organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(4-Meth­­oxy­phen­yl)-3-[2-(4-methyl­piperazin-1-yl)quinolin-3-yl]prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics , University of Jammu, Jammu Tawi 180 006, India, bDepartment of Chemistry, Tumkur University Tumkur, India, and cDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur 572 103. Karnataka, India
*Correspondence e-mail: rkant.ju@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 24 October 2017; accepted 6 November 2017; online 17 November 2017)

In the title mol­ecule, C24H25N3O2, the piperazine ring adopts a chair conformation. The meth­oxy­phenyl-substituted ring makes a dihedral angle of 6.79 (5)° with the quinoline ring system. In the crystal, mol­ecules are consolidated in the crystal packing by a combination of weak C—H⋯N and C—H⋯O inter­actions. ππ stacking inter­actions also occur.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quinoline derivatives find importance owing to their wide occurrence in natural products and in biologically active compounds (Markees et al., 1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]; Campbell et al., 1988[Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031-1035.]; Kalluraya & Sreenivasa, 1998[Kalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399-404.]). Quinoline chalcone analogues have also attracted significant attention as a result of their bio-activity, e.g. anti-plasmodial, anti-microbial, anti-malarial and anti-cancer (Dimmock et al., 1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]; Wu et al., 2006[Wu, X., Tiekink, E. R. T., Kostetski, I., Kocherginsky, N., Tan, A. L. C., Khoo, S. B., Wilairat, P. & Go, M. (2006). Eur. J. Pharm. Sci. 27, 175-187.]).

In the mol­ecule of the title compound, (Fig. 1[link]), bond lengths are in normal ranges and are comparable with related structures (Kaiser et al., 2009[Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133-1140.]; Prasath et al., 2010[Prasath, R., Sarveswari, S., Vijayakumar, V., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1110.], 2011[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o796-o797.]). The piperazine ring adopts a chair conformation with best mirror plane passing through atoms C20 and C22 [asymmetry parameter ΔCs(C20) = 2/3] and the best twofold rotational axis bis­ecting the C22—C23 and C20—C21 bonds [asymmetry parameter ΔC2(C22—C23) = 0.43; Duax & Norton, 1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.]). The quinoline ring system is essentially planar with a maximum deviation of 0.0384 (1) Å for atom C17. The meth­oxy­phenyl-substituted ring makes a dihedral angle of 6.79 (5)° with the quinoline ring system.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

In the crystal, mol­ecules are consolidated in the crystal packing by a combination of weak C—H⋯N and C—H⋯O inter­actions (Table 1[link], Fig. 2[link]). The crystal structure also features ππ stacking inter­actions observed between the (C11–C13/C18/N1/C19) ring and the meth­oxy­phenyl-substituted ring [centroid–centroid separation = 3.680 (1) Å, inter­planar spacing = 3.350 Å and centroid shift = 1.52 Å] and the benzene ring (C13–C18) and the meth­oxy­phenyl-substituted ring [centroid separation = 3.760 (1) Å, inter­planar spacing = 3.625 Å and centroid shift = 1.00 Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O2i 0.96 2.52 3.3096 (2) 139
C14—H14⋯O1i 0.93 2.40 3.3112 (2) 165
C17—H17⋯N3ii 0.93 2.54 3.4029 (3) 155
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The packing arrangement of mol­ecules viewed along the b axis.

Synthesis and crystallization

To a mixture of 9-acetyl­anthracene (0.01 mol) and 3-nitro­benzaldehyde (0.01 mol) in ethanol (50 ml), 15 ml of 10% sodium hydroxide solution was added and stirred at 273–278 K for 3 h. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from DMF by the slow evaporation method (m.p. 441–443 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H25N3O2
Mr 387.47
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 12.1054 (9), 12.5816 (8), 13.8151 (10)
β (°) 104.660 (8)
V3) 2035.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.806, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7663, 3968, 2661
Rint 0.029
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.129, 1.03
No. of reflections 3968
No. of parameters 264
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.16
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek,2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek,2009).

