organic compounds
rac-cis-5-Methyl-2,3-diphenyl-1,3-thiazolidin-4-one
aDepartment of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA, bPennsylvania State University, Brandywine Campus, 312 Main Building, Brandywine, PA 19063, USA, and cPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
*Correspondence e-mail: ljs43@psu.edu
In the racemic title compound, C16H15NOS, the thiazolidine ring adopts an with the S atom as the flap. The dihedral angles between the heterocycle (all atoms) and pendant C– and N-bound benzene rings are 69.75 (14) and 56.56 (11)°, respectively; the aromatic rings are almost orthogonal to each other, with a dihedral angle of 76.04 (14)° between them. In the crystal, molecules are linked by weak C—H⋯O hydrogen bonds to generate [101] chains, with alternating molecules being enantiomers. A weak C—H⋯π interaction is also observed.
Keywords: crystal structure; thiazolidine; envelope pucker; C—H⋯O interactions; weak aromatic interactions.
CCDC reference: 1586333
Structure description
1,3-Thiazolidin-4-ones are of great interest due to their high and diverse biological activity (Jain et al., 2012). 5-Methyl-2,3-diaryl-1,3-thiazolidinones are readily available by use of thiolactic acid in the preparation (Patel et al., 1976) and show antimicrobial activity (Piscopo et al., 1988; Piscopo, Diurno, Gagliardi, Mazzoni, Parrilli & Veneruso, 1989; Piscopo, Diurno, Gagliardi, Mazzoni, De Franceso & Veneruso, 1989; Piscopo, Diurno, Gagliardi, Mazzoni & Veneruso, 1989). However, while the crystal structures of a number of 5-methyl-1,3-thiazolidin-4-ones have been reported (Rang et al., 1997; Özturk et al., 2000; Dandia et al.; 2006; Yalçin et al., 2008; Akkurt et al., 2010, 2011, 2012; Ostapiuk et al., 2012; Jiang et al., 2012), only two of them were 2,3-diaryl substituted (Özturk et al., 2000; Dandia et al.; 2006).
Herein, we report the synthesis and cis isomer of rac-5-methyl-2,3-diphenyl-1,3-thiazolidin-4-one. Woolston et al. (1993) have reported observing a 3:1 cis:trans ratio in the product, although the method of isolation was not specified. We have previously reported the structure of 2,3-diphenyl-1,3-thiazolidin-4-one (Yennawar et al., 2014). The most closely related 5-methyl compound whose is known is the 3-(p-chlorophenyl)-2-(8-quinolinyl) compound of Özturk et al. (2000), which displayed an for the thiazolidinone ring.
of theThe title compound (Fig. 1) shows an for the five-membered 1,3-thiazolidin-4-one ring with substitutions at the 2, 3, and 5 ring positions. The phenyl rings at the 2 and 3 positions are close to orthogonal to each other with a dihedral angle of 76.04 (14)° between their planes. In the arbitrarily chosen asymmetric molecule (Fig. 1), C1 and C3 have S and R configurations, respectively, but crystal symmetry generates a In the extended structure (Fig. 2), the oxygen atom connected to the 4 position of the heterocycle accepts a C—H⋯O interaction (Table 1) arising from a phenyl ring at the 3 position of a symmetry-related enantiomer, resulting in a chain-link in the [101] direction. A weak C—H⋯O interaction (Table 1) is also observed.
