organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

rac-cis-5-Methyl-2,3-di­phenyl-1,3-thia­zolidin-4-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA, bPennsylvania State University, Brandywine Campus, 312 Main Building, Brandywine, PA 19063, USA, and cPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
*Correspondence e-mail: ljs43@psu.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 November 2017; accepted 17 November 2017; online 24 November 2017)

In the racemic title compound, C16H15NOS, the thia­zolidine ring adopts an envelope conformation, with the S atom as the flap. The dihedral angles between the heterocycle (all atoms) and pendant C– and N-bound benzene rings are 69.75 (14) and 56.56 (11)°, respectively; the aromatic rings are almost orthogonal to each other, with a dihedral angle of 76.04 (14)° between them. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds to generate [101] chains, with alternating mol­ecules being enanti­omers. A weak C—H⋯π inter­action is also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,3-Thia­zolidin-4-ones are of great inter­est due to their high and diverse biological activity (Jain et al., 2012[Jain, A. K., Vaidya, A., Ravichandran, V., Kashaw, S. K. & Agrawal, R. K. (2012). Bioorg. Med. Chem. 20, 3378-3395.]). 5-Methyl-2,3-diaryl-1,3-thia­zolidinones are readily available by use of thiol­actic acid in the preparation (Patel et al., 1976[Patel, D. R., Satpanthi, P. S., Patel, P. B. & Trivedi, J. J. (1976). J. Inst. Chem. (India), 48(6), 305-308.]) and show anti­microbial activity (Piscopo et al., 1988[Piscopo, E., Diurno, M. V., Gagliardi, R., Mazzoni, O. & Aliberti, F. (1988). Boll. Soc. Ital. Biol. Sper. 64, 153-158.]; Piscopo, Diurno, Gagliardi, Mazzoni, Parrilli & Veneruso, 1989[Piscopo, E., Diurno, M. V., Gagliardi, R., Mazzoni, O., Parrilli, C. & Veneruso, G. (1989). Boll. Soc. Ital. Biol. Sper. 65, 131-136.]; Piscopo, Diurno, Gagliardi, Mazzoni, De Franceso & Veneruso, 1989[Piscopo, E., Diurno, M. V., Gagliardi, R., Mazzoni, O., de Francesco, F. M. & Veneruso, G. (1989). Boll. Soc. Ital. Biol. Sper. 65, 535-541.]; Piscopo, Diurno, Gagliardi, Mazzoni & Veneruso, 1989[Piscopo, E., Diurno, M. V., Gagliardi, R., Mazzoni, O. & Veneruso, G. (1989). Boll. Soc. Ital. Biol. Sper. 65, 853-859.]). However, while the crystal structures of a number of 5-methyl-1,3-thia­zolidin-4-ones have been reported (Rang et al., 1997[Rang, K., Liao, F.-L., Sandström, J. & Wang, S.-L. (1997). Chirality, 9, 568-577.]; Özturk et al., 2000[Özturk, S., Aygün, M., Öcal, N., Yolacan, C. III & Fun, H.-K. (2000). NCS, 215, 526-528.]; Dandia et al.; 2006[Dandia, A., Singh, R., Khaturia, S., Mérienne, C., Morgant, G. & Loupy, A. (2006). Bioorg. Med. Chem. 14, 2409-2417.]; Yalçin et al., 2008[Yalçın, Ş. P., Akkurt, M., Şahin, E., Güzel, Ö., Salman, A. & İhan, E. (2008). Acta Cryst. E64, o1919.]; Akkurt et al., 2010[Akkurt, M., Nassozi, M., Kocabalkanlı, A., Khan, I. U. & Sharif, S. (2010). Acta Cryst. E66, o882.], 2011[Akkurt, M., Çelik, Í., Demir, H., Özkırımlı, S. & Büyükgüngör, O. (2011). Acta Cryst. E67, o293-o294.], 2012[Akkurt, M., Gürsoy, E., Güzeldemirci, N. U., Türktekin-Çelikesir, S. & Tahir, M. N. (2012). Acta Cryst. E68, o1505-o1506.]; Ostapiuk et al., 2012[Ostapiuk, Y. V., Obushak, M. K., Matiychuk, V. S., Naskrent, M. & Gzella, A. K. (2012). Tetrahedron Lett. 53, 543-545.]; Jiang et al., 2012[Jiang, J.-R., Xu, F., Ke, Z.-L. & Li, L. (2012). Acta Cryst. E68, o34.]), only two of them were 2,3-diaryl substituted (Özturk et al., 2000[Özturk, S., Aygün, M., Öcal, N., Yolacan, C. III & Fun, H.-K. (2000). NCS, 215, 526-528.]; Dandia et al.; 2006[Dandia, A., Singh, R., Khaturia, S., Mérienne, C., Morgant, G. & Loupy, A. (2006). Bioorg. Med. Chem. 14, 2409-2417.]).