1-(4-Methoxyphenyl)-3-[2-(4-methylpiperazin-1-yl)quinolin-3-yl]prop-2-en-1-one top
Crystal data top
C24H25N3O2F(000) = 824
Mr = 387.47Dx = 1.264 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.1054 (9) ÅCell parameters from 2213 reflections
b = 12.5816 (8) Åθ = 3.8–28.1°
c = 13.8151 (10) ŵ = 0.08 mm1
β = 104.660 (8)°T = 293 K
V = 2035.6 (3) Å3Block, white
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur, Sapphire3
diffractometer
3968 independent reflections
Radiation source: fine-focus sealed tube2661 reflections with I > 2σ(I)
Detector resolution: 6.1049 pixels mm-1Rint = 0.029
ω scansθmax = 26.0°, θmin = 3.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
h = 1014
Tmin = 0.806, Tmax = 1.000k = 159
7663 measured reflectionsl = 1713
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.2064P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
3968 reflectionsΔρmax = 0.14 e Å3
264 parametersΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å; and with Uiso(H) = 1.2Ueq(C), except for the methyl groups where Uiso(H) = 1.5Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.66324 (12)0.04111 (11)0.17671 (11)0.0403 (4)
C190.68787 (15)0.02479 (13)0.11184 (13)0.0370 (4)
N20.65342 (12)0.13104 (11)0.11343 (10)0.0401 (4)
C130.75452 (15)0.18349 (13)0.10684 (13)0.0399 (4)
C180.69723 (14)0.14485 (13)0.17632 (13)0.0377 (4)
C110.75333 (15)0.00475 (13)0.04249 (13)0.0381 (4)
C50.94339 (15)0.12384 (14)0.21987 (13)0.0396 (4)
O11.11216 (12)0.07992 (10)0.44155 (10)0.0572 (4)
N30.52218 (13)0.31851 (11)0.11631 (12)0.0464 (4)
C100.79570 (15)0.07570 (14)0.01499 (14)0.0434 (5)
H100.7861720.1461220.0016930.052*
O20.86919 (14)0.24023 (10)0.11961 (11)0.0661 (4)
C40.99289 (16)0.02680 (14)0.22924 (13)0.0430 (5)
H40.9872500.0277520.1853170.052*
C170.67233 (16)0.21571 (14)0.24651 (14)0.0466 (5)
H170.6363950.1911000.2942370.056*
C230.62185 (18)0.16514 (14)0.20369 (14)0.0511 (5)
H23A0.5504350.1319800.2066210.061*
H23B0.6802500.1434720.2623500.061*
C120.78272 (16)0.10930 (14)0.04139 (13)0.0431 (5)
H120.8226510.1319950.0041540.052*
C160.70063 (17)0.32018 (14)0.24486 (15)0.0519 (5)
H160.6820820.3668500.2905230.062*
C71.00681 (18)0.18600 (14)0.36065 (15)0.0527 (5)
H71.0101370.2395440.4062380.063*
C80.88595 (16)0.14806 (15)0.14025 (14)0.0448 (5)
C21.05822 (16)0.08888 (14)0.36738 (14)0.0430 (5)
C140.78453 (17)0.29115 (14)0.10835 (15)0.0495 (5)
H140.8234180.3167420.0631070.059*
C90.84587 (17)0.05991 (15)0.08776 (14)0.0492 (5)
H90.8564540.0094860.1067930.059*
C220.60924 (18)0.28353 (15)0.20268 (15)0.0539 (5)
H22A0.6815420.3162350.2018050.065*
H22B0.5891840.3062170.2631460.065*
C210.55201 (18)0.28423 (14)0.02596 (15)0.0519 (5)
H21A0.4926520.3059250.0320060.062*
