organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Ethyl­indan-1-one

CROSSMARK_Color_square_no_text.svg

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: tim.peppel@catalysis.de

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 11 November 2017; accepted 22 November 2017; online 28 November 2017)

The title compound, C11H12O, has been prepared as a side product in the attempted room-temperature synthesis of (E)-1-phenyl­pent-2-en-1-one. The mol­ecular structure consists of an approximately planar indanone core (r.m.s. deviation = 0.042 Å) with the ethyl group protruding from this plane. In the crystal, centrosymmetrically related mol­ecules are linked into dimers by pairs of C—H⋯O hydrogen bonds, forming rings of R22(10) graph-set motif. The dimers are further connected by C—H⋯π inter­actions into chains running parallel to [-101].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In recent years, new Cu-based complexes suitable for the photocatalytic water-splitting reaction have attracted increasing attention due to their application in sustainable hydrogen-storage technologies (Chen et al., 2017[Chen, N.-Y., Xia, L.-M., Lennox, A. J. J., Sun, Y.-Y., Chen, H., Jin, H.-M., Junge, H., Wu, Q.-A., Jia, J.-H., Beller, M. & Luo, S.-P. (2017). Chem. Eur. J. 23, 3631-3636.]). As part of ongoing efforts to synthesize feasible new ligands for these Cu-based complexes (Sonneck et al., 2015[Sonneck, M., Peppel, T., Spannenberg, A. & Wohlrab, S. (2015). Crystals, 5, 466-474.], 2016[Sonneck, M., Spannenberg, A., Wohlrab, S. & Peppel, T. (2016). Crystals, 6, 66.]), the title compound was obtained as a side product in the attempted synthesis of the precursor compound (E)-1-phenyl­pent-2-en-1-one in moderate yield (30%).

The title compound 3-ethyl­indan-1-one is a racemic ring-closure product of (E)-1-phenyl­pent-2-en-1-one and the asymmetric unit consists of one indanone mol­ecule (Fig. 1[link]). The indanone ring system is nearly planar [r.m.s. deviation = 0.042 Å; maximum displacement 0.1082 (12) Å for atom C2] with the ethyl group protruding from this plane. All bond lengths and angles are in expected ranges and the C=O bond equals 1.2138 (13) Å. The structure exhibits a typical geometry that corresponds well with that of the parent structure 1-indanone (Morin et al., 1974[Morin, Y., Brassy, C. & Mellier, A. (1974). J. Mol. Struct. 20, 461-469.]; Peña Ruiz et al., 2004[Peña Ruiz, T., Fernández-Gómez, M., López González, J. J., Koziol, A. E. & Granadino Roldán, J. M. (2004). J. Mol. Struct. 707, 33-46.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

In the crystal structure, centrosymmetric mol­ecules are linked into dimers through pairs of C—H⋯O hydrogen bonds (Table 1[link]), forming rings of R22(10) graph-set motif. The dimers are further connected by C—H⋯π inter­actions, forming chains parallel to [[\overline{1}]01].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C4–C9 ring

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.95 2.52 3.3960 (15) 154
C10—H10BCg1ii 0.99 2.96 3.7752 (13) 141
Symmetry codes: (i) -x, -y+2, -z; (ii) -x+1, -y+1, -z.

Synthesis and crystallization

The title compound was obtained as a racemic side product during an attempted room temperature synthesis of (E)-1-phenyl­pent-2-en-1-one in 30% yield (Ansell & Whitfield, 1968[Ansell, M. F. & Whitfield, G. F. (1968). Tetrahedron Lett. 9, 3075-3077.], 1971[Ansell, M. F. & Whitfield, G. F. (1971). J. Chem. Soc. C, pp. 1098-1109.]).

Dry AlCl3 (41.67 g, 312.53 mmol, 1.5 eq.) was suspended in benzene (81.38 g, 1.04 mol, 5.0 eq.) in a 500 ml two-necked round-bottom flask at 0°C. (E)-Pent-2-enoyl chloride (24.70 g, 208.35 mmol, 1.0 eq.) was added to this suspension dropwise and the remaining solution was further stirred for seven days at 25°C. Afterwards, the solution was poured onto HCl/ice (150 g/50 g), the organic phase was separated and the aqueous phase was extracted with ethyl acetate until it was colorless. The combined organic phases were reduced to a total volume of 150 ml and extracted with brine, afterwards with portions of 10% NaOH solution (250 ml) and again with brine. The organic phase was dried over Na2SO4 and the solvent was removed under diminished pressure. The resulting crude product was distilled in vacuo to yield a slightly yellow liquid (10.0 g, 30%, m.p. 289 K). Single crystals were obtained from a distilled sample spontaneously at −30°C over one week.

