6—N51.262 (2)C2—H2A0.9900
N6—C611.415 (3)C2—H2B0.9900
N1—C141.431 (2)C32—C331.397 (3)
N5—C541.429 (3)C32—H320.9500
N4—N31.267 (7)C43—C421.377 (3)
N4—C411.418 (6)C43—H430.9500
N41—N311.25 (3)C5—C41.501 (3)
N41—C411.61 (2)C5—H5A0.9900
N3—C341.439 (5)C5—H5B0.9900
N31—C341.62 (2)C36—C351.387 (3)
C11—C161.397 (3)C36—H360.9500
C11—C121.399 (3)C45—C461.387 (3)
C11—C31.485 (3)C45—H450.9500
C24—C251.394 (3)C8—C71.503 (3)
C24—C231.404 (3)C8—H8A0.9900
C14—C131.393 (3)C8—H8B0.9900
C14—C151.395 (3)C42—C411.380 (4)
C21—C261.397 (3)C42—H420.9500
C21—C221.403 (3)C41—C461.406 (4)
C51—C521.396 (3)C46—H460.9500
C51—C561.400 (3)C4—H4A0.9800
C51—C91.480 (3)C4—H4B0.9800
C23—C221.382 (3)C4—H4C0.9800
C23—H230.9500C33—C341.398 (4)
C61—C661.395 (3)C33—H330.9500
C61—C621.398 (3)C34—C351.374 (4)
C54—C531.391 (3)C1—H1A0.9800
C54—C551.400 (3)C1—H1B0.9800
C6—C311.490 (3)C1—H1C0.9800
C22—H220.9500C35—H350.9500
C15—C161.384 (3)C7—H7A0.9800
C15—H150.9500C7—H7B0.9800
C64—C651.393 (3)C7—H7C0.9800
O8—K1—O5172.84 (5)C12—C13—H13119.8
O8—K1—O383.98 (6)C14—C13—H13119.8
O5—K1—O388.89 (6)C25—C26—C21120.57 (19)
O8—K1—O2i88.66 (6)C25—C26—H26119.7
O5—K1—O2i96.95 (6)C21—C26—H26119.7
O3—K1—O2i135.62 (5)C15—C16—C11121.05 (18)
O8—K1—O1W95.07 (5)C15—C16—H16119.5
O5—K1—O1W83.59 (6)C11—C16—H16119.5
O3—K1—O1W85.06 (6)C56—C55—C54119.29 (19)
O2i—K1—O1W139.27 (5)C56—C55—H55120.4
O8—K1—H2W97.6 (6)C54—C55—H55120.4
O5—K1—H2W79.2 (6)C55—C56—C51120.44 (18)
O3—K1—H2W70.1 (6)C55—C56—H56119.8
O2i—K1—H2W154.2 (6)C51—C56—H56119.8
O1W—K1—H2W15.6 (6)C62—C63—C64119.94 (19)
O8—K1—H385.2 (6)C62—C63—H63120.0
O5—K1—H387.7 (6)C64—C63—H63120.0
O3—K1—H317.0 (6)C26—C25—C24119.96 (18)
O2i—K1—H3152.6 (6)C26—C25—H25120.0
O1W—K1—H368.0 (6)C24—C25—H25120.0
H2W—K1—H353.2 (9)C52—C53—C54120.03 (18)
K1—O1W—H2W101 (2)C52—C53—H53120.0
K1—O1W—H1W106 (2)C54—C53—H53120.0
H2W—O1W—H1W102 (3)C66—C65—C64119.56 (19)
C3—O1—C2115.74 (15)C66—C65—H65120.2
C6—O4—C5116.11 (16)C64—C65—H65120.2
C9—O8—K1155.41 (14)C65—C66—C61120.30 (19)
C24—O3—K1125.63 (12)C65—C66—H66119.9
C24—O3—H3110 (2)C61—C66—H66119.9
K1—O3—H3101 (2)O1—C2—C1108.01 (17)
C9—O7—C8114.94 (16)O1—C2—H2A110.1
C3—O2—K1i148.90 (13)C1—C2—H2A110.1
C64—O9—H9108 (2)O1—C2—H2B110.1
C6—O5—K1155.65 (16)C1—C2—H2B110.1
N1—N2—C21115.52 (17)H2A—C2—H2B108.4
N5—N6—C61114.10 (17)C31—C32—C33119.2 (2)
N2—N1—C14112.48 (16)C31—C32—H32120.4
N6—N5—C54113.08 (16)C33—C32—H32120.4
N3—N4—C41115.1 (4)C42—C43—C44121.2 (2)
N31—N41—C4192.4 (16)C42—C43—H43119.4
N4—N3—C34110.7 (4)C44—C43—H43119.4
N41—N31—C3496.0 (16)O4—C5—C4107.02 (18)
C16—C11—C12119.33 (18)O4—C5—H5A110.3
C16—C11—C3117.68 (17)C4—C5—H5A110.3
C12—C11—C3122.99 (17)O4—C5—H5B110.3
O3—C24—C25118.05 (18)C4—C5—H5B110.3
O3—C24—C23122.22 (18)H5A—C5—H5B108.6
C25—C24—C23119.73 (18)C35—C36—C31120.4 (2)
C13—C14—C15120.21 (18)C35—C36—H36119.8
C13—C14—N1116.21 (17)C31—C36—H36119.8
C15—C14—N1123.58 (17)C46—C45—C44120.8 (2)
C26—C21—C22119.61 (18)C46—C45—H45119.6
C26—C21—N2115.35 (17)C44—C45—H45119.6
C22—C21—N2125.04 (17)O7—C8—C7106.95 (19)
C52—C51—C56120.15 (18)O7—C8—H8A110.3
