organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Amino-1-methyl-4-oxo-4,5-di­hydro-1H-imidazol-3-ium 3-carb­­oxy-4-hy­dr­oxy­benzene­sulfonate monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Arul Anandar College, Madurai 625 514, India, bDepartment of Physics, Presidency College, Chennai 600 005, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: mohan66@hotmail.com, chakkaravarthi_2005@yahoo.com

Edited by A. J. Lough, University of Toronto, Canada (Received 23 October 2017; accepted 2 November 2017; online 17 November 2017)

The asymmetric unit of the title mol­ecular salt, C4H7N3O+·C7H5O6S·H2O, contains a 5-sulfosalicylate anion, a creatininium cation and a water mol­ecule of crystallization. The cation is protonated at the imidazole N atom and the anion is deprotonated at the sulfonic acid group. The creatininium is disordered over two sets of sites with refined site occupancies of 0.771 (3) and 0.229 (3). The benzene ring is approximately orthogonal to the disordered five-membered rings [dihedral angles of 89.7 (2) and 88.3 (8)° for the major and minor occupancy components, respectively]. In the crystal, the ions are connected through pairs of N—H⋯O hydrogen bonds, generating an R22(8) ring-motif. An intra­ionic O—H⋯O hydrogen bond generates an S(6) graph-set motif. Weak C—H⋯O contacts link the ions and water mol­ecule into a two-dimensional network parallel to (001). The structure was refined as a two-component twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Creatine is extracted from several kinds of muscle and it is endogenously synthesized by the liver and pancreas in humans (Greenhaff et al., 1993[Greenhaff, P. L., Casey, A., Short, A. H., Harris, R., Soderlund, K. & Hultman, E. (1993). Clin. Sci. 84, 565-571.]; Walker, 1979[Walker, J. B. (1979). Adv. Enzymol. Relat. Areas Mol. Med. 50, 177-242.]). We report herein the synthesis and the crystal structure of the title mol­ecular salt (Fig. 1[link]). Its geometric parameters agree well with those of reported similar structures (Thayanithi et al., 2016[Thayanithi, V., Kumar, P. P. & Gunasekaran, B. (2016). IUCrData, 1, x160989.]; Jahubar Ali et al., 2011[Jahubar Ali, A., Athimoolam, S. & Asath Bahadur, S. (2011). Acta Cryst. E67, o2905.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, with atom labelling and 30% probability displacement ellipsoids. The minor component in the cation is shown with dashed bonds. The intra­molecular hydrogen bond in the anion is shown with a dashed line.

The title compound contains a disordered creatininium cation,, with site occupancies of 0.771 (3) for the major component (C2A/N1A/C5A/N4A/C3A/O6A) and 0.229 (3) for minor component (C2B/N1B/C5B/N4B/C3B/O6B), a 5-sulfosalicylate anion and a water mol­ecule in the asymmetric unit. The cation is protonated at the imidizole N atom and the anion is deprotonated at the sulfonic acid group. The benzene ring (C1–C6) is orthogonal to the major [dihedral angle of 89.7 (2)°] and minor [dihedral angle of 88.3 (8)°] components of the five-membered rings. In the asymmetric unit, an intra­ionic O—H⋯O hydrogen bond generates an S(6) graph-set motif (Fig. 2[link]).

[Figure 2]
Figure 2
The partial packing of the title mol­ecular salt, showing ring-set motifs. Hydrogen bonds are shown as dashed lines.

In the crystal, an N—H⋯O hydrogen bond (Table 1[link]) links the anions and cations, generating an R22(8) ring-motif (Fig. 2[link]). The water mol­ecule links adjacent anions through O—H⋯O hydrogen bonds (Table 1[link] and Fig. 3[link]). Weak C—H⋯O contacts (Fig. 3[link] and Table 1[link]) link the components into a two-dimensional network parallel to (001).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯O3 0.82 (1) 2.13 (3) 2.799 (4) 139 (4)
O6—H6A⋯O7 0.82 1.90 2.624 (3) 146
N1A—H1A⋯O3i 0.86 2.00 2.844 (5) 168
O2—H2A⋯O5ii 0.82 (1) 1.99 (2) 2.780 (4) 161 (5)
N8A—H8AA⋯O6Aii 0.86 2.07 2.917 (5) 168
N8A—H8AB⋯O5i 0.86 1.94 2.788 (4) 170
O8—H8⋯O2iii 0.82 1.85 2.616 (3) 155
C6A—H6AB⋯O4iv 0.96 2.44 3.194 (7) 135
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) x+1, y, z; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
The crystal packing of the title mol­ecular salt viewed along the a axis. The hydrogen bonds are shown as dashed lines. H atoms not involving in hydrogen bonds have been omitted for clarity.

