organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-[(Prop-2-yn-1-yl)amino]­anilinium chloride

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta BP 1014, Faculté des Sciences Université Mohammed V Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: hessaghouani@yahoo.fr

Edited by J. Simpson, University of Otago, New Zealand (Received 18 October 2017; accepted 31 October 2017; online 7 November 2017)

The title compound, C9H11N2+·Cl, is an anilinium chloride salt, in which the Car—N—C—C (ar = aromatic) torsion angle is −84.95 (18)°. In the crystal, a bilayer of cation–anion sheets runs parallel to (100), primarily through an extensive range of N—H⋯Cl hydrogen bonds. Weak offset π-stacking inter­actions between the benzene rings stack mol­ecules along c.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As a continuation of our studies of substituted 4-phenyl-1,5-benzodiazepin-2-one derivatives (Loughzail et al., 2011[Loughzail, M., Fernandes, J. A., Baouid, A., Essaber, M., Cavaleiro, J. A. S. & Almeida Paz, F. A. (2011). Acta Cryst. E67, o2075-o2076.]; Ballo et al., 2010[Ballo, D., Ahabchane, N. H., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1277.]), we have prepared the title compound (Fig. 1[link]) by the action of hydroxyl­amine hydro­chloride on 4-phenyl-1-(prop-2-yn-1-yl)-1H-1,5-benzodiazepin-2(3H)-one in ethanol.

[Figure 1]
Figure 1
The title mol­ecule with the atom-labelling scheme and 50% probability displacement ellipsoids.

In the title anilinium chloride salt, the N1 atom of the NH3+ substituent and the N2—H2A group lie in the plane of the benzene ring while the N2,C7,C8≡C9 substituent is inclined to the benzene ring at an angle of 81.57 (12)°.

In the crystal, the major packing inter­actions involve several N—H⋯Cl hydrogen bonds. Each of the H atoms of the NH3+ cations and the amine group form N—H⋯Cl hydrogen bonds with N1—H1A acting as a bifurcated donor while the N1—H1B⋯Cl1 contact is supported by a weaker C5—H5⋯Cl hydrogen bond, Table 1[link], Fig. 2[link]. Weak, offset π-stacking inter­actions between the benzene rings stack mol­ecules along a with centroid–centroid distances of 3.951 (2) Å and a dihedral angle of 7.02 (7)° between the rings. These inter­actions form bilayers running along the caxis direction (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.90 (2) 2.72 (2) 3.2854 (17) 122.2 (17)
N1—H1A⋯Cl1ii 0.90 (2) 2.56 (2) 3.2903 (18) 138.6 (18)
N1—H1B⋯Cl1iii 0.92 (2) 2.29 (2) 3.2011 (16) 174.6 (16)
N1—H1C⋯Cl1 0.86 (2) 2.44 (2) 3.2064 (17) 148.2 (16)
N2—H2A⋯Cl1ii 0.832 (17) 2.492 (17) 3.3148 (18) 170.1 (15)
C5—H5⋯Cl1iii 0.996 (17) 2.935 (16) 3.7479 (19) 139.4 (12)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y+1, -z.
[Figure 2]
Figure 2
Details of the cation–anion inter­actions, with hydrogen bonds shown as dashed lines and symmetry operations as in Table 1[link].
[Figure 3]
Figure 3
Overall packing viewed along the b-axis direction with ππ stacking inter­actions shown as dashed orange lines.

