organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-4-Fluoro-2-[(phenyl­imino)­meth­yl]phenol

CROSSMARK_Color_square_no_text.svg

aPostgraduate Research Department of Physics, Government Arts College (Autonomous), Kumbakonam 612 001, Tamilnadu, India, bPostgraduate Department of Physics, Dharmapuram Gnanambigai College for Women, Mayiladuthurai 609 001, Tamilnadu, India, cPrincipal, Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamilnadu, India, and dPostgraduate Department of Physics, A.D.M. College for Women (Autonomous), Nagapattinam 611 001, Tamilnadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com

Edited by P. C. Healy, Griffith University, Australia (Received 19 November 2017; accepted 20 November 2017; online 24 November 2017)

The title compound, C13H10FNO, is essentially planar (r.m.s. deviation = 0.022 Å) and the dihedral angle between the planes of the two aryl rings is 0.69 (15)°. An intra­molecular O—H⋯N hydrogen bond generates an S(6) ring. The crystal structure features C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

We report here, as part of our ongoing research (Ida Malarselvi et al., 2016[Ida Malarselvi, R., Ramachandra Raja, C., Thiruvalluvar, A., Priscilla, J. & Panneer Selvam, K. (2016). IUCrData, 1, x161595.]), the synthesis and crystal structure (Fig. 1[link]), of the title fluorinated Schiff base compound, synthesized from the condensation reaction of equimolar amounts of 5-fluoro­salicyl­aldehyde and aniline in DMSO. In this structure, the benzene and phenyl rings subtend a dihedral angle of 0.69 (15)°. The mol­ecule has an E conformation about the C=N bond, and the C1—C7=N1—C8 torsion angle is 180.0 (2)°. There is a strong intra­molecular O1—H1⋯N1 hydrogen bond [H⋯N = 1.70 (5) Å], which generates an S(6) ring. The crystal structure features C7—H7⋯O1 hydrogen bonds (see Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.93 2.61 3.440 (3) 149
O1—H1⋯N1 0.99 (4) 1.70 (5) 2.595 (3) 148 (4)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the title compound, with displacement ellipsoids drawn at the 50% probability level. Dashed lines indicate the intra­molecular hydrogen bond.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed down the crystallographic b axis. The hydrogen bonds (see Table 1[link]) are shown as dashed lines.

Yan et al., (2014[Yan, X.-X., Lu, L.-P. & Zhu, M.-L. (2014). Acta Cryst. E70, o853.]) have reported the crystal structure of 4-bromo-2-[(phenyl­imino)­meth­yl]phenol, in which the mol­ecule is essentially planar (r.m.s. deviation = 0.026 Å), similar to our present study (r.m.s. deviation = 0.022 Å).

