organic compounds
2-[(Prop-2-yn-1-yl)amino]anilinium chloride
aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta BP 1014, Faculté des Sciences Université Mohammed V Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: hessaghouani@yahoo.fr
The title compound, C9H11N2+·Cl−, is an anilinium chloride salt, in which the Car—N—C—C (ar = aromatic) torsion angle is −84.95 (18)°. In the crystal, a bilayer of cation–anion sheets runs parallel to (100), primarily through an extensive range of N—H⋯Cl hydrogen bonds. Weak offset π-stacking interactions between the benzene rings stack molecules along c.
CCDC reference: 1583039
Structure description
As a continuation of our studies of substituted 4-phenyl-1,5-benzodiazepin-2-one derivatives (Loughzail et al., 2011; Ballo et al., 2010), we have prepared the title compound (Fig. 1) by the action of hydroxylamine hydrochloride on 4-phenyl-1-(prop-2-yn-1-yl)-1H-1,5-benzodiazepin-2(3H)-one in ethanol.
In the title anilinium chloride salt, the N1 atom of the NH3+ substituent and the N2—H2A group lie in the plane of the benzene ring while the N2,C7,C8≡C9 substituent is inclined to the benzene ring at an angle of 81.57 (12)°.
In the crystal, the major packing interactions involve several N—H⋯Cl hydrogen bonds. Each of the H atoms of the NH3+ cations and the amine group form N—H⋯Cl hydrogen bonds with N1—H1A acting as a bifurcated donor while the N1—H1B⋯Cl1 contact is supported by a weaker C5—H5⋯Cl hydrogen bond, Table 1, Fig. 2. Weak, offset π-stacking interactions between the benzene rings stack molecules along a with centroid–centroid distances of 3.951 (2) Å and a dihedral angle of 7.02 (7)° between the rings. These interactions form bilayers running along the caxis direction (Fig. 3).
Synthesis and crystallization
To a solution of 4-phenyl-1-(prop-2-yn-1-yl)-1H-1,5-benzodiazepin-2(3H)-one (10 mmol), was added hydroxylamine hydrochloride (20 mmol) in anhydrous ethanol (100 ml). The mixture was stirred at room temperature for 24 h. The solvent was removed under reduced pressure. The solid product was purified by recrystallization from ethanol solution to afford the title salt as colourless crystals.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1583039
https://doi.org/10.1107/S2414314617015838/sj4142sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617015838/sj4142Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617015838/sj4142Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314617015838/sj4142Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C9H11N2+·Cl− | F(000) = 384 |
Mr = 182.65 | Dx = 1.324 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.736 (6) Å | Cell parameters from 3191 reflections |
b = 7.955 (3) Å | θ = 2.8–28.1° |
c = 7.843 (3) Å | µ = 0.36 mm−1 |
β = 94.502 (5)° | T = 296 K |
V = 916.6 (7) Å3 | Plate, colourless |
Z = 4 | 0.30 × 0.29 × 0.08 mm |