Synthesis and crystallization

To a solution of 4-phenyl-1-(prop-2-yn-1-yl)-1H-1,5-benzodiazepin-2(3H)-one (10 mmol), was added hydroxyl­amine hydro­chloride (20 mmol) in anhydrous ethanol (100 ml). The mixture was stirred at room temperature for 24 h. The solvent was removed under reduced pressure. The solid product was purified by recrystallization from ethanol solution to afford the title salt as colourless crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C9H11N2+·Cl
Mr 182.65
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 14.736 (6), 7.955 (3), 7.843 (3)
β (°) 94.502 (5)
V3) 916.6 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.36
Crystal size (mm) 0.30 × 0.29 × 0.08
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.84, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 8431, 2311, 1732
Rint 0.033
(sin θ/λ)max−1) 0.677
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.00
No. of reflections 2311
No. of parameters 153
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.50, −0.18
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-[(Prop-2-yn-1-yl)amino]anilinium chloride top
Crystal data top
C9H11N2+·ClF(000) = 384
Mr = 182.65Dx = 1.324 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.736 (6) ÅCell parameters from 3191 reflections
b = 7.955 (3) Åθ = 2.8–28.1°
c = 7.843 (3) ŵ = 0.36 mm1
β = 94.502 (5)°T = 296 K
V = 916.6 (7) Å3Plate, colourless
Z = 40.30 × 0.29 × 0.08 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2311 independent reflections
Radiation source: fine-focus sealed tube1732 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 8.3333 pixels mm-1θmax = 28.7°, θmin = 1.4°
φ and ω scansh = 1919
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1010
Tmin = 0.84, Tmax = 0.97l = 1010
8431 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.106All H-atom parameters refined
S = 1.00 w = 1/[σ2(Fo2) + (0.0677P)2]
where P = (Fo2 + 2Fc2)/3
2311 reflections(Δ/σ)max = 0.002
153 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.18 e Å3
Special details top