C52—C51—C9122.44 (18)C7—C8—H8A110.3
C56—C51—C9117.40 (18)O7—C8—H8B110.3
C22—C23—C24120.33 (19)C7—C8—H8B110.3
C22—C23—H23119.8H8A—C8—H8B108.6
C24—C23—H23119.8C43—C42—C41120.6 (2)
O2—C3—O1123.15 (18)C43—C42—H42119.7
O2—C3—C11123.48 (18)C41—C42—H42119.7
O1—C3—C11113.37 (17)C42—C41—C46119.8 (2)
O8—C9—O7122.85 (18)C42—C41—N4113.1 (2)
O8—C9—C51123.31 (19)C46—C41—N4127.1 (2)
O7—C9—C51113.84 (17)C42—C41—N41152.5 (7)
C66—C61—C62119.86 (18)C46—C41—N4187.7 (6)
C66—C61—N6115.76 (18)C45—C46—C41119.9 (2)
C62—C61—N6124.36 (18)C45—C46—H46120.1
C53—C54—C55120.62 (18)C41—C46—H46120.1
C53—C54—N5115.73 (17)C5—C4—H4A109.5
C55—C54—N5123.65 (18)C5—C4—H4B109.5
O5—C6—O4123.49 (19)H4A—C4—H4B109.5
O5—C6—C31123.3 (2)C5—C4—H4C109.5
O4—C6—C31113.17 (18)H4A—C4—H4C109.5
C23—C22—C21119.78 (18)H4B—C4—H4C109.5
C23—C22—H22120.1C34—C33—C32120.1 (2)
C21—C22—H22120.1C34—C33—H33120.0
C16—C15—C14119.22 (18)C32—C33—H33120.0
C16—C15—H15120.4C35—C34—C33120.5 (2)
C14—C15—H15120.4C35—C34—N3113.8 (2)
O9—C64—C65117.89 (19)C33—C34—N3125.7 (2)
O9—C64—C63121.79 (19)C35—C34—N31150.8 (6)
C65—C64—C63120.31 (19)C33—C34—N3187.1 (6)
C13—C12—C11119.78 (18)C2—C1—H1A109.5
C13—C12—H12120.1C2—C1—H1B109.5
C11—C12—H12120.1H1A—C1—H1B109.5
O6—C44—C43121.2 (2)C2—C1—H1C109.5
O6—C44—C45121.1 (2)H1A—C1—H1C109.5
C43—C44—C45117.7 (2)H1B—C1—H1C109.5
C32—C31—C36120.0 (2)C34—C35—C36119.7 (2)
C32—C31—C6121.8 (2)C34—C35—H35120.2
C36—C31—C6118.19 (19)C36—C35—H35120.2
C53—C52—C51119.45 (19)C8—C7—H7A109.5
C53—C52—H52120.3C8—C7—H7B109.5
C51—C52—H52120.3H7A—C7—H7B109.5
C63—C62—C61120.00 (19)C8—C7—H7C109.5
C63—C62—H62120.0H7A—C7—H7C109.5
C61—C62—H62120.0H7B—C7—H7C109.5
C12—C13—C14120.35 (18)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C63—H63···O6ii0.952.493.427 (3)169
C8—H8B···O9iii0.992.643.476 (3)142
C4—H4C···O9i0.982.573.301 (3)131
O1W—H1W···N4iv0.81 (3)2.15 (3)2.895 (3)153 (3)
O1W—H1W···N31iv0.81 (3)2.11 (4)2.898 (13)166 (3)
O9—H9···O1Wiii0.98 (4)1.74 (4)2.709 (3)171 (3)
O1W—H2W···O6v0.84 (3)1.84 (3)2.635 (2)156 (3)
O3—H3···O6v0.88 (3)1.63 (3)2.490 (2)163 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x+2, y, z+1; (iv) x+2, y1/2, z+1/2; (v) x+1, y1/2, z+1/2.
 

Funding information

The authors acknowledge CT–Infra (FINEP) and FIPE JUNIOR CCNE/UFSM-2017 for support.

References

First citationAddison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavidenko, N. A., Davidenko, I. I., Savchenko, I. A. & Popenaka, A. N. (2008). Theor. Exp. Chem. 44, 160–164.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPatni, N. & Patni, M. (2016). Chem. Sin. 2, 93–100.  Google Scholar
First citationPurtas, F., Sayin, K., Ceyhan, G., Kose, M. & Kurtoglu, M. (2017). J. Mol. Struct. 1137, 461–475.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuter, H. U. & Nonella, M. J. (1998). J. Phys. Chem. A, 102, 10128–10133.  CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L., Cole, J. M., Waddell, P. G., Low, K. S. & Liu, X. (2013). ACS Sustainable Chem. Eng. 1, 1440–1452.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]