organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 3-amino-2-cyano-4-(4-meth­­oxy­phen­yl)-6- methyl­thieno[2,3-b]pyridine-5-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, eChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and fDepartment of Chemistry, Faculty of Science, Sana'a University, Yemen
*Correspondence e-mail: s.mohamed@mmu.ac.uk

Edited by P. C. Healy, Griffith University, Australia (Received 15 November 2017; accepted 15 November 2017; online 28 November 2017)

In the title mol­ecule, C19H17N3O3S, the bicyclic core is planar [maximum deviation = 0.0205 (1) Å] In the crystal, the molecules stack along the a-axis direction through ππ-stacking inter­actions between the bicyclic units with a small alternation in the inter­planar distances along the stack. The stacks are held together by N—H⋯N and C—H⋯O hydrogen bonds. The carboeth­oxy substituent is disordered over several closely spaced sites and was modeled as having two-component disorder [occupancy ratio 0.548 (16):0.452 (16)]. The final refinement was as a two-component twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The spectrum of biological activities of thieno­pyridine derivatives is rather broad and includes anti­viral (Schnute et al., 2007[Schnute, M. E., Anderson, D. J., Brideau, R. J., Ciske, F. L., Collier, S. A., Cudahy, M. M., Eggen, M., Genin, M. J., Hopkins, T. A., Judge, T. M., Kim, E. J., Knechtel, M. L., Nair, S. K., Nieman, J. A., Oien, N. L., Scott, A., Tanis, S. P., Vaillancourt, V. A., Wathen, M. W. & Wieber, J. L. (2007). Bioorg. Med. Chem. Lett. 17, 3349-3353.]; Attaby et al., 2007[Attaby, F. A., Elghandour, A. H. H., Ali, M. A. & Ibrahem, Y. M. (2007). Phosphorus Sulfur Silicon, 182, 695-709.]), anti­diabetic (Bahekar et al. 2007[Bahekar, R. H., Jain, M. R., Jadav, P. A., Prajapati, V. M., Patel, D. N., Gupta, A. A., Sharma, A., Tom, R., Bandyopadhya, D., Modi, H. & Patel, P. R. (2007). Bioorg. Med. Chem. 15, 6782-6795.]), anti­microbial (Abdel-Rahman et al., 2003[Abdel-Rahman, A. E., Bakhite, E. A. & Al-Taifi, E. A. (2003). Pharmazie, 58, 372-377.]; Hussein et al. 2000[Hussein, A. M., Abu-shanab, F. A. & Ishak, E. A. (2000). Phosphorus Sulfur Silicon, 159, 55-68.]), anti-inflammatory (Madhusudana et al., 2012[Madhusudana, K., Shireesha, B., Naidu, V. G., Ramakrishna, S., Narsaiah, B., Rao, A. R. & Diwan, P. V. (2012). Eur. J. Pharmacol. 678, 48-54.]), anti­hypertensive (Ribichini et al., 2007[Ribichini, F., Ferrero, V., Feola, M., Rognoni, A., Brunelleschi, S., Vacca, G. & Vassanelli, C. (2007). J. Interv. Cardiol. 20, 209-213.]), anti­tumor (Hayakawa et al., 2004[Hayakawa, I., Shioya, R., Agatsuma, T., Furukawa, H. & Sugano, Y. (2004). Bioorg. Med. Chem. Lett. 14, 3411-3414.]), and neurotropic activities (Krauze et al., 1999[Krauze, A., Gērmane, S., Eberlin |nE š, O., Šturms, I., Klusā, V. & Duburs, G. (1999). Eur. J. Med. Chem. 34, 301-310.]). As part of our studies in this area, we undertook the synthesis and crystal structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 50% probability ellipsoids. Only one orientation of the disordered ester group is shown.

