organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-N-{3-[(m-Tolyl­imino)­meth­yl]pyridin-2-yl}pivalamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey
*Correspondence e-mail: atalays@omu.edu.tr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 November 2017; accepted 27 November 2017; online 30 November 2017)

In the title compound, C18H21N3O, the dihedral angle between the pyridine and benzene rings is 30.53 (7)° and the C—C=N—C torsion angle is −170.6 (2)°. An intra­molecular N—H⋯N hydrogen bond generates an S(6) ring. In the crystal, very weak C—H⋯O hydrogen bonds link the mol­ecules into C(8) [101] chains. The tert-butyl methyl groups are disordered over two sets of sites in a 0.783 (4):0.217 (4) ratio.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Schiff bases were first reported by Hugo Schiff in 1864[Schiff, H. (1864). Annalen 131, 118-119.]. As part of our studies in this area, we herein report the synthesis and structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure, showing 50% probability displacement ellipsoids. Both orientations of the disordered tert-butyl group are shown.

The dihedral angle between the pyridine (N2/C9–C13) and benzene (C2–C7) ring systems is 30.53 (7)°. The mol­ecular structure features an intra­molecular N—H⋯N hydrogen bond, which generates an S(6) ring. The C—N bond distances of the imino-group atoms [C6—N1 = 1.420 (3) Å and C8=N1 = 1.273 (3) Å] are consistent with those in related structures such as 2,4-di­chloro-N-[(E)-(5-nitro­thio­phen-2-yl) methyl­idene]aniline (Köysal et al., 2016[Köysal, Y., Bülbül, H., Gümüş, S., Ağar, E. & Soylu, M. S. (2016). Acta Cryst. E72, 1187-1189.]).

In the crystal, weak C11—H11⋯O1 hydrogen bonds (Table 1[link], Fig. 2[link]) link the mol­ecules into [101] chains.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N1 0.86 (3) 2.00 (3) 2.744 (3) 145 (3)
C11—H11⋯O1i 0.93 2.61 3.404 (4) 144
Symmetry code: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The packing, viewed down [100], showing the hydrogen-bonding inter­actions (dashed lines).

Synthesis and crystallization

Solutions of N-(5-formyl­pyridin-2-yl)pivalamide (0.020 g, 0.96 mmol) in 20 ml ethanol and o-toluidine (0.0107 g, 0.90 mmol) in 20 ml ethanol were mixed and stirred for 1 h under reflux. Colourless needles were recovered upon slow evaporation of the solvent (yield 60%; m.p 457–459 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H21N3O
Mr 295.38
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 5.572 (3), 24.9671 (11), 12.2380 (5)
β (°) 106.529 (3)
V3) 1632.1 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.51 × 0.21 × 0.01
 
Data collection
Diffractometer STOE IPDS 2
Absorption correction Integration X-RED32 (Stoe & Cie, 2002[Stoe and Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.969, 0.993
No. of measured, independent and observed [I > 2σ(I)] reflections 19913, 2957, 1820
Rint 0.088
(sin θ/λ)max−1) 0.600
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.151, 1.02
No. of reflections 2957
No. of parameters 237
No. of restraints 127
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.24
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe and Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT2016/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2016/6 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