Synthesis and crystallization
0.05 mol of N-benzylideneaniline and a slight excess of thiolactic acid were dissolved in 60 ml of toluene in a 100 ml round-bottomed flask. The flask was connected to a Dean–Stark trap and condenser and refluxed for 6 h. After cooling, the excess thiolactic acid was neutralized with 5% aqueous NaHCO3 solution. The toluene layer was removed under vacuum on a rotary evaporator. The product was recrystallized from 95% ethanol solution: m.p. 391–393 K (no literature reports). Crystals for X-ray diffraction studies were grown by slow evaporation from ethanol solution. Only the cis isomer was isolated.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1586333
https://doi.org/10.1107/S2414314617016625/hb4181sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617016625/hb4181Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617016625/hb4181Isup3.mol
Supporting information file. DOI: https://doi.org/10.1107/S2414314617016625/hb4181Isup4.cml
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).C16H15NOS | F(000) = 568 |
Mr = 269.35 | Dx = 1.292 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 6.2271 (16) Å | Cell parameters from 2561 reflections |
b = 22.531 (6) Å | θ = 2.3–25.6° |
c = 9.937 (3) Å | µ = 0.23 mm−1 |
β = 96.545 (4)° | T = 298 K |
V = 1385.1 (6) Å3 | Block, colorless |
Z = 4 | 0.15 × 0.1 × 0.09 mm |
Bruker SAINT CCD area detector diffractometer | 3360 independent reflections |
Radiation source: fine-focus sealed tube | 2378 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
phi and ω scans | θmax = 28.3°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −8→7 |
Tmin = 0.838, Tmax = 0.9 | k = −30→29 |
10624 measured reflections | l = −12→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.063 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.171 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0811P)2 + 0.3983P] where P = (Fo2 + 2Fc2)/3 |
3360 reflections | (Δ/σ)max = 0.001 |
173 parameters | Δρmax = 0.46 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (30 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.41425 (13) | 0.39324 (4) | 1.01291 (7) | 0.0782 (3) | |
O1 | 0.7411 (3) | 0.29432 (8) | 0.80393 (16) | 0.0588 (5) | |
N1 | 0.4230 (3) | 0.34551 (7) | 0.77525 (17) | 0.0393 (4) | |
C1 | 0.2685 (4) | 0.37863 (10) | 0.8464 (2) | 0.0476 (5) | |
H1 | 0.1414 | 0.3540 | 0.8557 | 0.057* | |
C2 | 0.5992 (3) | 0.32204 (10) | 0.8504 (2) | 0.0440 (5) | |
C3 | 0.5912 (4) | 0.33075 (12) | 1.0016 (2) | 0.0568 (6) | |
H3 | 0.5222 | 0.2958 | 1.0365 | 0.068* | |
C4 | 0.8088 (5) | 0.33802 (15) | 1.0804 (3) | 0.0754 (8) | |
H4A | 0.8720 | 0.3747 | 1.0556 | 0.113* | |
H4B | 0.9003 | 0.3056 | 1.0608 | 0.113* | |
H4C | 0.7939 | 0.3384 | 1.1755 | 0.113* | |
C5 | 0.1991 (4) | 0.43677 (10) | 0.7778 (2) | 0.0490 (6) | |
C6 | −0.0051 (5) | 0.45857 (14) | 0.7878 (4) | 0.0784 (9) | |
H6 | −0.1011 | 0.4371 | 0.8341 | 0.094* | |
C7 | −0.0674 (6) | 0.51299 (16) | 0.7282 (5) | 0.0978 (12) | |
H7 | −0.2034 | 0.5285 | 0.7374 | 0.117* | |
C8 | 0.0701 (6) | 0.54313 (13) | 0.6571 (4) | 0.0914 (11) | |