H21B0.6227160.3181250.0220200.062*
C200.56593 (17)0.16596 (14)0.02492 (14)0.0476 (5)
H20A0.5878730.1449250.0351530.057*
H20B0.4937940.1319590.0241430.057*
C31.05028 (16)0.00856 (14)0.30169 (14)0.0440 (5)
H31.0834150.0573130.3063250.053*
C60.95132 (18)0.20370 (15)0.28761 (15)0.0514 (5)
H60.9184820.2697270.2830150.062*
C150.75707 (17)0.35818 (15)0.17556 (16)0.0530 (5)
H150.7759980.4298080.1754110.064*
C240.5069 (2)0.43288 (15)0.11815 (19)0.0685 (7)
H24A0.4479970.4541640.0607920.103*
H24B0.4853800.4524790.1780320.103*
H24C0.5770770.4676260.1168560.103*
C11.17742 (19)0.01359 (15)0.44464 (16)0.0601 (6)
H1A1.1286900.0747760.4513220.090*
H1B1.2106110.0099340.5007330.090*
H1C1.2369770.0191120.3839480.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0412 (9)0.0439 (8)0.0390 (9)0.0042 (7)0.0159 (7)0.0015 (7)
C190.0351 (10)0.0426 (10)0.0330 (10)0.0027 (8)0.0082 (8)0.0027 (8)
N20.0437 (9)0.0430 (8)0.0341 (9)0.0088 (7)0.0109 (7)0.0005 (7)
C130.0382 (10)0.0431 (10)0.0401 (11)0.0010 (8)0.0131 (8)0.0041 (8)
C180.0336 (9)0.0414 (10)0.0389 (10)0.0012 (8)0.0108 (8)0.0001 (8)
C110.0387 (10)0.0437 (10)0.0329 (10)0.0014 (8)0.0112 (8)0.0020 (8)
C50.0386 (10)0.0427 (10)0.0374 (10)0.0080 (8)0.0096 (8)0.0005 (8)
O10.0688 (10)0.0589 (9)0.0542 (9)0.0094 (7)0.0349 (8)0.0149 (7)
N30.0481 (9)0.0412 (9)0.0540 (10)0.0087 (7)0.0203 (8)0.0072 (7)
C100.0441 (11)0.0459 (10)0.0423 (11)0.0020 (9)0.0145 (9)0.0002 (8)
O20.0970 (12)0.0472 (8)0.0651 (10)0.0037 (8)0.0410 (9)0.0072 (7)
C40.0430 (11)0.0469 (11)0.0406 (11)0.0040 (9)0.0130 (9)0.0099 (9)
C170.0492 (12)0.0503 (11)0.0453 (12)0.0034 (9)0.0211 (9)0.0028 (9)
C230.0645 (13)0.0529 (11)0.0379 (11)0.0167 (10)0.0166 (10)0.0015 (9)
C120.0447 (11)0.0504 (11)0.0387 (11)0.0018 (9)0.0188 (9)0.0058 (9)
C160.0524 (12)0.0487 (11)0.0575 (14)0.0018 (10)0.0193 (11)0.0114 (10)
C70.0696 (14)0.0430 (11)0.0516 (13)0.0004 (10)0.0264 (11)0.0117 (9)
C80.0485 (11)0.0462 (11)0.0403 (11)0.0068 (9)0.0123 (9)0.0023 (9)
C20.0419 (11)0.0488 (11)0.0408 (11)0.0040 (9)0.0153 (9)0.0055 (9)
C140.0533 (12)0.0453 (10)0.0551 (13)0.0043 (9)0.0230 (10)0.0056 (10)
C90.0597 (13)0.0461 (11)0.0476 (12)0.0053 (10)0.0243 (10)0.0031 (9)
C220.0593 (13)0.0537 (12)0.0494 (13)0.0102 (10)0.0149 (10)0.0073 (10)
C210.0530 (12)0.0560 (12)0.0478 (12)0.0089 (10)0.0149 (10)0.0133 (10)
C200.0492 (12)0.0545 (11)0.0382 (11)0.0078 (9)0.0091 (9)0.0005 (9)
C30.0440 (11)0.0437 (10)0.0467 (12)0.0020 (9)0.0161 (9)0.0082 (9)
C60.0646 (14)0.0415 (10)0.0534 (13)0.0009 (10)0.0246 (11)0.0033 (9)
C150.0527 (12)0.0417 (11)0.0657 (14)0.0058 (9)0.0170 (11)0.0029 (10)
C240.0784 (17)0.0465 (12)0.0893 (18)0.0112 (11)0.0370 (14)0.0112 (11)
C10.0659 (15)0.0636 (13)0.0588 (14)0.0145 (11)0.0307 (12)0.0108 (11)