Analytic data for 3-ethyl­indan-1-one: m.p. 16°C, b.p. 105°C (6 mbar), 1H NMR (400 MHz, CDCl3): δ (p.p.m.): 7.70–7.65 (m, 1H, ArH); 7.57–7.51 (m, 1H, ArH); 7.47–7.43 (m, 1H, ArH); 7.36–7.27 (m, 1H, ArH); 3.31–3.23 (m, 1H); 2.82–2.74 (m, 1H); 2.35–2.26 (m, 1H); 1.95–1.86 (m, 1H); 1.53–1.44 (m, 1H); 0.95–0.89 (m, 3H); 13C NMR (100 MHz, CDCl3): δ (p.p.m.): 206.3 (CO), 158.6, 136.8 (C); 134.5, 127.4, 125.6, 123.4 (CH); 42.5 (CH2), 39.6 (CH), 28.6 (CH2); 11.6 (CH3); MS (EI, 70 eV): m/z = 160 (M+, 33), 133 (10), 132 (100), 131 (70), 115 (15), 103 (46), 77 (34), 51 (12); HRMS (ESI–TOF/MS): calculated for C11H12O ([M+H]+) 174.10392, found 174.10366; EA for C11H12O % (calc.): C 82.57 (82.46); H 7.62 (7.55).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H12O
Mr 160.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 9.0852 (2), 6.4314 (2), 15.5196 (4)
β (°) 102.6361 (10)
V3) 884.85 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.51 × 0.45 × 0.29
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.92, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 10725, 2134, 1793
Rint 0.019
(sin θ/λ)max−1) 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.111, 1.07
No. of reflections 2134
No. of parameters 110
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.16
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), XP in SHELXTL and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