Synthesis and crystallization

0.35 g (0.0025 mol) of 5-fluoro­salicyl­aldehyde were dissolved in 10 ml of DMSO. To this solution, 0.23 g (0.0025 mol) of aniline were added drop wise with constant stirring for 1 h. During this time, the solution turned deep yellow. On standing for two weeks with slow evaporation of the solvent, orange crystals of the title compound, suitable for X-ray study were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H10FNO
Mr 215.22
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 18.965 (2), 4.7214 (5), 12.2399 (13)
β (°) 107.881 (7)
V3) 1043.0 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.83
Crystal size (mm) 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEX3CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.536, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 10586, 1997, 1069
Rint 0.097
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.173, 1.03
No. of reflections 1997
No. of parameters 150
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.16
Computer programs: APEX3, SAINT and XPREP (Bruker, 2016[Bruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 and SAINT (Bruker, 2016); data reduction: SAINT and XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(E)-4-Fluoro-2-[(phenylimino)methyl]phenol top
Crystal data top
C13H10FNOF(000) = 448
Mr = 215.22Dx = 1.371 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 18.965 (2) ÅCell parameters from 2681 reflections
b = 4.7214 (5) Åθ = 4.9–70.9°
c = 12.2399 (13) ŵ = 0.83 mm1
β = 107.881 (7)°T = 296 K
V = 1043.0 (2) Å3Plate, orange
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Bruker Kappa APEX3 CMOS
diffractometer
1069 reflections with I > 2σ(I)
Radiation source: micro-focus sealed tubeRint = 0.097
ω and φ scanθmax = 71.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 2321
Tmin = 0.536, Tmax = 0.754k = 45
10586 measured reflectionsl = 1415
1997 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0689P)2 + 0.2085P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.173(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.16 e Å3
1997 reflectionsΔρmin = 0.16 e Å3
150 parametersExtinction correction: SHELXL2017 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0042 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms attached to C of (I) were placed in geometrically idealized positions with Csp2—H = 0.93 Å. The hydroxy H atom, H1, is located in a difference Fourier map and freely refined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.31946 (14)0.1990 (6)0.8556 (2)0.0569 (7)
C20.32137 (16)0.1370 (6)0.9681 (2)0.0642 (8)
C30.37148 (17)0.0616 (7)1.0310 (3)0.0742 (9)
H30.3732940.1002041.1063070.089*
C40.41831 (17)0.2017 (7)0.9837 (3)0.0752 (9)
H40.4514820.3361241.0258130.090*
C50.41512 (16)0.1390 (7)0.8726 (3)0.0711 (8)
C60.36730 (16)0.0553 (6)0.8083 (2)0.0664 (8)
H60.3664940.0920550.7332340.080*
C70.26800 (16)0.4054 (6)0.7872 (2)0.0612 (7)
H70.2670620.4367480.7117380.073*
C80.17332 (15)0.7488 (6)0.7606 (2)0.0592 (7)
C90.16766 (17)0.8212 (7)0.6485 (2)0.0777 (9)
H90.1983850.7357040.6118080.093*
C100.11625 (19)1.0209 (7)0.5914 (3)0.0869 (10)
H100.1128281.0695050.5163070.104*
C110.07008 (17)1.1487 (7)0.6439 (3)0.0806 (9)
H110.0351741.2809540.6044220.097*
C120.07608 (18)1.0791 (7)0.7551 (3)0.0796 (9)
H120.0452771.1648040.7915960.096*
C130.12772 (16)0.8821 (7)0.8129 (3)0.0711 (8)
H130.1318200.8383810.8886670.085*
N10.22382 (12)0.5460 (5)0.82746 (17)0.0611 (6)
O10.27583 (12)0.2678 (5)1.01816 (17)0.0817 (7)