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 25 sec/frame was used.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.08712 (9)0.56842 (17)0.23286 (19)0.0323 (3)
H1A0.0601 (16)0.533 (3)0.325 (3)0.079 (7)*
H1B0.0470 (13)0.633 (3)0.166 (2)0.056 (5)*
H1C0.1026 (12)0.485 (3)0.172 (3)0.055 (6)*
N20.24881 (9)0.42987 (16)0.38629 (18)0.0373 (3)
H2A0.2005 (12)0.383 (2)0.407 (2)0.040 (5)*
C10.24303 (9)0.60397 (17)0.36781 (18)0.0296 (3)
C20.31409 (11)0.7126 (2)0.4199 (2)0.0379 (4)
H20.3669 (12)0.663 (2)0.465 (2)0.043 (4)*
C30.30463 (11)0.8851 (2)0.4016 (2)0.0433 (4)
H30.3552 (12)0.953 (2)0.438 (2)0.049 (5)*
C40.22475 (12)0.9538 (2)0.3278 (2)0.0435 (4)
H40.2185 (13)1.075 (2)0.317 (2)0.060 (5)*
C50.15423 (10)0.84824 (19)0.27104 (19)0.0355 (3)
H50.0949 (11)0.890 (2)0.217 (2)0.042 (4)*
C60.16362 (9)0.67665 (17)0.29098 (17)0.0275 (3)
C70.32679 (10)0.3572 (2)0.4861 (2)0.0412 (4)
H7A0.3111 (15)0.243 (3)0.526 (3)0.066 (6)*
H7B0.3429 (11)0.419 (2)0.591 (2)0.043 (4)*
C80.40509 (11)0.3334 (2)0.3858 (2)0.0513 (5)
C90.46786 (16)0.3128 (4)0.3068 (3)0.0850 (8)
H90.516 (3)0.307 (5)0.237 (5)0.147 (13)*
Cl10.05771 (2)0.22948 (5)0.01428 (5)0.03535 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0282 (6)0.0321 (7)0.0357 (7)0.0017 (5)0.0030 (5)0.0011 (6)
N20.0259 (6)0.0294 (6)0.0555 (8)0.0006 (5)0.0033 (6)0.0061 (6)
C10.0260 (7)0.0292 (7)0.0337 (7)0.0007 (5)0.0026 (5)0.0011 (6)
C20.0275 (7)0.0388 (8)0.0466 (9)0.0024 (6)0.0026 (7)0.0015 (7)
C30.0375 (9)0.0367 (8)0.0552 (10)0.0101 (7)0.0001 (7)0.0047 (7)
C40.0468 (9)0.0279 (8)0.0561 (10)0.0035 (7)0.0049 (8)0.0003 (7)
C50.0330 (8)0.0324 (8)0.0408 (8)0.0041 (6)0.0015 (6)0.0014 (6)
C60.0246 (6)0.0287 (7)0.0293 (7)0.0022 (5)0.0028 (5)0.0016 (5)
C70.0364 (8)0.0358 (9)0.0498 (10)0.0057 (7)0.0059 (7)0.0011 (8)
C80.0362 (9)0.0601 (11)0.0553 (11)0.0059 (8)0.0113 (8)0.0156 (9)
C90.0405 (11)0.142 (2)0.0713 (16)0.0057 (13)0.0047 (11)0.0393 (16)
Cl10.0343 (2)0.0347 (2)0.0365 (2)0.00367 (14)0.00021 (15)0.00251 (14)
Geometric parameters (Å, º) top
N1—C61.4626 (18)C3—C41.383 (2)
N1—H1A0.90 (2)C3—H30.948 (19)
N1—H1B0.92 (2)C4—C51.382 (2)
N1—H1C0.86 (2)C4—H40.968 (19)
N2—C11.3945 (19)C5—C61.380 (2)
N2—C71.4580 (19)C5—H50.996 (17)
N2—H2A0.832 (17)C7—C81.459 (2)
C1—C21.394 (2)C7—H7A0.99 (2)
C1—C61.3986 (18)C7—H7B0.972 (17)
C2—C31.385 (2)C8—C91.164 (3)
C2—H20.919 (17)C9—H90.93 (4)
C6—N1—H1A108.4 (15)C5—C4—C3119.21 (15)
C6—N1—H1B107.3 (11)C5—C4—H4120.7 (12)
H1A—N1—H1B109.3 (18)C3—C4—H4120.1 (12)
C6—N1—H1C113.3 (12)C6—C5—C4119.90 (13)
H1A—N1—H1C111.1 (19)C6—C5—H5116.9 (9)
H1B—N1—H1C107.4 (17)C4—C5—H5123.2 (9)
C1—N2—C7119.25 (13)C5—C6—C1122.07 (12)
C1—N2—H2A115.0 (12)C5—C6—N1118.63 (12)
C7—N2—H2A111.5 (11)C1—C6—N1119.29 (13)
C2—C1—N2123.16 (13)N2—C7—C8112.68 (15)
C2—C1—C6116.99 (13)N2—C7—H7A109.8 (13)
N2—C1—C6119.84 (12)C8—C7—H7A105.2 (13)
C3—C2—C1121.09 (14)N2—C7—H7B112.6 (10)
C3—C2—H2122.9 (11)C8—C7—H7B111.8 (9)
C1—C2—H2116.0 (11)H7A—C7—H7B104.1 (17)
C4—C3—C2120.70 (15)C9—C8—C7179.3 (3)
C4—C3—H3121.5 (11)C8—C9—H9174 (2)
C2—C3—H3117.8 (11)
C7—N2—C1—C29.2 (2)C4—C5—C6—C10.0 (2)
C7—N2—C1—C6172.05 (13)C4—C5—C6—N1178.74 (14)
N2—C1—C2—C3178.87 (14)C2—C1—C6—C51.7 (2)
C6—C1—C2—C32.3 (2)N2—C1—C6—C5179.43 (13)
C1—C2—C3—C41.3 (2)C2—C1—C6—N1179.61 (13)
C2—C3—C4—C50.5 (2)N2—C1—C6—N10.7 (2)
C3—C4—C5—C61.1 (2)C1—N2—C7—C884.95 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.90 (2)2.72 (2)3.2854 (17)122.2 (17)
N1—H1A···Cl1ii0.90 (2)2.56 (2)3.2903 (18)138.6 (18)
N1—H1B···Cl1iii0.92 (2)2.29 (2)3.2011 (16)174.6 (16)
N1—H1C···Cl10.86 (2)2.44 (2)3.2064 (17)148.2 (16)
N2—H2A···Cl1ii0.832 (17)2.492 (17)3.3148 (18)170.1 (15)
C5—H5···Cl1iii0.996 (17)2.935 (16)3.7479 (19)139.4 (12)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBallo, D., Ahabchane, N. H., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1277.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLoughzail, M., Fernandes, J. A., Baouid, A., Essaber, M., Cavaleiro, J. A. S. & Almeida Paz, F. A. (2011). Acta Cryst. E67, o2075–o2076.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]