(E)-N-{3-[(m-Tolylimino)methyl]pyridin-2-yl}pivalamide top
Crystal data top
C18H21N3OF(000) = 632
Mr = 295.38Dx = 1.202 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.572 (3) ÅCell parameters from 16183 reflections
b = 24.9671 (11) Åθ = 1.6–26.5°
c = 12.2380 (5) ŵ = 0.08 mm1
β = 106.529 (3)°T = 293 K
V = 1632.1 (7) Å3Needle, colorless
Z = 40.51 × 0.21 × 0.01 mm
Data collection top
STOE IPDS 2
diffractometer
2957 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1820 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.088
w scansθmax = 25.3°, θmin = 1.6°
Absorption correction: integration
X-RED32 (Stoe & Cie, 2002)
h = 66
Tmin = 0.969, Tmax = 0.993k = 2929
19913 measured reflectionsl = 1414
Refinement top
Refinement on F2127 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.1577P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2957 reflectionsΔρmax = 0.21 e Å3
237 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H3 and H11 atoms bonded to N3 and C11 were freely refined. All other H atoms were positioned geometrically and rifined using a riding model, with C—H distances of 0.93 Å and methyl C—H distances 0.96 Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0148 (4)0.34395 (8)0.93073 (15)0.0765 (7)
N10.0847 (4)0.33938 (9)0.53592 (17)0.0543 (6)
N20.3301 (4)0.28489 (9)0.76396 (18)0.0582 (6)
N30.0212 (5)0.34425 (9)0.74136 (19)0.0563 (6)
C10.7176 (6)0.45364 (12)0.4428 (3)0.0762 (9)
H1A0.6612090.4897160.4470200.114*
H1B0.8141250.4519610.3892290.114*
H1C0.8194110.4426120.5165640.114*
C20.4947 (5)0.41701 (11)0.4044 (2)0.0596 (7)
C30.3744 (7)0.40961 (13)0.2903 (3)0.0732 (9)
H3A0.4365550.4262820.2359990.088*
C40.1643 (7)0.37802 (13)0.2552 (2)0.0734 (9)
H4A0.0861890.3736190.1777450.088*
C50.0679 (6)0.35273 (11)0.3341 (2)0.0625 (7)
H50.0749620.3316390.3099210.075*
C60.1859 (5)0.35905 (10)0.4495 (2)0.0533 (7)
C70.3986 (5)0.39123 (11)0.4825 (2)0.0572 (7)
H70.4785150.3954980.5598100.069*
C80.0425 (5)0.29625 (11)0.5208 (2)0.0560 (7)
H80.0452670.2756290.4571610.067*
C90.1845 (5)0.27694 (10)0.5967 (2)0.0516 (6)
C100.3483 (6)0.23469 (11)0.5595 (2)0.0612 (8)
H100.3540120.2173900.4915120.073*
C110.5023 (6)0.21830 (12)0.6229 (2)0.0659 (8)
H110.6142290.1901840.5984420.079*
C120.4870 (5)0.24440 (11)0.7229 (2)0.0631 (8)
H120.5927030.2332520.7651700.076*
C130.1813 (5)0.30095 (9)0.7022 (2)0.0491 (6)
C140.0607 (5)0.36424 (10)0.8489 (2)0.0525 (6)
C150.2151 (5)0.41602 (10)0.8613 (2)0.0571 (7)
C16A0.0395 (9)0.46332 (15)0.8459 (7)0.1140 (19)0.783 (4)
H16A0.1298580.4956530.8419310.171*0.783 (4)
H16B0.0292050.4653120.9094030.171*0.783 (4)
H16C0.0936340.4590380.7767410.171*0.783 (4)
C17A0.4209 (10)0.4148 (2)0.9742 (4)0.115 (2)0.783 (4)
H17A0.5226500.3834970.9770200.172*0.783 (4)
H17B0.3466850.4137981.0360130.172*0.783 (4)
H17C0.5229160.4462610.9807000.172*0.783 (4)
C18A0.3581 (8)0.42136 (18)0.7721 (4)0.0810 (13)0.783 (4)
H18A0.4641120.4523710.7886540.122*0.783 (4)
H18B0.2412030.4250710.6978040.122*0.783 (4)
H18C0.4586260.3899820.7737000.122*0.783 (4)
C16B0.090 (3)0.4532 (5)0.7612 (13)0.094 (4)0.217 (4)
H16D0.0774790.4610390.7623920.141*0.217 (4)
H16E0.1841570.4858690.7679650.141*0.217 (4)
H16F0.0866200.4358230.6907360.141*0.217 (4)