As expected, the bicyclic unit is planar [maximum deviations of −0.0151 (1) and 0.0205 (1) Å for atoms C1 and C6, respectively] while the dihedral angle between the mean planes of the C1/C2/C3/N3/C4/C7 unit and the C8–C13 ring is 65.71 (17)°. In the crystal, the mol­ecules stack in a head-to-tail fashion along the a-axis direction through ππ-stacking inter­actions between the bicyclic units with the centroid–centroid distances alternating between 3.693 (2) and 3.637 (2) Å along the stack (Fig. 2[link]). The stacks are associated along the a-axis direction by pairwise N2—H2B⋯N1i [symmetry code: (i) −x, −y + 2, −z + 2] hydrogen bonds and along the c-axis direction by pairwise C10—H10⋯O1ii [symmetry code: (ii) −x + 1, −y + 2, −z + 1] hydrogen bonds (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N1i 0.91 2.17 3.030 (4) 159
C10—H10⋯O1ii 0.94 2.46 3.366 (4) 162
C16A—H16D⋯O1iii 0.98 2.63 3.486 (14) 146
C17A—H17E⋯N1iv 0.97 2.56 3.47 (2) 156
Symmetry codes: (i) -x, -y+2, -z+2; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x, -y+1, -z+2.
[Figure 2]
Figure 2
Oblique view of the packing showing two of the ππ-stacks.
[Figure 3]
Figure 3
Oblique view of the inter­molecular inter­actions. C—H⋯O and N—H⋯N hydrogen bonds are shown, respectively, as black and blue dashed lines while the ππ-stacking inter­actions are shown as orange dashed lines.

Synthesis and crystallization

The title compound was prepared by heating equimolar quanti­ties of 5-eth­oxy­carbonyl-3-cyano-6-methyl-4-(4-meth­oxy­phen­yl)pyridine-2(1H)-thione (3.284 g; 10 mmol) and chloro­aceto­nitrile (0.76 g; 10 mmol) in absolute ethanol (30 ml) containing dissolved sodium (0.50 g) under reflux for 20 min. The solid that formed on cooling was collected by filtration and recrystallized from ethanol solution as yellow crystals of the title compound. Yield: 90%, m.p.: 457–458 K.

IR (KBr) cm−1: 3476, 3342 (NH2); 2976 (C—H, aliphatic); 2199 (C≡N); 1729 (C=O); 1H NMR (400 MHz, CDCl3) p.p.m.: 7.27–7.30 (dd, J = 2.4 Hz, 2H, Ar—H), 7.00–7.03 (dd, J = 2.4 Hz, 2H, Ar—H), 4.32 (s, 2H, NH2), 4.01–4.06 (q, J = 7.0 Hz, 2H, OCH2), 3.88 (s, 3H, OCH3), 2.67 (s, 3H, CH3), 0.99–1.03 (t, J = 7.2 Hz, 3H, CH3 of ester); 13C NMR (100 MHz, CDCl3) p.p.m.: 167.5, 161.3, 160.6, 156.3, 149.3, 143.8, 130.0 (CH), 127.6, 125.4, 118.5, 114.7, 114.1 (CH),61.6 (OCH2), 55.4 (OCH3), 23.1 (CH3 at C-6), 13.8 (CH3 of ester group). MS: m/z 367 (M+, 100%), 339 (M±CO, 10%), 322 (M±OEt, 15%), 321 (M± EtOH, 15%). Analysis calculated for C19H17N3O3S (367.1): C, 62.11; H, 4.66; N, 11.44; S, 8.73%. Found: C, 62.00; H, 4.70; N, 11.83; S, 9.02%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The carboeth­oxy substituent is disordered over several closely spaced sites and was modeled as having two-component disorder with the disordered atoms lightly restrained with ISOR instructions [occupancy ratio 0.548 (16):0.452 (16)]. Geometrical restraints were also imposed to make the geometries of the two components comparable. The final refinement was as a two-component twin with a 0.945 (7):0.055 (7) domain ratio.