F50.46145 (10)0.2803 (4)0.82560 (15)0.0977 (7)
H10.245 (2)0.405 (9)0.961 (4)0.142 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0652 (16)0.0505 (17)0.0541 (14)0.0028 (13)0.0168 (13)0.0012 (12)
C20.0727 (18)0.0631 (19)0.0565 (15)0.0010 (15)0.0195 (14)0.0033 (14)
C30.083 (2)0.076 (2)0.0601 (17)0.0034 (17)0.0173 (16)0.0073 (15)
C40.078 (2)0.065 (2)0.0738 (19)0.0056 (16)0.0101 (16)0.0035 (16)
C50.0707 (19)0.066 (2)0.0771 (19)0.0069 (16)0.0242 (16)0.0088 (16)
C60.0742 (18)0.065 (2)0.0595 (15)0.0016 (15)0.0201 (14)0.0020 (14)
C70.0741 (18)0.0568 (18)0.0554 (15)0.0031 (14)0.0238 (14)0.0010 (13)
C80.0658 (16)0.0495 (17)0.0594 (15)0.0036 (13)0.0151 (14)0.0007 (13)
C90.090 (2)0.080 (2)0.0631 (17)0.0172 (18)0.0228 (16)0.0054 (16)
C100.101 (3)0.084 (3)0.0687 (19)0.016 (2)0.0156 (18)0.0096 (18)
C110.076 (2)0.068 (2)0.088 (2)0.0054 (17)0.0117 (18)0.0079 (18)
C120.074 (2)0.070 (2)0.098 (2)0.0075 (16)0.0313 (18)0.0044 (18)
C130.078 (2)0.067 (2)0.0732 (18)0.0026 (16)0.0313 (16)0.0048 (15)
N10.0709 (15)0.0551 (15)0.0573 (13)0.0004 (11)0.0195 (11)0.0024 (10)
O10.0998 (16)0.0907 (17)0.0631 (12)0.0191 (13)0.0374 (12)0.0105 (11)
F50.0988 (13)0.0962 (15)0.0989 (13)0.0253 (11)0.0317 (11)0.0080 (11)
Geometric parameters (Å, º) top
C1—C61.394 (4)C8—C131.376 (4)
C1—C21.397 (4)C8—C91.386 (4)
C1—C71.450 (4)C8—N11.422 (3)
C2—O11.352 (3)C9—C101.382 (4)
C2—C31.388 (4)C9—H90.9300
C3—C41.370 (4)C10—C111.375 (4)
C3—H30.9300C10—H100.9300
C4—C51.375 (4)C11—C121.371 (4)
C4—H40.9300C11—H110.9300
C5—C61.358 (4)C12—C131.378 (4)
C5—F51.364 (3)C12—H120.9300
C6—H60.9300C13—H130.9300
C7—N11.280 (3)O1—H10.99 (4)
C7—H70.9300
C6—C1—C2119.0 (3)C13—C8—C9118.6 (3)
C6—C1—C7119.7 (2)C13—C8—N1116.7 (2)
C2—C1—C7121.3 (3)C9—C8—N1124.7 (3)
O1—C2—C3118.8 (2)C10—C9—C8119.8 (3)
O1—C2—C1121.6 (3)C10—C9—H9120.1
C3—C2—C1119.6 (3)C8—C9—H9120.1
C4—C3—C2121.0 (3)C11—C10—C9121.0 (3)
C4—C3—H3119.5C11—C10—H10119.5
C2—C3—H3119.5C9—C10—H10119.5
C3—C4—C5118.4 (3)C12—C11—C10119.2 (3)
C3—C4—H4120.8C12—C11—H11120.4
C5—C4—H4120.8C10—C11—H11120.4
C6—C5—F5119.2 (3)C11—C12—C13120.1 (3)
C6—C5—C4122.5 (3)C11—C12—H12120.0
F5—C5—C4118.3 (3)C13—C12—H12120.0
C5—C6—C1119.4 (3)C8—C13—C12121.3 (3)
C5—C6—H6120.3C8—C13—H13119.4
C1—C6—H6120.3C12—C13—H13119.4
N1—C7—C1122.0 (2)C7—N1—C8122.2 (2)
N1—C7—H7119.0C2—O1—H1107 (2)
C1—C7—H7119.0
C6—C1—C2—O1179.4 (3)C6—C1—C7—N1178.9 (3)
C7—C1—C2—O10.5 (4)C2—C1—C7—N12.2 (4)
C6—C1—C2—C31.2 (4)C13—C8—C9—C100.8 (5)
C7—C1—C2—C3179.9 (3)N1—C8—C9—C10179.7 (3)
O1—C2—C3—C4179.4 (3)C8—C9—C10—C110.3 (5)
C1—C2—C3—C41.2 (4)C9—C10—C11—C120.9 (5)
C2—C3—C4—C50.7 (5)C10—C11—C12—C130.3 (5)
C3—C4—C5—C60.2 (5)C9—C8—C13—C121.5 (4)
C3—C4—C5—F5179.5 (3)N1—C8—C13—C12179.1 (3)
F5—C5—C6—C1179.6 (2)C11—C12—C13—C80.9 (5)
C4—C5—C6—C10.2 (5)C1—C7—N1—C8180.0 (2)
C2—C1—C6—C50.7 (4)C13—C8—N1—C7178.8 (3)
C7—C1—C6—C5179.7 (3)C9—C8—N1—C71.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.613.440 (3)149
O1—H1···N10.99 (4)1.70 (5)2.595 (3)148 (4)
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The authors are grateful to the Sophisticated Analytical Instrument Facility (SAIF), IITM, Chennai, Tamilnadu, India, for the single-crystal X-ray diffraction data.

References

First citationBruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIda Malarselvi, R., Ramachandra Raja, C., Thiruvalluvar, A., Priscilla, J. & Panneer Selvam, K. (2016). IUCrData, 1, x161595.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, X.-X., Lu, L.-P. & Zhu, M.-L. (2014). Acta Cryst. E70, o853.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]