H8 | 0.0259 | 0.5785 | 0.6144 | 0.110* | |
C9 | 0.2736 (6) | 0.52196 (13) | 0.6475 (4) | 0.0880 (10) | |
H9 | 0.3688 | 0.5433 | 0.6005 | 0.106* | |
C10 | 0.3364 (5) | 0.46888 (11) | 0.7080 (3) | 0.0674 (7) | |
H10 | 0.4748 | 0.4545 | 0.7012 | 0.081* | |
C11 | 0.3725 (3) | 0.33221 (8) | 0.6344 (2) | 0.0364 (4) | |
C12 | 0.1711 (3) | 0.31056 (9) | 0.5866 (2) | 0.0461 (5) | |
H12 | 0.0676 | 0.3043 | 0.6456 | 0.055* | |
C13 | 0.1239 (4) | 0.29816 (10) | 0.4495 (3) | 0.0549 (6) | |
H13 | −0.0110 | 0.2830 | 0.4171 | 0.066* | |
C14 | 0.2734 (5) | 0.30799 (11) | 0.3619 (2) | 0.0587 (7) | |
H14 | 0.2396 | 0.3002 | 0.2700 | 0.070* | |
C15 | 0.4750 (5) | 0.32947 (11) | 0.4101 (3) | 0.0589 (6) | |
H15 | 0.5777 | 0.3356 | 0.3505 | 0.071* | |
C16 | 0.5252 (4) | 0.34184 (10) | 0.5455 (2) | 0.0471 (5) | |
H16 | 0.6610 | 0.3566 | 0.5774 | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0871 (6) | 0.1043 (6) | 0.0412 (4) | 0.0397 (4) | −0.0008 (3) | −0.0177 (3) |
O1 | 0.0519 (10) | 0.0811 (12) | 0.0429 (9) | 0.0258 (8) | 0.0034 (7) | 0.0011 (8) |
N1 | 0.0373 (9) | 0.0469 (9) | 0.0335 (9) | 0.0062 (7) | 0.0036 (7) | −0.0016 (7) |
C1 | 0.0421 (12) | 0.0592 (13) | 0.0418 (12) | 0.0086 (10) | 0.0067 (9) | −0.0020 (10) |
C2 | 0.0423 (12) | 0.0532 (12) | 0.0357 (11) | 0.0045 (9) | 0.0017 (9) | 0.0013 (9) |
C3 | 0.0554 (15) | 0.0754 (16) | 0.0396 (12) | 0.0111 (12) | 0.0050 (11) | 0.0025 (11) |
C4 | 0.0681 (18) | 0.114 (2) | 0.0408 (14) | 0.0151 (16) | −0.0070 (13) | −0.0096 (14) |
C5 | 0.0447 (12) | 0.0516 (13) | 0.0492 (13) | 0.0081 (10) | −0.0018 (10) | −0.0094 (10) |
C6 | 0.0573 (17) | 0.0719 (18) | 0.106 (3) | 0.0172 (14) | 0.0090 (16) | −0.0056 (17) |
C7 | 0.071 (2) | 0.077 (2) | 0.140 (4) | 0.0350 (18) | −0.011 (2) | −0.007 (2) |
C8 | 0.102 (3) | 0.0477 (15) | 0.116 (3) | 0.0148 (17) | −0.024 (2) | −0.0010 (16) |
C9 | 0.104 (3) | 0.0518 (16) | 0.108 (3) | 0.0031 (16) | 0.010 (2) | 0.0053 (16) |
C10 | 0.0656 (17) | 0.0515 (14) | 0.085 (2) | 0.0066 (12) | 0.0094 (15) | 0.0011 (13) |
C11 | 0.0397 (11) | 0.0332 (9) | 0.0355 (10) | 0.0045 (8) | 0.0005 (8) | 0.0008 (8) |
C12 | 0.0404 (12) | 0.0484 (12) | 0.0484 (13) | 0.0003 (9) | −0.0005 (10) | 0.0058 (9) |
C13 | 0.0519 (14) | 0.0490 (12) | 0.0580 (15) | −0.0020 (10) | −0.0183 (12) | −0.0003 (11) |
C14 | 0.0752 (18) | 0.0578 (14) | 0.0395 (12) | 0.0074 (12) | −0.0096 (12) | −0.0077 (10) |
C15 | 0.0683 (17) | 0.0684 (15) | 0.0415 (13) | 0.0031 (12) | 0.0130 (12) | −0.0035 (11) |
C16 | 0.0452 (12) | 0.0560 (13) | 0.0396 (11) | −0.0043 (10) | 0.0031 (10) | −0.0019 (10) |
S1—C1 | 1.824 (2) | C7—H7 | 0.9300 |
S1—C3 | 1.799 (3) | C7—C8 | 1.354 (5) |
O1—C2 | 1.216 (3) | C8—H8 | 0.9300 |
N1—C1 | 1.461 (3) | C8—C9 | 1.367 (5) |
N1—C2 | 1.362 (3) | C9—H9 | 0.9300 |
N1—C11 | 1.431 (3) | C9—C10 | 1.375 (4) |
C1—H1 | 0.9800 | C10—H10 | 0.9300 |
C1—C5 | 1.517 (3) | C11—C12 | 1.379 (3) |
C2—C3 | 1.521 (3) | C11—C16 | 1.387 (3) |
C3—H3 | 0.9800 | C12—H12 | 0.9300 |
C3—C4 | 1.495 (4) | C12—C13 | 1.389 (3) |
C4—H4A | 0.9600 | C13—H13 | 0.9300 |
C4—H4B | 0.9600 | C13—C14 | 1.363 (4) |