C17B0.171 (4)0.4469 (5)0.9637 (13)0.088 (4)0.217 (4)
H17D0.2272350.4832300.9626480.132*0.217 (4)
H17E0.2634940.4300121.0334580.132*0.217 (4)
H17F0.0039130.4466460.9583900.132*0.217 (4)
C18B0.4808 (15)0.4025 (5)0.8628 (18)0.101 (4)0.217 (4)
H18D0.4883360.3659880.8394950.151*0.217 (4)
H18E0.5898830.4071750.9385810.151*0.217 (4)
H18F0.5328140.4257950.8114150.151*0.217 (4)
H30.044 (5)0.3550 (11)0.690 (2)0.062 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0948 (16)0.0850 (14)0.0462 (11)0.0347 (12)0.0143 (10)0.0012 (10)
N10.0632 (15)0.0538 (14)0.0484 (12)0.0040 (12)0.0196 (11)0.0008 (10)
N20.0647 (15)0.0543 (13)0.0571 (13)0.0130 (12)0.0200 (11)0.0020 (10)
N30.0737 (16)0.0524 (13)0.0455 (12)0.0199 (12)0.0214 (11)0.0067 (10)
C10.079 (2)0.068 (2)0.091 (2)0.0003 (17)0.0400 (18)0.0070 (16)
C20.0664 (19)0.0541 (16)0.0658 (18)0.0112 (14)0.0309 (15)0.0055 (13)
C30.095 (3)0.073 (2)0.0622 (19)0.0041 (19)0.0403 (18)0.0064 (15)
C40.097 (2)0.080 (2)0.0483 (16)0.007 (2)0.0279 (16)0.0018 (15)
C50.0720 (19)0.0660 (17)0.0506 (16)0.0018 (15)0.0191 (14)0.0040 (13)
C60.0647 (17)0.0504 (15)0.0492 (15)0.0058 (14)0.0233 (13)0.0014 (12)
C70.0660 (18)0.0557 (16)0.0523 (15)0.0079 (14)0.0208 (14)0.0042 (12)
C80.0698 (19)0.0518 (16)0.0450 (14)0.0023 (14)0.0142 (13)0.0038 (12)
C90.0598 (17)0.0430 (14)0.0482 (14)0.0008 (12)0.0095 (12)0.0009 (11)
C100.078 (2)0.0486 (16)0.0513 (15)0.0087 (14)0.0096 (14)0.0065 (12)
C110.070 (2)0.0563 (17)0.0643 (18)0.0137 (15)0.0085 (15)0.0027 (14)
C120.0618 (18)0.0599 (17)0.0679 (18)0.0120 (15)0.0189 (15)0.0008 (14)
C130.0560 (16)0.0448 (14)0.0447 (13)0.0033 (12)0.0113 (12)0.0027 (11)
C140.0636 (17)0.0497 (14)0.0432 (14)0.0042 (12)0.0136 (12)0.0010 (11)
C150.0727 (18)0.0482 (14)0.0516 (14)0.0143 (13)0.0195 (13)0.0057 (11)
C16A0.096 (3)0.066 (3)0.192 (6)0.004 (2)0.059 (4)0.023 (3)
C17A0.134 (4)0.115 (4)0.069 (3)0.072 (3)0.015 (3)0.010 (3)
C18A0.080 (3)0.082 (3)0.086 (3)0.035 (2)0.032 (2)0.012 (2)
C16B0.121 (8)0.050 (6)0.102 (7)0.023 (6)0.015 (7)0.004 (6)
C17B0.121 (8)0.066 (7)0.090 (6)0.053 (7)0.049 (6)0.034 (5)
C18B0.088 (6)0.106 (8)0.107 (9)0.022 (6)0.025 (6)0.012 (7)
Geometric parameters (Å, º) top
O1—C141.213 (3)C11—C121.368 (4)
N1—C81.273 (3)C11—H110.9300
N1—C61.420 (3)C12—H120.9300
N2—C131.333 (3)C14—C151.536 (4)
N2—C121.338 (3)C15—C16A1.511 (4)
N3—C141.359 (3)C15—C18B1.513 (7)
N3—C131.397 (3)C15—C17A1.524 (4)
N3—H30.86 (3)C15—C18A1.530 (4)
C1—C21.506 (4)C15—C16B1.536 (7)
C1—H1A0.9600C15—C17B1.549 (6)
C1—H1B0.9600C16A—H16A0.9600
C1—H1C0.9600C16A—H16B0.9600
C2—C31.380 (4)C16A—H16C0.9600
C2—C71.380 (4)C17A—H17A0.9600
C3—C41.375 (4)C17A—H17B0.9600
C3—H3A0.9300C17A—H17C0.9600
C4—C51.384 (4)C18A—H18A0.9600
C4—H4A0.9300C18A—H18B0.9600
C5—C61.387 (4)C18A—H18C0.9600
C5—H50.9300C16B—H16D0.9600
C6—C71.393 (4)C16B—H16E0.9600
C7—H70.9300C16B—H16F0.9600
C8—C91.462 (4)C17B—H17D0.9600
C8—H80.9300C17B—H17E0.9600
C9—C101.384 (4)C17B—H17F0.9600
C9—C131.419 (3)C18B—H18D0.9600
C10—C111.373 (4)C18B—H18E0.9600
C10—H100.9300C18B—H18F0.9600
C8—N1—C6120.4 (2)N3—C14—C15115.4 (2)
C13—N2—C12117.4 (2)C16A—C15—C17A115.0 (4)
C14—N3—C13128.5 (2)C16A—C15—C18A107.1 (4)
C14—N3—H3120.2 (19)C17A—C15—C18A103.8 (3)