Synthesis and crystallization

The title compound was synthesized from the raw materials creatinine and 5-sulfosalicylic acid which were taken in a stoichiometric ratio and dissolved in water at ambient temperature. The solution was stirred for continuously six h to obtain a transparent homogeneous solution. The solution was filtered using Whatmann filter paper and the beaker containing the solution was covered with a perforated polythene cover. The saturated homogeneous solution was allowed to evaporate, yielding good quality crystals suitable for X-ray diffraction after three weeks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The structure was refined as two-component twin with twin law [\overline{1}] 0 0 0 [\overline{1}] 0 0 0 1. The creatinium cation is disordered over two orientations with site occupancies of 0.771 (3) and 0.229 (3). The EADP restraint in SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) was applied for the disordered atoms.

Table 2
Experimental details

Crystal data
Chemical formula C4H7N3O+·C7H5O6S·H2O
Mr 348.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 7.2459 (2), 15.5638 (4), 13.0774 (3)
β (°) 90.100 (1)
V3) 1474.79 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.42
Crystal size (mm) 0.15 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.587, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 22225, 2905, 2798
Rint 0.041
(sin θ/λ)max−1) 0.620
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.129, 1.09
No. of reflections 2905
No. of parameters 245
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.31
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2016 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXT2016 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b) and PLATON (Spek, 2009).