Geometric parameters (Å, º) top
N1—C191.309 (2)C23—H23B0.9700
N1—C181.369 (2)C12—H120.9300
C19—N21.402 (2)C16—C151.394 (3)
C19—C111.438 (2)C16—H160.9300
N2—C231.458 (2)C7—C61.365 (2)
N2—C201.468 (2)C7—C21.385 (2)
C13—C141.401 (2)C7—H70.9300
C13—C121.401 (2)C8—C91.473 (2)
C13—C181.406 (2)C2—C31.378 (2)
C18—C171.405 (2)C14—C151.357 (3)
C11—C121.364 (2)C14—H140.9300
C11—C101.458 (2)C9—H90.9300
C5—C41.381 (2)C22—H22A0.9700
C5—C61.393 (2)C22—H22B0.9700
C5—C81.474 (2)C21—C201.498 (2)
O1—C21.352 (2)C21—H21A0.9700
O1—C11.424 (2)C21—H21B0.9700
N3—C221.446 (2)C20—H20A0.9700
N3—C211.450 (2)C20—H20B0.9700
N3—C241.452 (2)C3—H30.9300
C10—C91.315 (2)C6—H60.9300
C10—H100.9300C15—H150.9300
O2—C81.223 (2)C24—H24A0.9600
C4—C31.374 (2)C24—H24B0.9600
C4—H40.9300C24—H24C0.9600
C17—C161.360 (2)C1—H1A0.9600
C17—H170.9300C1—H1B0.9600
C23—C221.497 (2)C1—H1C0.9600
C23—H23A0.9700
C19—N1—C18118.71 (14)C9—C8—C5119.22 (16)
N1—C19—N2118.22 (15)O1—C2—C3124.44 (16)
N1—C19—C11123.47 (15)O1—C2—C7115.85 (16)
N2—C19—C11118.23 (15)C3—C2—C7119.70 (17)
C19—N2—C23115.93 (14)C15—C14—C13120.24 (17)
C19—N2—C20115.28 (14)C15—C14—H14119.9
C23—N2—C20109.53 (14)C13—C14—H14119.9
C14—C13—C12123.31 (16)C10—C9—C8122.43 (17)
C14—C13—C18119.68 (16)C10—C9—H9118.8
C12—C13—C18116.96 (15)C8—C9—H9118.8
N1—C18—C13122.23 (15)N3—C22—C23111.21 (16)
N1—C18—C17119.01 (15)N3—C22—H22A109.4
C13—C18—C17118.75 (15)C23—C22—H22A109.4
C12—C11—C19116.49 (15)N3—C22—H22B109.4
C12—C11—C10122.34 (15)C23—C22—H22B109.4
C19—C11—C10120.84 (15)H22A—C22—H22B108.0
C4—C5—C6118.01 (17)N3—C21—C20110.90 (15)
C4—C5—C8123.41 (16)N3—C21—H21A109.5
C6—C5—C8118.55 (16)C20—C21—H21A109.5
C2—O1—C1118.02 (14)N3—C21—H21B109.5
C22—N3—C21109.36 (15)C20—C21—H21B109.5
C22—N3—C24110.90 (16)H21A—C21—H21B108.0
C21—N3—C24111.75 (15)N2—C20—C21110.39 (15)
C9—C10—C11127.31 (17)N2—C20—H20A109.6
C9—C10—H10116.3C21—C20—H20A109.6
C11—C10—H10116.3N2—C20—H20B109.6
C3—C4—C5121.83 (16)C21—C20—H20B109.6
C3—C4—H4119.1H20A—C20—H20B108.1
C5—C4—H4119.1C4—C3—C2119.31 (17)
C16—C17—C18120.18 (17)C4—C3—H3120.3
C16—C17—H17119.9C2—C3—H3120.3
C18—C17—H17119.9C7—C6—C5120.64 (18)
N2—C23—C22109.45 (15)C7—C6—H6119.7
N2—C23—H23A109.8C5—C6—H6119.7
C22—C23—H23A109.8C14—C15—C16120.30 (17)
N2—C23—H23B109.8C14—C15—H15119.9
C22—C23—H23B109.8C16—C15—H15119.9
H23A—C23—H23B108.2N3—C24—H24A109.5
C11—C12—C13121.92 (16)N3—C24—H24B109.5
C11—C12—H12119.0H24A—C24—H24B109.5
C13—C12—H12119.0N3—C24—H24C109.5
C17—C16—C15120.82 (18)H24A—C24—H24C109.5
C17—C16—H16119.6H24B—C24—H24C109.5
C15—C16—H16119.6O1—C1—H1A109.5
C6—C7—C2120.48 (17)O1—C1—H1B109.5
C6—C7—H7119.8H1A—C1—H1B109.5
C2—C7—H7119.8O1—C1—H1C109.5
O2—C8—C9120.28 (17)H1A—C1—H1C109.5