Table 2
Experimental details

Crystal data
Chemical formula C19H17N3O3S
Mr 367.41
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 225
a, b, c (Å) 7.2713 (2), 11.3575 (3), 12.7769 (4)
α, β, γ (°) 67.004 (1), 79.649 (1), 72.217 (1)
V3) 922.71 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.76
Crystal size (mm) 0.22 × 0.15 × 0.07
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.])
Tmin, Tmax 0.70, 0.89
No. of measured, independent and observed [I > 2σ(I)] reflections 13203, 13203, 8440
Rint 0.039
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.210, 1.05
No. of reflections 13203
No. of parameters 250
No. of restraints 31
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.72, −0.75
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Ethyl 3-amino-2-cyano-4-(4-methoxyphenyl)-6-methylthieno[2,3-b]pyridine-5-carboxylate top
Crystal data top
C19H17N3O3SZ = 2
Mr = 367.41F(000) = 384
Triclinic, P1Dx = 1.322 Mg m3
a = 7.2713 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 11.3575 (3) ÅCell parameters from 7181 reflections
c = 12.7769 (4) Åθ = 6.7–72.3°
α = 67.004 (1)°µ = 1.76 mm1
β = 79.649 (1)°T = 225 K
γ = 72.217 (1)°Plate, yellow
V = 922.71 (5) Å30.22 × 0.15 × 0.07 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
13203 independent reflections
Radiation source: INCOATEC IµS micro–focus source8440 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 10.4167 pixels mm-1θmax = 72.3°, θmin = 3.8°
ω scansh = 88
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 1414
Tmin = 0.70, Tmax = 0.89l = 1515
13203 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: mixed
wR(F2) = 0.210H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0917P)2 + 0.306P]
where P = (Fo2 + 2Fc2)/3
13203 reflections(Δ/σ)max = 0.002
250 parametersΔρmax = 0.72 e Å3
31 restraintsΔρmin = 0.75 e Å3
Special details top

Experimental. Analysis of 887 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the triclinic system and to be twinned by a 180° rotation about the b* axis. The raw data were processed using the multi- component version of SAINT under control of the two-component orientation file generated by CELL_NOW.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The carboethoxy substituent is disordered over several closely spaced sites and was modeled as a 2-component disorder with the disordered atoms lightly restrained with ISOR instructions. Geometrical restraints were also imposed to make the geometries of the two components comparable. The final refinement was as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.17612 (11)0.52232 (7)1.16443 (7)0.0422 (3)