2-Amino-1-methyl-4-oxo-4,5-dihydro-1H-imidazol-3-ium 3-carboxy-4-hydroxybenzenesulfonate monohydrate top
Crystal data top
C4H7N3O+·C7H5O6S·H2OF(000) = 724
Mr = 348.31Dx = 1.569 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 7.2459 (2) ÅCell parameters from 9845 reflections
b = 15.5638 (4) Åθ = 2.2–36.3°
c = 13.0774 (3) ŵ = 2.42 mm1
β = 90.100 (1)°T = 295 K
V = 1474.79 (7) Å3Block, colourless
Z = 40.15 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2798 reflections with I > 2σ(I)
ω and φ scansRint = 0.041
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 72.9°, θmin = 2.8°
Tmin = 0.587, Tmax = 0.754h = 78
22225 measured reflectionsk = 1919
2905 independent reflectionsl = 1516
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.054P)2 + 1.5916P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2905 reflectionsΔρmax = 0.38 e Å3
245 parametersΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.76216 (13)0.74331 (4)0.63421 (5)0.0308 (2)
O21.2464 (5)0.77212 (16)0.70783 (19)0.0483 (6)
O30.9162 (4)0.79601 (15)0.6001 (3)0.0434 (7)
O40.7878 (6)0.71354 (15)0.73693 (17)0.0672 (11)
O50.5909 (4)0.78905 (16)0.6167 (3)0.0525 (8)
O60.7490 (6)0.44174 (15)0.36304 (17)0.0575 (7)
H6A0.7501120.3967630.3956940.086*
O70.7467 (5)0.34602 (13)0.52820 (18)0.0512 (6)
O80.7550 (6)0.41124 (13)0.67992 (17)0.0506 (6)
H80.7726330.3621180.7003990.076*
C10.7584 (5)0.65219 (16)0.55462 (19)0.0269 (5)
C20.7543 (5)0.57105 (16)0.59708 (19)0.0288 (5)
H20.7543830.5649150.6678190.035*
C30.7500 (5)0.49812 (16)0.5351 (2)0.0303 (6)
C40.7492 (7)0.50885 (19)0.4280 (2)0.0369 (6)
C50.7545 (6)0.5911 (2)0.3871 (2)0.0407 (7)
H50.7578490.5978820.3164870.049*
C60.7550 (6)0.66220 (18)0.4484 (2)0.0357 (6)
H60.7529940.7168460.4195900.043*
C70.7485 (7)0.41139 (18)0.5798 (2)0.0363 (6)
N1A1.1347 (5)1.0238 (3)0.3774 (3)0.0284 (7)0.771 (3)
H1A1.1117831.0779900.3752020.034*0.771 (3)
C2A1.0054 (5)0.9613 (3)0.3817 (4)0.0302 (7)0.771 (3)
C3A1.1079 (7)0.8776 (3)0.3811 (4)0.0314 (8)0.771 (3)
H3A1.0594430.8222970.3799790.038*0.771 (3)
N4A1.3000 (7)0.9033 (2)0.3826 (3)0.0235 (7)0.771 (3)
C5A1.3095 (7)0.9879 (3)0.3770 (4)0.0257 (8)0.771 (3)
O6A0.8414 (4)0.9749 (2)0.3856 (3)0.0454 (7)0.771 (3)
C6A1.4533 (7)0.8455 (3)0.3792 (6)0.0456 (14)0.771 (3)
H6AA1.4095850.7874290.3848150.068*0.771 (3)
H6AB1.5175710.8524890.3156730.068*0.771 (3)
H6AC1.5355500.8576970.4349920.068*0.771 (3)
N8A1.4596 (6)1.0336 (2)0.3736 (4)0.0362 (8)0.771 (3)
H8AA1.5655431.0086560.3749920.043*0.771 (3)
H8AB1.4529931.0886360.3699150.043*0.771 (3)
N1B1.359 (2)1.0233 (11)0.3762 (13)0.0284 (7)0.229 (3)
H1B1.3786471.0778070.3734290.034*0.229 (3)
C2B1.5042 (18)0.9616 (9)0.3808 (14)0.0302 (7)0.229 (3)
C3B1.399 (3)0.8786 (14)0.3735 (15)0.0314 (8)0.229 (3)
H3B1.4479220.8234300.3702890.038*0.229 (3)
N4B1.210 (3)0.9018 (9)0.3724 (13)0.0235 (7)0.229 (3)
C5B1.194 (3)0.9897 (11)0.3766 (14)0.0257 (8)0.229 (3)
O6B1.6597 (13)0.9739 (8)0.3906 (12)0.0454 (7)0.229 (3)