3-Ethylindan-1-one top
Crystal data top
C11H12OF(000) = 344
Mr = 160.21Dx = 1.203 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.0852 (2) ÅCell parameters from 5279 reflections
b = 6.4314 (2) Åθ = 2.7–30.7°
c = 15.5196 (4) ŵ = 0.08 mm1
β = 102.6361 (10)°T = 150 K
V = 884.85 (4) Å3Prism, colourless
Z = 40.51 × 0.45 × 0.29 mm
Data collection top
Bruker APEXII CCD
diffractometer
2134 independent reflections
Radiation source: fine-focus sealed tube1793 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.019
φ and ω scansθmax = 28.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1111
Tmin = 0.92, Tmax = 0.98k = 87
10725 measured reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.2028P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2134 reflectionsΔρmax = 0.34 e Å3
110 parametersΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms were placed in idealized positions with d(C—H) = 0.95–1.00 Å (CH), 0.99 Å (CH2), 0.98 Å (CH3) and refined using a riding model, with Uiso(H) fixed at 1.2 Ueq(C) for CH, CH2 or 1.5 Ueq(C) for CH3. A rotating model was used for the methyl group.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.16973 (11)0.67197 (17)0.07020 (7)0.0286 (2)
C20.24409 (13)0.48447 (18)0.12097 (7)0.0344 (3)
H2A0.17960.42810.15920.041*
H2B0.34290.52360.15860.041*
C30.26520 (12)0.32138 (17)0.05201 (7)0.0288 (2)
H30.19200.20530.05200.035*
C40.22155 (11)0.43841 (17)0.03458 (6)0.0276 (2)
C50.22969 (13)0.3713 (2)0.11876 (7)0.0354 (3)
H50.26580.23600.12760.042*
C60.18401 (13)0.5057 (2)0.18932 (7)0.0384 (3)
H60.19010.46190.24690.046*
C70.12954 (12)0.7031 (2)0.17778 (7)0.0376 (3)
H70.09880.79210.22730.045*
C80.11967 (12)0.77122 (19)0.09466 (7)0.0335 (3)
H80.08180.90560.08610.040*
C90.16722 (11)0.63589 (17)0.02383 (6)0.0265 (2)
C100.42424 (13)0.2319 (2)0.06797 (8)0.0404 (3)
H10A0.43140.13860.01830.049*
H10B0.49670.34710.06860.049*
C110.46888 (14)0.1111 (2)0.15406 (8)0.0435 (3)
H11A0.46480.20330.20380.065*
H11B0.57160.05740.16040.065*
H11C0.39890.00510.15350.065*
O10.12284 (10)0.82406 (14)0.10197 (5)0.0405 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0289 (5)0.0301 (6)0.0270 (5)0.0029 (4)0.0065 (4)0.0032 (4)
C20.0437 (6)0.0338 (6)0.0251 (5)0.0023 (5)0.0063 (4)0.0007 (4)
C30.0310 (5)0.0280 (5)0.0273 (5)0.0011 (4)0.0063 (4)0.0002 (4)
C40.0261 (5)0.0309 (6)0.0258 (5)0.0017 (4)0.0055 (4)0.0004 (4)
C50.0397 (6)0.0376 (6)0.0302 (5)0.0015 (5)0.0102 (4)0.0055 (4)
C60.0382 (6)0.0539 (8)0.0244 (5)0.0026 (5)0.0095 (4)0.0019 (5)
C70.0339 (6)0.0502 (8)0.0288 (5)0.0015 (5)0.0074 (4)0.0106 (5)
C80.0312 (5)0.0352 (6)0.0344 (5)0.0024 (4)0.0081 (4)0.0056 (5)
C90.0245 (5)0.0305 (6)0.0249 (5)0.0020 (4)0.0060 (4)0.0008 (4)
C100.0370 (6)0.0472 (7)0.0379 (6)0.0082 (5)0.0101 (5)0.0056 (5)
C110.0379 (6)0.0454 (7)0.0451 (7)0.0091 (5)0.0043 (5)0.0097 (5)
O10.0504 (5)0.0356 (5)0.0363 (4)0.0062 (4)0.0115 (4)0.0077 (3)
Geometric parameters (Å, º) top
C1—O11.2138 (13)C6—C71.3882 (18)
C1—C91.4730 (14)C6—H60.9500
C1—C21.5161 (16)C7—C81.3836 (17)
C2—C31.5402 (15)C7—H70.9500
C2—H2A0.9900C8—C91.3945 (15)
C2—H2B0.9900C8—H80.9500
C3—C41.5155 (14)C10—C111.5217 (16)
C3—C101.5244 (15)C10—H10A0.9900
C3—H31.0000C10—H10B0.9900
C4—C91.3858 (15)C11—H11A0.9800
C4—C51.3931 (14)C11—H11B0.9800
C5—C61.3859 (16)C11—H11C0.9800
C5—H50.9500
O1—C1—C9126.78 (10)C7—C6—H6119.3
O1—C1—C2125.87 (9)C8—C7—C6120.49 (11)
C9—C1—C2107.35 (9)C8—C7—H7119.8
C1—C2—C3106.83 (8)C6—C7—H7119.8
C1—C2—H2A110.4C7—C8—C9117.72 (11)
C3—C2—H2A110.4C7—C8—H8121.1
C1—C2—H2B110.4C9—C8—H8121.1
C3—C2—H2B110.4C4—C9—C8122.29 (10)
H2A—C2—H2B108.6C4—C9—C1109.57 (9)
C4—C3—C10112.74 (9)C8—C9—C1128.14 (10)
C4—C3—C2103.28 (8)C11—C10—C3113.36 (10)
C10—C3—C2113.70 (9)C11—C10—H10A108.9
C4—C3—H3109.0C3—C10—H10A108.9
C10—C3—H3109.0C11—C10—H10B108.9
C2—C3—H3109.0C3—C10—H10B108.9
C9—C4—C5119.36 (10)H10A—C10—H10B107.7
C9—C4—C3112.30 (9)C10—C11—H11A109.5
C5—C4—C3128.34 (10)C10—C11—H11B109.5
C6—C5—C4118.64 (11)H11A—C11—H11B109.5
C6—C5—H5120.7C10—C11—H11C109.5
C4—C5—H5120.7H11A—C11—H11C109.5
C5—C6—C7121.49 (10)H11B—C11—H11C109.5
C5—C6—H6119.3
O1—C1—C2—C3172.80 (10)C5—C4—C9—C80.11 (15)
C9—C1—C2—C37.95 (11)C3—C4—C9—C8179.72 (9)
C1—C2—C3—C47.82 (11)C5—C4—C9—C1179.79 (9)
C1—C2—C3—C10130.32 (10)C3—C4—C9—C10.38 (12)
C10—C3—C4—C9128.37 (10)C7—C8—C9—C40.64 (16)
C2—C3—C4—C95.23 (11)C7—C8—C9—C1179.25 (10)
C10—C3—C4—C551.81 (15)O1—C1—C9—C4175.94 (10)
C2—C3—C4—C5174.95 (11)C2—C1—C9—C44.82 (11)
C9—C4—C5—C60.52 (16)O1—C1—C9—C84.16 (18)
C3—C4—C5—C6179.68 (10)C2—C1—C9—C8175.08 (10)
C4—C5—C6—C70.64 (17)C4—C3—C10—C11179.14 (10)
C5—C6—C7—C80.11 (18)C2—C3—C10—C1163.73 (14)
C6—C7—C8—C90.52 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4–C9 ring
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.952.523.3960 (15)154
C10—H10B···Cg1ii0.992.963.7752 (13)141
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+1, z.
 

References

First citationAnsell, M. F. & Whitfield, G. F. (1968). Tetrahedron Lett. 9, 3075–3077.  CrossRef Google Scholar
First citationAnsell, M. F. & Whitfield, G. F. (1971). J. Chem. Soc. C, pp. 1098–1109.  Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, N.-Y., Xia, L.-M., Lennox, A. J. J., Sun, Y.-Y., Chen, H., Jin, H.-M., Junge, H., Wu, Q.-A., Jia, J.-H., Beller, M. & Luo, S.-P. (2017). Chem. Eur. J. 23, 3631–3636.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMorin, Y., Brassy, C. & Mellier, A. (1974). J. Mol. Struct. 20, 461–469.  CSD CrossRef CAS Web of Science Google Scholar
First citationPeña Ruiz, T., Fernández-Gómez, M., López González, J. J., Koziol, A. E. & Granadino Roldán, J. M. (2004). J. Mol. Struct. 707, 33–46.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSonneck, M., Peppel, T., Spannenberg, A. & Wohlrab, S. (2015). Crystals, 5, 466–474.  Web of Science CSD CrossRef CAS Google Scholar
First citationSonneck, M., Spannenberg, A., Wohlrab, S. & Peppel, T. (2016). Crystals, 6, 66.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]