Herein, we report the synthesis and crystal structure of the cis isomer of rac-5-methyl-2,3-diphenyl-1,3-thia­zolidin-4-one. Woolston et al. (1993[Woolston, C. R. J., Lee, J. B. & Swinbourne, J. (1993). Magn. Reson. Chem. 31, 348-351.]) have reported observing a 3:1 cis:trans ratio in the product, although the method of isolation was not specified. We have previously reported the structure of 2,3-diphenyl-1,3-thia­zolidin-4-one (Yennawar et al., 2014[Yennawar, H. P., Tierney, J. & Silverberg, L. J. (2014). Acta Cryst. E70, o847.]). The most closely related 5-methyl compound whose crystal structure is known is the 3-(p-chloro­phen­yl)-2-(8-quinolin­yl) compound of Özturk et al. (2000[Özturk, S., Aygün, M., Öcal, N., Yolacan, C. III & Fun, H.-K. (2000). NCS, 215, 526-528.]), which displayed an envelope conformation for the thia­zolidinone ring.

The title compound (Fig. 1[link]) shows an envelope conformation for the five-membered 1,3-thia­zolidin-4-one ring with substitutions at the 2, 3, and 5 ring positions. The phenyl rings at the 2 and 3 positions are close to orthogonal to each other with a dihedral angle of 76.04 (14)° between their planes. In the arbitrarily chosen asymmetric mol­ecule (Fig. 1[link]), C1 and C3 have S and R configurations, respectively, but crystal symmetry generates a racemic mixture. In the extended structure (Fig. 2[link]), the oxygen atom connected to the 4 position of the heterocycle accepts a C—H⋯O inter­action (Table 1[link]) arising from a phenyl ring at the 3 position of a symmetry-related enanti­omer, resulting in a chain-link in the [101] direction. A weak C—H⋯O inter­action (Table 1[link]) is also observed.

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1i 0.93 2.51 3.366 (3) 154
C3—H3⋯Cg3ii 0.98 2.90 3.783 (3) 151
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Packing diagram of the title compound, with red dotted lines representing C—H⋯O contacts forming chains propagating in the [101] direction.

Synthesis and crystallization

0.05 mol of N-benzyl­ideneaniline and a slight excess of thiol­actic acid were dissolved in 60 ml of toluene in a 100 ml round-bottomed flask. The flask was connected to a Dean–Stark trap and condenser and refluxed for 6 h. After cooling, the excess thiol­actic acid was neutralized with 5% aqueous NaHCO3 solution. The toluene layer was removed under vacuum on a rotary evaporator. The product was recrystallized from 95% ethanol solution: m.p. 391–393 K (no literature reports). Crystals for X-ray diffraction studies were grown by slow evaporation from ethanol solution. Only the cis isomer was isolated.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H15NOS
Mr 269.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 6.2271 (16), 22.531 (6), 9.937 (3)
β (°) 96.545 (4)
V3) 1385.1 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.15 × 0.1 × 0.09
 
Data collection
Diffractometer Bruker SAINT CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.838, 0.9
No. of measured, independent and observed [I > 2σ(I)] reflections 10624, 3360, 2378
Rint 0.037
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.171, 1.04
No. of reflections 3360
No. of parameters 173
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.18
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