C6B1.059 (3)0.8509 (12)0.358 (2)0.0456 (14)0.229 (3)
H6BA1.0959170.7916950.3568640.068*0.229 (3)
H6BB0.9723510.8600180.4121620.068*0.229 (3)
H6BC1.0016450.8651780.2935770.068*0.229 (3)
N8B1.025 (2)1.0332 (8)0.3690 (14)0.0362 (8)0.229 (3)
H8BA1.0233081.0882930.3633350.043*0.229 (3)
H8BB0.9230171.0049410.3699840.043*0.229 (3)
H2A1.340 (4)0.768 (3)0.672 (3)0.054*
H2B1.191 (5)0.789 (3)0.657 (2)0.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0428 (4)0.0216 (3)0.0280 (3)0.0009 (4)0.0022 (5)0.0013 (2)
O20.0439 (15)0.0468 (12)0.0543 (14)0.0027 (15)0.0050 (17)0.0055 (11)
O30.0402 (15)0.0318 (12)0.0583 (18)0.0089 (10)0.0060 (12)0.0053 (12)
O40.142 (3)0.0337 (12)0.0260 (11)0.0063 (18)0.0006 (18)0.0024 (9)
O50.0366 (14)0.0385 (13)0.082 (2)0.0052 (10)0.0110 (16)0.0179 (16)
O60.090 (2)0.0438 (12)0.0386 (12)0.0018 (18)0.007 (2)0.0200 (9)
O70.0671 (17)0.0275 (10)0.0591 (13)0.0055 (14)0.0019 (18)0.0112 (9)
O80.0783 (19)0.0285 (10)0.0449 (12)0.0075 (17)0.013 (2)0.0040 (9)
C10.0286 (14)0.0273 (12)0.0247 (11)0.0052 (15)0.0008 (15)0.0021 (9)
C20.0339 (15)0.0275 (12)0.0248 (11)0.0037 (15)0.0047 (16)0.0015 (9)
C30.0307 (15)0.0262 (12)0.0341 (13)0.0005 (15)0.0032 (17)0.0051 (10)
C40.0410 (17)0.0368 (14)0.0329 (13)0.0015 (18)0.0039 (18)0.0137 (11)
C50.0520 (19)0.0461 (16)0.0239 (12)0.0007 (19)0.002 (2)0.0032 (11)
C60.0460 (18)0.0325 (14)0.0285 (12)0.0022 (18)0.0018 (18)0.0041 (10)
C70.0371 (16)0.0292 (13)0.0424 (14)0.003 (2)0.0048 (19)0.0046 (11)
N1A0.021 (2)0.0292 (17)0.0350 (17)0.0047 (14)0.0027 (18)0.0010 (14)
C2A0.0217 (17)0.0411 (19)0.0278 (16)0.0029 (16)0.0037 (18)0.0009 (14)
C3A0.022 (2)0.039 (2)0.033 (2)0.0025 (19)0.001 (2)0.0029 (17)
N4A0.015 (2)0.0257 (12)0.0300 (16)0.0022 (17)0.0043 (18)0.0005 (11)
C5A0.026 (2)0.0278 (18)0.0236 (15)0.0034 (18)0.003 (2)0.0022 (14)
O6A0.0203 (14)0.0618 (18)0.0543 (17)0.0007 (14)0.0050 (16)0.0023 (14)
C6A0.029 (2)0.029 (2)0.079 (4)0.0078 (19)0.007 (3)0.008 (2)
N8A0.0251 (19)0.0283 (15)0.055 (2)0.0015 (14)0.001 (2)0.0031 (15)
N1B0.021 (2)0.0292 (17)0.0350 (17)0.0047 (14)0.0027 (18)0.0010 (14)
C2B0.0217 (17)0.0411 (19)0.0278 (16)0.0029 (16)0.0037 (18)0.0009 (14)
C3B0.022 (2)0.039 (2)0.033 (2)0.0025 (19)0.001 (2)0.0029 (17)
N4B0.015 (2)0.0257 (12)0.0300 (16)0.0022 (17)0.0043 (18)0.0005 (11)
C5B0.026 (2)0.0278 (18)0.0236 (15)0.0034 (18)0.003 (2)0.0022 (14)
O6B0.0203 (14)0.0618 (18)0.0543 (17)0.0007 (14)0.0050 (16)0.0023 (14)
C6B0.029 (2)0.029 (2)0.079 (4)0.0078 (19)0.007 (3)0.008 (2)
N8B0.0251 (19)0.0283 (15)0.055 (2)0.0015 (14)0.001 (2)0.0031 (15)
Geometric parameters (Å, º) top
S1—O41.433 (2)C3A—N4A1.448 (6)
S1—O51.448 (3)C3A—H3A0.9300
S1—O31.456 (3)N4A—C5A1.321 (6)
S1—C11.759 (3)N4A—C6A1.430 (6)
O2—H2A0.824 (10)C5A—N8A1.300 (7)
O2—H2B0.819 (10)C6A—H6AA0.9600
O6—C41.347 (3)C6A—H6AB0.9600
O6—H6A0.8200C6A—H6AC0.9600
O7—C71.221 (4)N8A—H8AA0.8600
O8—C71.310 (4)N8A—H8AB0.8600
O8—H80.8200N1B—C5B1.31 (3)
C1—C21.380 (3)N1B—C2B1.42 (2)