O10.3137 (5)0.9605 (3)0.4124 (2)0.0686 (8)
O20.5748 (13)0.391 (2)0.7012 (18)0.063 (4)0.452 (16)
O30.280 (3)0.367 (5)0.708 (2)0.0726 (11)0.452 (16)
O2A0.5864 (11)0.3522 (19)0.7172 (15)0.063 (4)0.548 (16)
O3A0.276 (2)0.364 (4)0.714 (2)0.0726 (11)0.548 (16)
N10.0048 (6)0.8833 (3)1.1436 (3)0.0732 (10)
N20.1236 (5)0.8287 (3)0.8772 (3)0.0589 (8)
H2A0.17750.84390.80460.071*
H2B0.09030.90560.89090.071*
N30.3041 (4)0.3476 (2)1.0592 (2)0.0395 (6)
C10.2904 (4)0.5543 (3)0.8421 (3)0.0364 (6)
C20.3499 (4)0.4209 (3)0.8549 (3)0.0383 (7)
C30.3555 (4)0.3206 (3)0.9638 (3)0.0398 (7)
C40.2451 (4)0.4757 (3)1.0464 (3)0.0355 (6)
C50.1273 (4)0.6884 (3)1.0750 (3)0.0411 (7)
C60.1604 (4)0.7082 (3)0.9608 (3)0.0391 (7)
C70.2347 (4)0.5831 (3)0.9426 (2)0.0346 (6)
C80.2925 (4)0.6600 (3)0.7277 (3)0.0391 (7)
C90.4199 (5)0.7398 (3)0.6993 (3)0.0471 (8)
H90.50540.72550.75270.056*
C100.4226 (6)0.8388 (3)0.5946 (3)0.0520 (8)
H100.50850.89220.57730.062*
C110.2981 (6)0.8604 (3)0.5139 (3)0.0510 (8)
C120.1734 (6)0.7819 (4)0.5398 (3)0.0537 (9)
H120.08960.79550.48570.064*
C130.1712 (5)0.6822 (3)0.6461 (3)0.0481 (8)
H130.08560.62870.66300.058*
C140.1925 (8)0.9851 (6)0.3254 (4)0.0799 (13)
H14A0.21870.90600.30710.120*
H14B0.21901.05740.25780.120*
H14C0.05771.00850.35240.120*
C150.4197 (5)0.3826 (3)0.7514 (3)0.0453 (7)
C160.319 (2)0.3661 (19)0.5911 (15)0.075 (3)0.452 (16)
H16A0.36790.44210.54060.090*0.452 (16)
H16B0.41620.28490.59010.090*0.452 (16)
C170.154 (3)0.372 (3)0.5549 (19)0.122 (5)0.452 (16)
H17A0.17700.37140.47790.183*0.452 (16)
H17B0.10630.29630.60490.183*0.452 (16)
H17C0.05830.45300.55550.183*0.452 (16)
C16A0.3287 (18)0.3101 (15)0.6216 (13)0.075 (3)0.548 (16)
H16C0.37990.37400.55480.090*0.548 (16)
H16D0.43380.22900.64590.090*0.548 (16)
C17A0.188 (2)0.282 (2)0.5890 (16)0.122 (5)0.548 (16)
H17D0.23940.24710.52830.183*0.548 (16)
H17E0.13850.21590.65330.183*0.548 (16)
H17F0.08440.36150.56190.183*0.548 (16)
C180.4230 (6)0.1760 (3)0.9794 (3)0.0541 (9)
H18A0.48650.12651.05010.081*
H18B0.51350.16450.91620.081*
H18C0.31260.14370.98190.081*
C190.0588 (5)0.7929 (3)1.1170 (3)0.0493 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0488 (5)0.0409 (4)0.0407 (5)0.0131 (3)0.0006 (3)0.0187 (3)
O10.097 (2)0.0602 (15)0.0456 (15)0.0313 (14)0.0267 (14)0.0022 (12)
O20.0553 (18)0.080 (11)0.073 (5)0.018 (3)0.004 (2)0.052 (7)
O30.0555 (16)0.114 (3)0.085 (3)0.0209 (15)0.0008 (14)0.076 (3)
O2A0.0553 (18)0.080 (11)0.073 (5)0.018 (3)0.004 (2)0.052 (7)