C13—N3—H3110.7 (18)C18B—C15—C16B111.3 (11)
C2—C1—H1A109.5C16A—C15—C14108.7 (3)
C2—C1—H1B109.5C18B—C15—C14109.4 (5)
H1A—C1—H1B109.5C17A—C15—C14109.1 (2)
C2—C1—H1C109.5C18A—C15—C14113.2 (2)
H1A—C1—H1C109.5C16B—C15—C14108.4 (5)
H1B—C1—H1C109.5C18B—C15—C17B118.7 (10)
C3—C2—C7117.8 (3)C16B—C15—C17B101.8 (11)
C3—C2—C1121.1 (3)C14—C15—C17B106.6 (4)
C7—C2—C1121.0 (3)C15—C16A—H16A109.5
C4—C3—C2121.2 (3)C15—C16A—H16B109.5
C4—C3—H3A119.4H16A—C16A—H16B109.5
C2—C3—H3A119.4C15—C16A—H16C109.5
C3—C4—C5120.6 (3)H16A—C16A—H16C109.5
C3—C4—H4A119.7H16B—C16A—H16C109.5
C5—C4—H4A119.7C15—C17A—H17A109.5
C4—C5—C6119.6 (3)C15—C17A—H17B109.5
C4—C5—H5120.2H17A—C17A—H17B109.5
C6—C5—H5120.2C15—C17A—H17C109.5
C5—C6—C7118.6 (2)H17A—C17A—H17C109.5
C5—C6—N1123.0 (3)H17B—C17A—H17C109.5
C7—C6—N1118.0 (2)C15—C18A—H18A109.5
C2—C7—C6122.3 (3)C15—C18A—H18B109.5
C2—C7—H7118.9H18A—C18A—H18B109.5
C6—C7—H7118.9C15—C18A—H18C109.5
N1—C8—C9124.5 (2)H18A—C18A—H18C109.5
N1—C8—H8117.8H18B—C18A—H18C109.5
C9—C8—H8117.8C15—C16B—H16D109.5
C10—C9—C13117.2 (2)C15—C16B—H16E109.5
C10—C9—C8117.9 (2)H16D—C16B—H16E109.5
C13—C9—C8124.7 (2)C15—C16B—H16F109.5
C11—C10—C9120.1 (3)H16D—C16B—H16F109.5
C11—C10—H10120.0H16E—C16B—H16F109.5
C9—C10—H10120.0C15—C17B—H17D109.5
C12—C11—C10118.3 (3)C15—C17B—H17E109.5
C12—C11—H11120.9H17D—C17B—H17E109.5
C10—C11—H11120.9C15—C17B—H17F109.5
N2—C12—C11124.3 (3)H17D—C17B—H17F109.5
N2—C12—H12117.8H17E—C17B—H17F109.5
C11—C12—H12117.8C15—C18B—H18D109.5
N2—C13—N3118.5 (2)C15—C18B—H18E109.5
N2—C13—C9122.7 (2)H18D—C18B—H18E109.5
N3—C13—C9118.7 (2)C15—C18B—H18F109.5
O1—C14—N3123.7 (2)H18D—C18B—H18F109.5
O1—C14—C15120.9 (2)H18E—C18B—H18F109.5
C7—C2—C3—C40.6 (4)C12—N2—C13—C90.0 (4)
C1—C2—C3—C4177.1 (3)C14—N3—C13—N220.5 (4)
C2—C3—C4—C50.0 (5)C14—N3—C13—C9161.5 (3)
C3—C4—C5—C60.5 (4)C10—C9—C13—N21.0 (4)
C4—C5—C6—C70.4 (4)C8—C9—C13—N2174.0 (2)
C4—C5—C6—N1172.9 (3)C10—C9—C13—N3179.0 (2)
C8—N1—C6—C533.4 (4)C8—C9—C13—N34.0 (4)
C8—N1—C6—C7154.0 (3)C13—N3—C14—O14.9 (5)
C3—C2—C7—C60.7 (4)C13—N3—C14—C15174.0 (2)
C1—C2—C7—C6177.0 (2)O1—C14—C15—C16A88.8 (4)
C5—C6—C7—C20.2 (4)N3—C14—C15—C16A90.1 (4)
N1—C6—C7—C2172.7 (2)O1—C14—C15—C18B101.5 (9)
C6—N1—C8—C9170.6 (2)N3—C14—C15—C18B79.6 (9)
N1—C8—C9—C10168.9 (3)O1—C14—C15—C17A37.3 (4)
N1—C8—C9—C136.0 (4)N3—C14—C15—C17A143.8 (4)
C13—C9—C10—C111.2 (4)O1—C14—C15—C18A152.4 (3)
C8—C9—C10—C11174.1 (3)N3—C14—C15—C18A28.7 (4)
C9—C10—C11—C120.6 (4)O1—C14—C15—C16B136.9 (10)
C13—N2—C12—C110.7 (4)N3—C14—C15—C16B42.0 (10)
C10—C11—C12—N20.4 (4)O1—C14—C15—C17B28.0 (10)
C12—N2—C13—N3178.0 (2)N3—C14—C15—C17B150.9 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N10.86 (3)2.00 (3)2.744 (3)145 (3)
C11—H11···O1i0.932.613.404 (4)144
Symmetry code: (i) x1, y+1/2, z1/2.
 

Acknowledgements

The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer(purchased under grant F.279 of the University Research Fund).

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKöysal, Y., Bülbül, H., Gümüş, S., Ağar, E. & Soylu, M. S. (2016). Acta Cryst. E72, 1187–1189.  CrossRef IUCr Journals Google Scholar
First citationSchiff, H. (1864). Annalen 131, 118–119.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe and Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]