C1—C61.399 (3)N1B—H1B0.8600
C2—C31.395 (3)C2B—O6B1.150 (17)
C2—H20.9300C2B—C3B1.50 (2)
C3—C41.411 (4)C3B—N4B1.42 (2)
C3—C71.471 (4)C3B—H3B0.9300
C4—C51.387 (4)N4B—C6B1.36 (2)
C5—C61.367 (4)N4B—C5B1.37 (2)
C5—H50.9300C5B—N8B1.40 (2)
C6—H60.9300C6B—H6BA0.9600
N1A—C2A1.351 (6)C6B—H6BB0.9600
N1A—C5A1.384 (6)C6B—H6BC0.9600
N1A—H1A0.8600N8B—H8BA0.8600
C2A—O6A1.208 (5)N8B—H8BB0.8600
C2A—C3A1.499 (6)
O4—S1—O5114.6 (2)C5A—N4A—C6A125.8 (5)
O4—S1—O3111.8 (2)C5A—N4A—C3A108.9 (5)
O5—S1—O3109.37 (15)C6A—N4A—C3A125.0 (4)
O4—S1—C1107.21 (13)N8A—C5A—N4A126.2 (5)
O5—S1—C1106.87 (18)N8A—C5A—N1A123.0 (4)
O3—S1—C1106.50 (16)N4A—C5A—N1A110.8 (5)
H2A—O2—H2B88 (4)N4A—C6A—H6AA109.5
C4—O6—H6A109.5N4A—C6A—H6AB109.5
C7—O8—H8109.5H6AA—C6A—H6AB109.5
C2—C1—C6120.1 (2)N4A—C6A—H6AC109.5
C2—C1—S1120.00 (19)H6AA—C6A—H6AC109.5
C6—C1—S1119.9 (2)H6AB—C6A—H6AC109.5
C1—C2—C3120.8 (2)C5A—N8A—H8AA120.0
C1—C2—H2119.6C5A—N8A—H8AB120.0
C3—C2—H2119.6H8AA—N8A—H8AB120.0
C2—C3—C4118.7 (2)C5B—N1B—C2B113.9 (17)
C2—C3—C7121.1 (2)C5B—N1B—H1B123.0
C4—C3—C7120.2 (2)C2B—N1B—H1B123.0
O6—C4—C5118.1 (3)O6B—C2B—N1B128.0 (16)
O6—C4—C3122.3 (3)O6B—C2B—C3B130.3 (17)
C5—C4—C3119.5 (2)N1B—C2B—C3B101.7 (15)
C6—C5—C4121.4 (3)N4B—C3B—C2B105.8 (19)
C6—C5—H5119.3N4B—C3B—H3B127.1
C4—C5—H5119.3C2B—C3B—H3B127.1
C5—C6—C1119.5 (3)C6B—N4B—C5B121.0 (18)
C5—C6—H6120.3C6B—N4B—C3B129.0 (15)
C1—C6—H6120.3C5B—N4B—C3B109.6 (19)
O7—C7—O8123.4 (3)N1B—C5B—N4B109 (2)
O7—C7—C3123.1 (3)N1B—C5B—N8B127.2 (15)
O8—C7—C3113.5 (2)N4B—C5B—N8B123.6 (17)
C2A—N1A—C5A110.1 (5)N4B—C6B—H6BA109.5
C2A—N1A—H1A124.9N4B—C6B—H6BB109.5
C5A—N1A—H1A124.9H6BA—C6B—H6BB109.5
O6A—C2A—N1A123.9 (4)N4B—C6B—H6BC109.5
O6A—C2A—C3A129.7 (4)H6BA—C6B—H6BC109.5
N1A—C2A—C3A106.4 (4)H6BB—C6B—H6BC109.5
N4A—C3A—C2A103.7 (4)C5B—N8B—H8BA120.0
N4A—C3A—H3A128.2C5B—N8B—H8BB120.0
C2A—C3A—H3A128.2H8BA—N8B—H8BB120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···O30.82 (1)2.13 (3)2.799 (4)139 (4)
O6—H6A···O70.821.902.624 (3)146
N1A—H1A···O3i0.862.002.844 (5)168
O2—H2A···O5ii0.82 (1)1.99 (2)2.780 (4)161 (5)
N8A—H8AA···O6Aii0.862.072.917 (5)168
N8A—H8AB···O5i0.861.942.788 (4)170
O8—H8···O2iii0.821.852.616 (3)155
C6A—H6AB···O4iv0.962.443.194 (7)135
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y, z; (iii) x+2, y1/2, z+3/2; (iv) x+1, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras for the data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGreenhaff, P. L., Casey, A., Short, A. H., Harris, R., Soderlund, K. & Hultman, E. (1993). Clin. Sci. 84, 565–571.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJahubar Ali, A., Athimoolam, S. & Asath Bahadur, S. (2011). Acta Cryst. E67, o2905.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThayanithi, V., Kumar, P. P. & Gunasekaran, B. (2016). IUCrData, 1, x160989.  Google Scholar
First citationWalker, J. B. (1979). Adv. Enzymol. Relat. Areas Mol. Med. 50, 177–242.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]