O3A0.0555 (16)0.114 (3)0.085 (3)0.0209 (15)0.0008 (14)0.076 (3)
N10.104 (3)0.0515 (18)0.070 (2)0.0031 (17)0.0112 (19)0.0381 (17)
N20.092 (2)0.0312 (13)0.0486 (17)0.0031 (13)0.0180 (15)0.0174 (12)
N30.0427 (13)0.0327 (12)0.0458 (15)0.0105 (9)0.0064 (11)0.0148 (11)
C10.0378 (14)0.0341 (14)0.0409 (17)0.0071 (10)0.0095 (12)0.0161 (12)
C20.0399 (14)0.0359 (14)0.0456 (18)0.0081 (11)0.0073 (12)0.0209 (13)
C30.0403 (15)0.0334 (14)0.0505 (19)0.0090 (11)0.0072 (13)0.0189 (13)
C40.0323 (13)0.0362 (14)0.0431 (17)0.0094 (10)0.0061 (11)0.0177 (13)
C50.0417 (15)0.0393 (15)0.0480 (18)0.0065 (11)0.0056 (13)0.0236 (14)
C60.0410 (15)0.0334 (14)0.0467 (18)0.0035 (11)0.0113 (12)0.0193 (13)
C70.0354 (14)0.0307 (13)0.0409 (16)0.0055 (10)0.0093 (12)0.0156 (12)
C80.0476 (16)0.0341 (14)0.0388 (17)0.0078 (11)0.0084 (12)0.0163 (13)
C90.0596 (19)0.0383 (15)0.0479 (19)0.0138 (13)0.0211 (15)0.0121 (14)
C100.067 (2)0.0438 (17)0.049 (2)0.0234 (15)0.0174 (16)0.0078 (15)
C110.068 (2)0.0427 (16)0.043 (2)0.0153 (14)0.0152 (16)0.0105 (15)
C120.062 (2)0.060 (2)0.0431 (19)0.0180 (16)0.0187 (16)0.0156 (16)
C130.0539 (18)0.0524 (18)0.0455 (19)0.0200 (14)0.0100 (14)0.0181 (16)
C140.093 (3)0.091 (3)0.047 (2)0.025 (3)0.028 (2)0.005 (2)
C150.0479 (18)0.0439 (16)0.053 (2)0.0080 (12)0.0068 (14)0.0283 (15)
C160.082 (3)0.095 (7)0.077 (6)0.019 (5)0.007 (3)0.063 (6)
C170.131 (7)0.178 (12)0.111 (8)0.054 (9)0.007 (5)0.098 (10)
C16A0.082 (3)0.095 (7)0.077 (6)0.019 (5)0.007 (3)0.063 (6)
C17A0.131 (7)0.178 (12)0.111 (8)0.054 (9)0.007 (5)0.098 (10)
C180.070 (2)0.0325 (15)0.060 (2)0.0087 (14)0.0082 (17)0.0188 (15)
C190.0590 (19)0.0446 (17)0.048 (2)0.0074 (14)0.0069 (15)0.0242 (15)
Geometric parameters (Å, º) top
S1—C41.731 (3)C8—C91.395 (5)
S1—C51.744 (3)C9—C101.372 (5)
O1—C111.364 (4)C9—H90.9400
O1—C141.431 (5)C10—C111.395 (5)
O2—C151.204 (6)C10—H100.9400
O3—C151.321 (5)C11—C121.372 (5)
O3—C161.479 (10)C12—C131.388 (5)
O2A—C151.204 (6)C12—H120.9400
O3A—C151.320 (5)C13—H130.9400
O3A—C16A1.479 (10)C14—H14A0.9700
N1—C191.142 (5)C14—H14B0.9700
N2—C61.350 (4)C14—H14C0.9700
N2—H2A0.9099C16—C171.333 (11)
N2—H2B0.9100C16—H16A0.9800
N3—C31.333 (4)C16—H16B0.9800
N3—C41.336 (4)C17—H17A0.9700
C1—C21.393 (4)C17—H17B0.9700
C1—C71.407 (4)C17—H17C0.9700
C1—C81.487 (4)C16A—C17A1.334 (11)
C2—C31.410 (5)C16A—H16C0.9800
C2—C151.506 (4)C16A—H16D0.9800
C3—C181.505 (4)C17A—H17D0.9700
C4—C71.403 (4)C17A—H17E0.9700
C5—C61.373 (5)C17A—H17F0.9700
C5—C191.409 (4)C18—H18A0.9700
C6—C71.453 (4)C18—H18B0.9700
C8—C131.385 (4)C18—H18C0.9700