rac-cis-5-Methyl-2,3-diphenyl-1,3-thiazolidin-4-one top
Crystal data top
C16H15NOSF(000) = 568
Mr = 269.35Dx = 1.292 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.2271 (16) ÅCell parameters from 2561 reflections
b = 22.531 (6) Åθ = 2.3–25.6°
c = 9.937 (3) ŵ = 0.23 mm1
β = 96.545 (4)°T = 298 K
V = 1385.1 (6) Å3Block, colorless
Z = 40.15 × 0.1 × 0.09 mm
Data collection top
Bruker SAINT CCD area detector
diffractometer
3360 independent reflections
Radiation source: fine-focus sealed tube2378 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
phi and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 87
Tmin = 0.838, Tmax = 0.9k = 3029
10624 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0811P)2 + 0.3983P]
where P = (Fo2 + 2Fc2)/3
3360 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.18 e Å3
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (30 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.41425 (13)0.39324 (4)1.01291 (7)0.0782 (3)
O10.7411 (3)0.29432 (8)0.80393 (16)0.0588 (5)
N10.4230 (3)0.34551 (7)0.77525 (17)0.0393 (4)
C10.2685 (4)0.37863 (10)0.8464 (2)0.0476 (5)
H10.14140.35400.85570.057*
C20.5992 (3)0.32204 (10)0.8504 (2)0.0440 (5)
C30.5912 (4)0.33075 (12)1.0016 (2)0.0568 (6)
H30.52220.29581.03650.068*
C40.8088 (5)0.33802 (15)1.0804 (3)0.0754 (8)
H4A0.87200.37471.05560.113*
H4B0.90030.30561.06080.113*
H4C0.79390.33841.17550.113*
C50.1991 (4)0.43677 (10)0.7778 (2)0.0490 (6)
C60.0051 (5)0.45857 (14)0.7878 (4)0.0784 (9)
H60.10110.43710.83410.094*
C70.0674 (6)0.51299 (16)0.7282 (5)0.0978 (12)
H70.20340.52850.73740.117*
C80.0701 (6)0.54313 (13)0.6571 (4)0.0914 (11)
H80.02590.57850.61440.110*
C90.2736 (6)0.52196 (13)0.6475 (4)0.0880 (10)
H90.36880.54330.60050.106*
C100.3364 (5)0.46888 (11)0.7080 (3)0.0674 (7)
H100.47480.45450.70120.081*
C110.3725 (3)0.33221 (8)0.6344 (2)0.0364 (4)
C120.1711 (3)0.31056 (9)0.5866 (2)0.0461 (5)
H120.06760.30430.64560.055*
C130.1239 (4)0.29816 (10)0.4495 (3)0.0549 (6)
H130.01100.28300.41710.066*
C140.2734 (5)0.30799 (11)0.3619 (2)0.0587 (7)
H140.23960.30020.27000.070*
C150.4750 (5)0.32947 (11)0.4101 (3)0.0589 (6)
H150.57770.33560.35050.071*
C160.5252 (4)0.34184 (10)0.5455 (2)0.0471 (5)
H160.66100.35660.57740.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0871 (6)0.1043 (6)0.0412 (4)0.0397 (4)0.0008 (3)0.0177 (3)
O10.0519 (10)0.0811 (12)0.0429 (9)0.0258 (8)0.0034 (7)0.0011 (8)
N10.0373 (9)0.0469 (9)0.0335 (9)0.0062 (7)0.0036 (7)0.0016 (7)
C10.0421 (12)0.0592 (13)0.0418 (12)0.0086 (10)0.0067 (9)0.0020 (10)
C20.0423 (12)0.0532 (12)0.0357 (11)0.0045 (9)0.0017 (9)0.0013 (9)
C30.0554 (15)0.0754 (16)0.0396 (12)0.0111 (12)0.0050 (11)0.0025 (11)
C40.0681 (18)0.114 (2)0.0408 (14)0.0151 (16)0.0070 (13)0.0096 (14)
C50.0447 (12)0.0516 (13)0.0492 (13)0.0081 (10)0.0018 (10)0.0094 (10)
C60.0573 (17)0.0719 (18)0.106 (3)0.0172 (14)0.0090 (16)0.0056 (17)
C70.071 (2)0.077 (2)0.140 (4)0.0350 (18)0.011 (2)0.007 (2)
C80.102 (3)0.0477 (15)0.116 (3)0.0148 (17)0.024 (2)0.0010 (16)
C90.104 (3)0.0518 (16)0.108 (3)0.0031 (16)0.010 (2)0.0053 (16)