Bruker SMART APEX CCD diffractometer | 2311 independent reflections |
Radiation source: fine-focus sealed tube | 1732 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 28.7°, θmin = 1.4° |
φ and ω scans | h = −19→19 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −10→10 |
Tmin = 0.84, Tmax = 0.97 | l = −10→10 |
8431 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.106 | All H-atom parameters refined |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0677P)2] where P = (Fo2 + 2Fc2)/3 |
2311 reflections | (Δ/σ)max = 0.002 |
153 parameters | Δρmax = 0.50 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 25 sec/frame was used. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.08712 (9) | 0.56842 (17) | 0.23286 (19) | 0.0323 (3) | |
H1A | 0.0601 (16) | 0.533 (3) | 0.325 (3) | 0.079 (7)* | |
H1B | 0.0470 (13) | 0.633 (3) | 0.166 (2) | 0.056 (5)* | |
H1C | 0.1026 (12) | 0.485 (3) | 0.172 (3) | 0.055 (6)* | |
N2 | 0.24881 (9) | 0.42987 (16) | 0.38629 (18) | 0.0373 (3) | |
H2A | 0.2005 (12) | 0.383 (2) | 0.407 (2) | 0.040 (5)* | |
C1 | 0.24303 (9) | 0.60397 (17) | 0.36781 (18) | 0.0296 (3) | |
C2 | 0.31409 (11) | 0.7126 (2) | 0.4199 (2) | 0.0379 (4) | |
H2 | 0.3669 (12) | 0.663 (2) | 0.465 (2) | 0.043 (4)* | |
C3 | 0.30463 (11) | 0.8851 (2) | 0.4016 (2) | 0.0433 (4) | |
H3 | 0.3552 (12) | 0.953 (2) | 0.438 (2) | 0.049 (5)* | |
C4 | 0.22475 (12) | 0.9538 (2) | 0.3278 (2) | 0.0435 (4) | |
H4 | 0.2185 (13) | 1.075 (2) | 0.317 (2) | 0.060 (5)* | |
C5 | 0.15423 (10) | 0.84824 (19) | 0.27104 (19) | 0.0355 (3) | |
H5 | 0.0949 (11) | 0.890 (2) | 0.217 (2) | 0.042 (4)* | |
C6 | 0.16362 (9) | 0.67665 (17) | 0.29098 (17) | 0.0275 (3) | |
C7 | 0.32679 (10) | 0.3572 (2) | 0.4861 (2) | 0.0412 (4) | |
H7A | 0.3111 (15) | 0.243 (3) | 0.526 (3) | 0.066 (6)* | |
H7B | 0.3429 (11) | 0.419 (2) | 0.591 (2) | 0.043 (4)* | |
C8 | 0.40509 (11) | 0.3334 (2) | 0.3858 (2) | 0.0513 (5) | |
C9 | 0.46786 (16) | 0.3128 (4) | 0.3068 (3) | 0.0850 (8) | |
H9 | 0.516 (3) | 0.307 (5) | 0.237 (5) | 0.147 (13)* | |
Cl1 | 0.05771 (2) | 0.22948 (5) | 0.01428 (5) | 0.03535 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0282 (6) | 0.0321 (7) | 0.0357 (7) | −0.0017 (5) | −0.0030 (5) | −0.0011 (6) |
N2 | 0.0259 (6) | 0.0294 (6) | 0.0555 (8) | −0.0006 (5) | −0.0033 (6) | 0.0061 (6) |
C1 | 0.0260 (7) | 0.0292 (7) | 0.0337 (7) | −0.0007 (5) | 0.0026 (5) | 0.0011 (6) |
C2 | 0.0275 (7) | 0.0388 (8) | 0.0466 (9) | −0.0024 (6) | −0.0026 (7) | 0.0015 (7) |
C3 | 0.0375 (9) | 0.0367 (8) | 0.0552 (10) | −0.0101 (7) | −0.0001 (7) | −0.0047 (7) |
C4 | 0.0468 (9) | 0.0279 (8) | 0.0561 (10) | −0.0035 (7) | 0.0049 (8) | −0.0003 (7) |
C5 | 0.0330 (8) | 0.0324 (8) | 0.0408 (8) | 0.0041 (6) | 0.0015 (6) | 0.0014 (6) |
C6 | 0.0246 (6) | 0.0287 (7) | 0.0293 (7) | −0.0022 (5) | 0.0028 (5) | −0.0016 (5) |
C7 | 0.0364 (8) | 0.0358 (9) | 0.0498 (10) | 0.0057 (7) | −0.0059 (7) | 0.0011 (8) |