C4—H4C | 0.9600 | C14—H14 | 0.9300 |
C5—C6 | 1.377 (3) | C14—C15 | 1.379 (4) |
C5—C10 | 1.367 (4) | C15—H15 | 0.9300 |
C6—H6 | 0.9300 | C15—C16 | 1.375 (3) |
C6—C7 | 1.397 (5) | C16—H16 | 0.9300 |
C3—S1—C1 | 92.68 (11) | C6—C7—H7 | 120.0 |
C2—N1—C1 | 117.80 (17) | C8—C7—C6 | 120.0 (3) |
C2—N1—C11 | 121.92 (17) | C8—C7—H7 | 120.0 |
C11—N1—C1 | 119.78 (16) | C7—C8—H8 | 119.7 |
S1—C1—H1 | 109.9 | C7—C8—C9 | 120.5 (3) |
N1—C1—S1 | 104.13 (14) | C9—C8—H8 | 119.7 |
N1—C1—H1 | 109.9 | C8—C9—H9 | 120.2 |
N1—C1—C5 | 113.16 (18) | C8—C9—C10 | 119.5 (3) |
C5—C1—S1 | 109.79 (16) | C10—C9—H9 | 120.2 |
C5—C1—H1 | 109.9 | C5—C10—C9 | 121.2 (3) |
O1—C2—N1 | 124.5 (2) | C5—C10—H10 | 119.4 |
O1—C2—C3 | 123.3 (2) | C9—C10—H10 | 119.4 |
N1—C2—C3 | 112.13 (19) | C12—C11—N1 | 120.07 (18) |
S1—C3—H3 | 108.1 | C12—C11—C16 | 119.9 (2) |
C2—C3—S1 | 104.59 (16) | C16—C11—N1 | 120.02 (19) |
C2—C3—H3 | 108.1 | C11—C12—H12 | 120.3 |
C4—C3—S1 | 114.0 (2) | C11—C12—C13 | 119.4 (2) |
C4—C3—C2 | 113.7 (2) | C13—C12—H12 | 120.3 |
C4—C3—H3 | 108.1 | C12—C13—H13 | 119.7 |
C3—C4—H4A | 109.5 | C14—C13—C12 | 120.7 (2) |
C3—C4—H4B | 109.5 | C14—C13—H13 | 119.7 |
C3—C4—H4C | 109.5 | C13—C14—H14 | 120.1 |
H4A—C4—H4B | 109.5 | C13—C14—C15 | 119.8 (2) |
H4A—C4—H4C | 109.5 | C15—C14—H14 | 120.1 |
H4B—C4—H4C | 109.5 | C14—C15—H15 | 119.8 |
C6—C5—C1 | 119.6 (2) | C16—C15—C14 | 120.5 (2) |
C10—C5—C1 | 121.5 (2) | C16—C15—H15 | 119.8 |
C10—C5—C6 | 118.9 (2) | C11—C16—H16 | 120.1 |
C5—C6—H6 | 120.1 | C15—C16—C11 | 119.7 (2) |
C5—C6—C7 | 119.8 (3) | C15—C16—H16 | 120.1 |
C7—C6—H6 | 120.1 | ||
S1—C1—C5—C6 | −94.9 (3) | C2—N1—C11—C12 | 125.9 (2) |
S1—C1—C5—C10 | 83.8 (3) | C2—N1—C11—C16 | −54.9 (3) |
O1—C2—C3—S1 | 160.9 (2) | C3—S1—C1—N1 | −24.32 (17) |
O1—C2—C3—C4 | 35.9 (4) | C3—S1—C1—C5 | −145.76 (17) |
N1—C1—C5—C6 | 149.2 (2) | C5—C6—C7—C8 | 2.2 (5) |
N1—C1—C5—C10 | −32.1 (3) | C6—C5—C10—C9 | −0.4 (4) |
N1—C2—C3—S1 | −23.0 (2) | C6—C7—C8—C9 | −2.7 (6) |
N1—C2—C3—C4 | −148.0 (2) | C7—C8—C9—C10 | 1.6 (6) |
N1—C11—C12—C13 | 179.64 (18) | C8—C9—C10—C5 | −0.1 (5) |
N1—C11—C16—C15 | −179.4 (2) | C10—C5—C6—C7 | −0.6 (4) |
C1—S1—C3—C2 | 26.91 (18) | C11—N1—C1—S1 | −172.77 (15) |
C1—S1—C3—C4 | 151.7 (2) | C11—N1—C1—C5 | −53.6 (3) |
C1—N1—C2—O1 | −178.9 (2) | C11—N1—C2—O1 | 9.2 (3) |
C1—N1—C2—C3 | 5.0 (3) | C11—N1—C2—C3 | −166.80 (19) |
C1—N1—C11—C12 | −45.7 (3) | C11—C12—C13—C14 | −1.0 (3) |
C1—N1—C11—C16 | 133.4 (2) | C12—C11—C16—C15 | −0.3 (3) |
C1—C5—C6—C7 | 178.1 (3) | C12—C13—C14—C15 | 1.2 (4) |
C1—C5—C10—C9 | −179.1 (3) | C13—C14—C15—C16 | −0.9 (4) |
C2—N1—C1—S1 | 15.2 (2) | C14—C15—C16—C11 | 0.5 (4) |
C2—N1—C1—C5 | 134.4 (2) | C16—C11—C12—C13 | 0.5 (3) |
Cg3 is the centroid of the C11–C16 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···O1i | 0.93 | 2.51 | 3.366 (3) | 154 |
C3—H3···Cg3ii | 0.98 | 2.90 | 3.783 (3) | 151 |
Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2. |
Funding information
We thank Penn State Schuylkill for financial support and National Science Foundation (grant No. CHEM-0131112) for the X-ray diffractometer.