C100.0656 (17)0.0515 (14)0.085 (2)0.0066 (12)0.0094 (15)0.0011 (13)
C110.0397 (11)0.0332 (9)0.0355 (10)0.0045 (8)0.0005 (8)0.0008 (8)
C120.0404 (12)0.0484 (12)0.0484 (13)0.0003 (9)0.0005 (10)0.0058 (9)
C130.0519 (14)0.0490 (12)0.0580 (15)0.0020 (10)0.0183 (12)0.0003 (11)
C140.0752 (18)0.0578 (14)0.0395 (12)0.0074 (12)0.0096 (12)0.0077 (10)
C150.0683 (17)0.0684 (15)0.0415 (13)0.0031 (12)0.0130 (12)0.0035 (11)
C160.0452 (12)0.0560 (13)0.0396 (11)0.0043 (10)0.0031 (10)0.0019 (10)
Geometric parameters (Å, º) top
S1—C11.824 (2)C7—H70.9300
S1—C31.799 (3)C7—C81.354 (5)
O1—C21.216 (3)C8—H80.9300
N1—C11.461 (3)C8—C91.367 (5)
N1—C21.362 (3)C9—H90.9300
N1—C111.431 (3)C9—C101.375 (4)
C1—H10.9800C10—H100.9300
C1—C51.517 (3)C11—C121.379 (3)
C2—C31.521 (3)C11—C161.387 (3)
C3—H30.9800C12—H120.9300
C3—C41.495 (4)C12—C131.389 (3)
C4—H4A0.9600C13—H130.9300
C4—H4B0.9600C13—C141.363 (4)
C4—H4C0.9600C14—H140.9300
C5—C61.377 (3)C14—C151.379 (4)
C5—C101.367 (4)C15—H150.9300
C6—H60.9300C15—C161.375 (3)
C6—C71.397 (5)C16—H160.9300
C3—S1—C192.68 (11)C6—C7—H7120.0
C2—N1—C1117.80 (17)C8—C7—C6120.0 (3)
C2—N1—C11121.92 (17)C8—C7—H7120.0
C11—N1—C1119.78 (16)C7—C8—H8119.7
S1—C1—H1109.9C7—C8—C9120.5 (3)
N1—C1—S1104.13 (14)C9—C8—H8119.7
N1—C1—H1109.9C8—C9—H9120.2
N1—C1—C5113.16 (18)C8—C9—C10119.5 (3)
C5—C1—S1109.79 (16)C10—C9—H9120.2
C5—C1—H1109.9C5—C10—C9121.2 (3)
O1—C2—N1124.5 (2)C5—C10—H10119.4
O1—C2—C3123.3 (2)C9—C10—H10119.4
N1—C2—C3112.13 (19)C12—C11—N1120.07 (18)
S1—C3—H3108.1C12—C11—C16119.9 (2)
C2—C3—S1104.59 (16)C16—C11—N1120.02 (19)
C2—C3—H3108.1C11—C12—H12120.3
C4—C3—S1114.0 (2)C11—C12—C13119.4 (2)
C4—C3—C2113.7 (2)C13—C12—H12120.3
C4—C3—H3108.1C12—C13—H13119.7
C3—C4—H4A109.5C14—C13—C12120.7 (2)
C3—C4—H4B109.5C14—C13—H13119.7
C3—C4—H4C109.5C13—C14—H14120.1
H4A—C4—H4B109.5C13—C14—C15119.8 (2)
H4A—C4—H4C109.5C15—C14—H14120.1
H4B—C4—H4C109.5C14—C15—H15119.8
C6—C5—C1119.6 (2)C16—C15—C14120.5 (2)
C10—C5—C1121.5 (2)C16—C15—H15119.8
C10—C5—C6118.9 (2)C11—C16—H16120.1
C5—C6—H6120.1C15—C16—C11119.7 (2)
C5—C6—C7119.8 (3)C15—C16—H16120.1
C7—C6—H6120.1
S1—C1—C5—C694.9 (3)C2—N1—C11—C12125.9 (2)
S1—C1—C5—C1083.8 (3)C2—N1—C11—C1654.9 (3)
O1—C2—C3—S1160.9 (2)C3—S1—C1—N124.32 (17)
O1—C2—C3—C435.9 (4)C3—S1—C1—C5145.76 (17)
N1—C1—C5—C6149.2 (2)C5—C6—C7—C82.2 (5)
N1—C1—C5—C1032.1 (3)C6—C5—C10—C90.4 (4)
N1—C2—C3—S123.0 (2)C6—C7—C8—C92.7 (6)
N1—C2—C3—C4148.0 (2)C7—C8—C9—C101.6 (6)
N1—C11—C12—C13179.64 (18)C8—C9—C10—C50.1 (5)
N1—C11—C16—C15179.4 (2)C10—C5—C6—C70.6 (4)
C1—S1—C3—C226.91 (18)C11—N1—C1—S1172.77 (15)
C1—S1—C3—C4151.7 (2)C11—N1—C1—C553.6 (3)
C1—N1—C2—O1178.9 (2)C11—N1—C2—O19.2 (3)
C1—N1—C2—C35.0 (3)C11—N1—C2—C3166.80 (19)
C1—N1—C11—C1245.7 (3)C11—C12—C13—C141.0 (3)
C1—N1—C11—C16133.4 (2)C12—C11—C16—C150.3 (3)
C1—C5—C6—C7178.1 (3)C12—C13—C14—C151.2 (4)
C1—C5—C10—C9179.1 (3)C13—C14—C15—C160.9 (4)
C2—N1—C1—S115.2 (2)C14—C15—C16—C110.5 (4)
C2—N1—C1—C5134.4 (2)C16—C11—C12—C130.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.932.513.366 (3)154
C3—H3···Cg3ii0.982.903.783 (3)151
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
 