O2—C8—C5120.48 (16)H1B—C1—H1C109.5
C18—N1—C19—N2179.50 (15)C4—C5—C8—O2161.56 (18)
C18—N1—C19—C112.8 (3)C6—C5—C8—O216.5 (3)
N1—C19—N2—C2316.4 (2)C4—C5—C8—C920.2 (3)
C11—C19—N2—C23160.47 (16)C6—C5—C8—C9161.74 (18)
N1—C19—N2—C20113.40 (18)C1—O1—C2—C38.3 (3)
C11—C19—N2—C2069.7 (2)C1—O1—C2—C7172.89 (18)
C19—N1—C18—C131.9 (3)C6—C7—C2—O1179.19 (18)
C19—N1—C18—C17179.23 (16)C6—C7—C2—C32.0 (3)
C14—C13—C18—N1178.29 (17)C12—C13—C14—C15178.26 (19)
C12—C13—C18—N14.2 (3)C18—C13—C14—C150.9 (3)
C14—C13—C18—C170.5 (3)C11—C10—C9—C8179.61 (17)
C12—C13—C18—C17176.95 (17)O2—C8—C9—C102.9 (3)
N1—C19—C11—C124.9 (3)C5—C8—C9—C10178.87 (18)
N2—C19—C11—C12178.38 (15)C21—N3—C22—C2358.9 (2)
N1—C19—C11—C10168.70 (16)C24—N3—C22—C23177.45 (16)
N2—C19—C11—C108.0 (3)N2—C23—C22—N359.8 (2)
C12—C11—C10—C914.4 (3)C22—N3—C21—C2057.6 (2)
C19—C11—C10—C9172.4 (2)C24—N3—C21—C20179.26 (17)
C6—C5—C4—C31.1 (3)C19—N2—C20—C21169.36 (14)
C8—C5—C4—C3176.98 (17)C23—N2—C20—C2157.75 (19)
N1—C18—C17—C16177.06 (17)N3—C21—C20—N257.7 (2)
C13—C18—C17—C161.8 (3)C5—C4—C3—C20.4 (3)
C19—N2—C23—C22169.17 (16)O1—C2—C3—C4179.83 (18)
C20—N2—C23—C2258.3 (2)C7—C2—C3—C41.1 (3)
C19—C11—C12—C132.3 (3)C2—C7—C6—C51.3 (3)
C10—C11—C12—C13171.15 (17)C4—C5—C6—C70.2 (3)
C14—C13—C12—C11179.28 (18)C8—C5—C6—C7177.96 (18)
C18—C13—C12—C111.9 (3)C13—C14—C15—C161.2 (3)
C18—C17—C16—C151.6 (3)C17—C16—C15—C140.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i0.962.523.3096 (2)139
C14—H14···O1i0.932.403.3112 (2)165
C17—H17···N3ii0.932.543.4029 (3)155
Symmetry codes: (i) x+2, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for a single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

Funding information

Funding for this research was provided by: Indian Council of Medical Research (grant No. BIC/12(14)/2012 to Rajni Kant); Department of Science and Technology, Ministry of Science and Technology, Science and Engineering Research Board (grant No. EMR/2014/000467 to Rajni Kant).

References

First citationCampbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140.  Web of Science CSD CrossRef CAS Google Scholar
First citationKalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399–404.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPrasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o796–o797.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPrasath, R., Sarveswari, S., Vijayakumar, V., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1110.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, X., Tiekink, E. R. T., Kostetski, I., Kocherginsky, N., Tan, A. L. C., Khoo, S. B., Wilairat, P. & Go, M. (2006). Eur. J. Pharm. Sci. 27, 175–187.  CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]