References
Akkurt, M., Çelik, Í., Demir, H., Özkırımlı, S. & Büyükgüngör, O. (2011). Acta Cryst. E67, o293–o294. CSD CrossRef IUCr Journals Google Scholar
Akkurt, M., Gürsoy, E., Güzeldemirci, N. U., Türktekin-Çelikesir, S. & Tahir, M. N. (2012). Acta Cryst. E68, o1505–o1506. CSD CrossRef IUCr Journals Google Scholar
Akkurt, M., Nassozi, M., Kocabalkanlı, A., Khan, I. U. & Sharif, S. (2010). Acta Cryst. E66, o882. CSD CrossRef IUCr Journals Google Scholar
Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dandia, A., Singh, R., Khaturia, S., Mérienne, C., Morgant, G. & Loupy, A. (2006). Bioorg. Med. Chem. 14, 2409–2417. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Jain, A. K., Vaidya, A., Ravichandran, V., Kashaw, S. K. & Agrawal, R. K. (2012). Bioorg. Med. Chem. 20, 3378–3395. Web of Science CrossRef CAS PubMed Google Scholar
Jiang, J.-R., Xu, F., Ke, Z.-L. & Li, L. (2012). Acta Cryst. E68, o34. CSD CrossRef IUCr Journals Google Scholar
Ostapiuk, Y. V., Obushak, M. K., Matiychuk, V. S., Naskrent, M. & Gzella, A. K. (2012). Tetrahedron Lett. 53, 543–545. CSD CrossRef CAS Google Scholar
Özturk, S., Aygün, M., Öcal, N., Yolacan, C. III & Fun, H.-K. (2000). NCS, 215, 526–528. Google Scholar
Patel, D. R., Satpanthi, P. S., Patel, P. B. & Trivedi, J. J. (1976). J. Inst. Chem. (India), 48(6), 305–308. Google Scholar
Piscopo, E., Diurno, M. V., Gagliardi, R., Mazzoni, O. & Aliberti, F. (1988). Boll. Soc. Ital. Biol. Sper. 64, 153–158. CAS PubMed Google Scholar
Piscopo, E., Diurno, M. V., Gagliardi, R., Mazzoni, O., de Francesco, F. M. & Veneruso, G. (1989). Boll. Soc. Ital. Biol. Sper. 65, 535–541. CAS PubMed Google Scholar
Piscopo, E., Diurno, M. V., Gagliardi, R., Mazzoni, O., Parrilli, C. & Veneruso, G. (1989). Boll. Soc. Ital. Biol. Sper. 65, 131–136. CAS PubMed Google Scholar
Piscopo, E., Diurno, M. V., Gagliardi, R., Mazzoni, O. & Veneruso, G. (1989). Boll. Soc. Ital. Biol. Sper. 65, 853–859. CAS PubMed Google Scholar
Rang, K., Liao, F.-L., Sandström, J. & Wang, S.-L. (1997). Chirality, 9, 568–577. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Woolston, C. R. J., Lee, J. B. & Swinbourne, J. (1993). Magn. Reson. Chem. 31, 348–351. CrossRef CAS Google Scholar
Yalçın, Ş. P., Akkurt, M., Şahin, E., Güzel, Ö., Salman, A. & İhan, E. (2008). Acta Cryst. E64, o1919. CSD CrossRef IUCr Journals Google Scholar
Yennawar, H. P., Tierney, J. & Silverberg, L. J. (2014). Acta Cryst. E70, o847. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.