Funding information

We thank Penn State Schuylkill for financial support and National Science Foundation (grant No. CHEM-0131112) for the X-ray diffractometer.

References

First citationAkkurt, M., Çelik, Í., Demir, H., Özkırımlı, S. & Büyükgüngör, O. (2011). Acta Cryst. E67, o293–o294.  CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Gürsoy, E., Güzeldemirci, N. U., Türktekin-Çelikesir, S. & Tahir, M. N. (2012). Acta Cryst. E68, o1505–o1506.  CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Nassozi, M., Kocabalkanlı, A., Khan, I. U. & Sharif, S. (2010). Acta Cryst. E66, o882.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDandia, A., Singh, R., Khaturia, S., Mérienne, C., Morgant, G. & Loupy, A. (2006). Bioorg. Med. Chem. 14, 2409–2417.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJain, A. K., Vaidya, A., Ravichandran, V., Kashaw, S. K. & Agrawal, R. K. (2012). Bioorg. Med. Chem. 20, 3378–3395.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJiang, J.-R., Xu, F., Ke, Z.-L. & Li, L. (2012). Acta Cryst. E68, o34.  CSD CrossRef IUCr Journals Google Scholar
First citationOstapiuk, Y. V., Obushak, M. K., Matiychuk, V. S., Naskrent, M. & Gzella, A. K. (2012). Tetrahedron Lett. 53, 543–545.  CSD CrossRef CAS Google Scholar
First citationÖzturk, S., Aygün, M., Öcal, N., Yolacan, C. III & Fun, H.-K. (2000). NCS, 215, 526–528.  Google Scholar
First citationPatel, D. R., Satpanthi, P. S., Patel, P. B. & Trivedi, J. J. (1976). J. Inst. Chem. (India), 48(6), 305–308.  Google Scholar
First citationPiscopo, E., Diurno, M. V., Gagliardi, R., Mazzoni, O. & Aliberti, F. (1988). Boll. Soc. Ital. Biol. Sper. 64, 153–158.  CAS PubMed Google Scholar
First citationPiscopo, E., Diurno, M. V., Gagliardi, R., Mazzoni, O., de Francesco, F. M. & Veneruso, G. (1989). Boll. Soc. Ital. Biol. Sper. 65, 535–541.  CAS PubMed Google Scholar
First citationPiscopo, E., Diurno, M. V., Gagliardi, R., Mazzoni, O., Parrilli, C. & Veneruso, G. (1989). Boll. Soc. Ital. Biol. Sper. 65, 131–136.  CAS PubMed Google Scholar
First citationPiscopo, E., Diurno, M. V., Gagliardi, R., Mazzoni, O. & Veneruso, G. (1989). Boll. Soc. Ital. Biol. Sper. 65, 853–859.  CAS PubMed Google Scholar
First citationRang, K., Liao, F.-L., Sandström, J. & Wang, S.-L. (1997). Chirality, 9, 568–577.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoolston, C. R. J., Lee, J. B. & Swinbourne, J. (1993). Magn. Reson. Chem. 31, 348–351.  CrossRef CAS Google Scholar
First citationYalçın, Ş. P., Akkurt, M., Şahin, E., Güzel, Ö., Salman, A. & İhan, E. (2008). Acta Cryst. E64, o1919.  CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P., Tierney, J. & Silverberg, L. J. (2014). Acta Cryst. E70, o847.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]