C4—S1—C589.80 (14)C8—C13—H13119.3
C11—O1—C14117.8 (3)C12—C13—H13119.3
C15—O3—C16116.9 (13)O1—C14—H14A109.5
C15—O3A—C16A116.4 (11)O1—C14—H14B109.5
C6—N2—H2A123.3H14A—C14—H14B109.5
C6—N2—H2B122.9O1—C14—H14C109.5
H2A—N2—H2B108.8H14A—C14—H14C109.5
C3—N3—C4116.4 (3)H14B—C14—H14C109.5
C2—C1—C7116.7 (3)O2A—C15—O3A123.2 (7)
C2—C1—C8121.1 (3)O2—C15—O3123.0 (8)
C7—C1—C8122.1 (2)O2—C15—C2122.7 (10)
C1—C2—C3121.1 (3)O2A—C15—C2125.5 (8)
C1—C2—C15119.6 (3)O3A—C15—C2110.3 (7)
C3—C2—C15119.2 (3)O3—C15—C2112.8 (8)
N3—C3—C2122.3 (3)C17—C16—O3108.6 (13)
N3—C3—C18115.9 (3)C17—C16—H16A110.0
C2—C3—C18121.8 (3)O3—C16—H16A110.0
N3—C4—C7126.0 (3)C17—C16—H16B110.0
N3—C4—S1120.4 (2)O3—C16—H16B110.0
C7—C4—S1113.6 (2)H16A—C16—H16B108.3
C6—C5—C19123.1 (3)C16—C17—H17A109.5
C6—C5—S1114.4 (2)C16—C17—H17B109.5
C19—C5—S1122.5 (3)H17A—C17—H17B109.5
N2—C6—C5124.0 (3)C16—C17—H17C109.5
N2—C6—C7124.9 (3)H17A—C17—H17C109.5
C5—C6—C7111.2 (3)H17B—C17—H17C109.5
C4—C7—C1117.5 (2)C17A—C16A—O3A117.0 (11)
C4—C7—C6111.0 (3)C17A—C16A—H16C108.1
C1—C7—C6131.5 (3)O3A—C16A—H16C108.1
C13—C8—C9117.9 (3)C17A—C16A—H16D108.1
C13—C8—C1121.9 (3)O3A—C16A—H16D108.1
C9—C8—C1120.2 (3)H16C—C16A—H16D107.3
C10—C9—C8121.2 (3)C16A—C17A—H17D109.5
C10—C9—H9119.4C16A—C17A—H17E109.5
C8—C9—H9119.4H17D—C17A—H17E109.5
C9—C10—C11120.1 (3)C16A—C17A—H17F109.5
C9—C10—H10119.9H17D—C17A—H17F109.5
C11—C10—H10119.9H17E—C17A—H17F109.5
O1—C11—C12125.0 (3)C3—C18—H18A109.5
O1—C11—C10115.4 (3)C3—C18—H18B109.5
C12—C11—C10119.6 (3)H18A—C18—H18B109.5
C11—C12—C13119.9 (3)C3—C18—H18C109.5
C11—C12—H12120.0H18A—C18—H18C109.5
C13—C12—H12120.0H18B—C18—H18C109.5
C8—C13—C12121.4 (3)N1—C19—C5175.4 (4)
C7—C1—C2—C30.7 (4)C5—C6—C7—C1179.3 (3)
C8—C1—C2—C3177.3 (3)C2—C1—C8—C1366.5 (4)
C7—C1—C2—C15177.4 (3)C7—C1—C8—C13115.6 (3)
C8—C1—C2—C150.7 (4)C2—C1—C8—C9113.1 (3)
C4—N3—C3—C20.5 (4)C7—C1—C8—C964.9 (4)
C4—N3—C3—C18179.6 (3)C13—C8—C9—C101.2 (5)
C1—C2—C3—N30.3 (5)C1—C8—C9—C10179.3 (3)
C15—C2—C3—N3176.9 (3)C8—C9—C10—C110.7 (6)
C1—C2—C3—C18178.8 (3)C14—O1—C11—C120.7 (6)
C15—C2—C3—C182.1 (4)C14—O1—C11—C10178.6 (4)
C3—N3—C4—C70.8 (4)C9—C10—C11—O1179.4 (3)
C3—N3—C4—S1179.6 (2)C9—C10—C11—C120.1 (6)
C5—S1—C4—N3179.9 (3)O1—C11—C12—C13179.6 (4)
C5—S1—C4—C71.1 (2)C10—C11—C12—C130.4 (6)
C4—S1—C5—C60.3 (2)C9—C8—C13—C121.0 (5)
C4—S1—C5—C19179.9 (3)C1—C8—C13—C12179.5 (3)
C19—C5—C6—N22.9 (5)C11—C12—C13—C80.2 (6)
S1—C5—C6—N2176.9 (3)C16A—O3A—C15—O2A3 (4)
C19—C5—C6—C7178.6 (3)C16A—O3A—C15—C2173 (2)
S1—C5—C6—C71.6 (3)C16—O3—C15—O22 (4)
N3—C4—C7—C10.4 (4)C16—O3—C15—C2164 (2)
S1—C4—C7—C1179.3 (2)C1—C2—C15—O273.6 (15)