C8 | 0.0362 (9) | 0.0601 (11) | 0.0553 (11) | 0.0059 (8) | −0.0113 (8) | −0.0156 (9) |
C9 | 0.0405 (11) | 0.142 (2) | 0.0713 (16) | 0.0057 (13) | −0.0047 (11) | −0.0393 (16) |
Cl1 | 0.0343 (2) | 0.0347 (2) | 0.0365 (2) | 0.00367 (14) | −0.00021 (15) | −0.00251 (14) |
N1—C6 | 1.4626 (18) | C3—C4 | 1.383 (2) |
N1—H1A | 0.90 (2) | C3—H3 | 0.948 (19) |
N1—H1B | 0.92 (2) | C4—C5 | 1.382 (2) |
N1—H1C | 0.86 (2) | C4—H4 | 0.968 (19) |
N2—C1 | 1.3945 (19) | C5—C6 | 1.380 (2) |
N2—C7 | 1.4580 (19) | C5—H5 | 0.996 (17) |
N2—H2A | 0.832 (17) | C7—C8 | 1.459 (2) |
C1—C2 | 1.394 (2) | C7—H7A | 0.99 (2) |
C1—C6 | 1.3986 (18) | C7—H7B | 0.972 (17) |
C2—C3 | 1.385 (2) | C8—C9 | 1.164 (3) |
C2—H2 | 0.919 (17) | C9—H9 | 0.93 (4) |
C6—N1—H1A | 108.4 (15) | C5—C4—C3 | 119.21 (15) |
C6—N1—H1B | 107.3 (11) | C5—C4—H4 | 120.7 (12) |
H1A—N1—H1B | 109.3 (18) | C3—C4—H4 | 120.1 (12) |
C6—N1—H1C | 113.3 (12) | C6—C5—C4 | 119.90 (13) |
H1A—N1—H1C | 111.1 (19) | C6—C5—H5 | 116.9 (9) |
H1B—N1—H1C | 107.4 (17) | C4—C5—H5 | 123.2 (9) |
C1—N2—C7 | 119.25 (13) | C5—C6—C1 | 122.07 (12) |
C1—N2—H2A | 115.0 (12) | C5—C6—N1 | 118.63 (12) |
C7—N2—H2A | 111.5 (11) | C1—C6—N1 | 119.29 (13) |
C2—C1—N2 | 123.16 (13) | N2—C7—C8 | 112.68 (15) |
C2—C1—C6 | 116.99 (13) | N2—C7—H7A | 109.8 (13) |
N2—C1—C6 | 119.84 (12) | C8—C7—H7A | 105.2 (13) |
C3—C2—C1 | 121.09 (14) | N2—C7—H7B | 112.6 (10) |
C3—C2—H2 | 122.9 (11) | C8—C7—H7B | 111.8 (9) |
C1—C2—H2 | 116.0 (11) | H7A—C7—H7B | 104.1 (17) |
C4—C3—C2 | 120.70 (15) | C9—C8—C7 | 179.3 (3) |
C4—C3—H3 | 121.5 (11) | C8—C9—H9 | 174 (2) |
C2—C3—H3 | 117.8 (11) | ||
C7—N2—C1—C2 | 9.2 (2) | C4—C5—C6—C1 | 0.0 (2) |
C7—N2—C1—C6 | −172.05 (13) | C4—C5—C6—N1 | 178.74 (14) |
N2—C1—C2—C3 | −178.87 (14) | C2—C1—C6—C5 | −1.7 (2) |
C6—C1—C2—C3 | 2.3 (2) | N2—C1—C6—C5 | 179.43 (13) |
C1—C2—C3—C4 | −1.3 (2) | C2—C1—C6—N1 | 179.61 (13) |
C2—C3—C4—C5 | −0.5 (2) | N2—C1—C6—N1 | 0.7 (2) |
C3—C4—C5—C6 | 1.1 (2) | C1—N2—C7—C8 | −84.95 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1i | 0.90 (2) | 2.72 (2) | 3.2854 (17) | 122.2 (17) |
N1—H1A···Cl1ii | 0.90 (2) | 2.56 (2) | 3.2903 (18) | 138.6 (18) |
N1—H1B···Cl1iii | 0.92 (2) | 2.29 (2) | 3.2011 (16) | 174.6 (16) |
N1—H1C···Cl1 | 0.86 (2) | 2.44 (2) | 3.2064 (17) | 148.2 (16) |
N2—H2A···Cl1ii | 0.832 (17) | 2.492 (17) | 3.3148 (18) | 170.1 (15) |
C5—H5···Cl1iii | 0.996 (17) | 2.935 (16) | 3.7479 (19) | 139.4 (12) |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x, −y+1/2, z+1/2; (iii) −x, −y+1, −z. |
Acknowledgements
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.
References
Ballo, D., Ahabchane, N. H., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1277. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Loughzail, M., Fernandes, J. A., Baouid, A., Essaber, M., Cavaleiro, J. A. S. & Almeida Paz, F. A. (2011). Acta Cryst. E67, o2075–o2076. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.