N3—C4—C7—C6178.9 (3)C3—C2—C15—O2103.2 (15)
S1—C4—C7—C62.2 (3)C1—C2—C15—O2A96.1 (12)
C2—C1—C7—C40.4 (4)C3—C2—C15—O2A80.6 (12)
C8—C1—C7—C4177.6 (3)C1—C2—C15—O3A94.9 (19)
C2—C1—C7—C6177.7 (3)C3—C2—C15—O3A88.4 (19)
C8—C1—C7—C64.2 (5)C1—C2—C15—O393 (2)
N2—C6—C7—C4176.0 (3)C3—C2—C15—O391 (2)
C5—C6—C7—C42.4 (4)C15—O3—C16—C17170 (3)
N2—C6—C7—C12.2 (5)C15—O3A—C16A—C17A175 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N1i0.912.173.030 (4)159
C10—H10···O1ii0.942.463.366 (4)162
C16A—H16D···O1iii0.982.633.486 (14)146
C17A—H17E···N1iv0.972.563.47 (2)156
Symmetry codes: (i) x, y+2, z+2; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1, z+2.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAbdel-Rahman, A. E., Bakhite, E. A. & Al-Taifi, E. A. (2003). Pharmazie, 58, 372–377.  Web of Science PubMed CAS Google Scholar
First citationAttaby, F. A., Elghandour, A. H. H., Ali, M. A. & Ibrahem, Y. M. (2007). Phosphorus Sulfur Silicon, 182, 695–709.  Web of Science CrossRef CAS Google Scholar
First citationBahekar, R. H., Jain, M. R., Jadav, P. A., Prajapati, V. M., Patel, D. N., Gupta, A. A., Sharma, A., Tom, R., Bandyopadhya, D., Modi, H. & Patel, P. R. (2007). Bioorg. Med. Chem. 15, 6782–6795.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHayakawa, I., Shioya, R., Agatsuma, T., Furukawa, H. & Sugano, Y. (2004). Bioorg. Med. Chem. Lett. 14, 3411–3414.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHussein, A. M., Abu-shanab, F. A. & Ishak, E. A. (2000). Phosphorus Sulfur Silicon, 159, 55–68.  Web of Science CrossRef CAS Google Scholar
First citationKrauze, A., Gērmane, S., Eberlin |nE š, O., Šturms, I., Klusā, V. & Duburs, G. (1999). Eur. J. Med. Chem. 34, 301–310.  Google Scholar
First citationMadhusudana, K., Shireesha, B., Naidu, V. G., Ramakrishna, S., Narsaiah, B., Rao, A. R. & Diwan, P. V. (2012). Eur. J. Pharmacol. 678, 48–54.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRibichini, F., Ferrero, V., Feola, M., Rognoni, A., Brunelleschi, S., Vacca, G. & Vassanelli, C. (2007). J. Interv. Cardiol. 20, 209–213.  CrossRef PubMed Google Scholar
First citationSchnute, M. E., Anderson, D. J., Brideau, R. J., Ciske, F. L., Collier, S. A., Cudahy, M. M., Eggen, M., Genin, M. J., Hopkins, T. A., Judge, T. M., Kim, E. J., Knechtel, M. L., Nair, S. K., Nieman, J. A., Oien, N. L., Scott, A., Tanis, S. P., Vaillancourt, V. A., Wathen, M. W. & Wieber, J. L. (2007). Bioorg. Med. Chem. Lett. 17, 3349–3353.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]