organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,6-[Bis­(di­methyl­amino)­meth­yl]phenyl­selenenyl chloride/bromide monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 28 September 2017; accepted 13 November 2017; online 17 November 2017)

In the title hydrated salt, C12H19N2Se+·Cl0.44/Br0.56·H2O, the halide ions (both with site symmetry 2) have different Cl/Br occupancies of 0.399 (2)/0.601 (2) and 0.491 (2)/0.509 (2). In the crystal, the cation and anion are linked by an Se⋯X (X = Cl/Br) inter­action of length 3.5593 (8) Å. The water mol­ecule and anions are linked by O—H⋯X hydrogen bonds into a staggered chain propagating in the b-axis direction and the packing is consolidated by weak C—H⋯X inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The mol­ecular structure of hydrated mol­ecular salt 3, [C12H19N2Se]+Cl0.44/Br0.56·H2O is shown in Fig. 1[link]. It crystallizes in the monoclinic crystal system with 56% of Br and 46% of Cl in total but distributed over two sites in different ratios [in site 1, the Cl/Br ratio is 0.399 (2)/0.601 (2) and in site 2 the Cl/Br ratio is 0.491 (2)/0.509 (2)]. There have been three previous structures containing the same cation with PF6 (Fujihara et al., 1995[Fujihara, H., Mima, H. & Furukawa, N. (1995). J. Am. Chem. Soc. 117, 10153-10154.]), HF2 (Poleschner & Seppelt, 2004[Poleschner, H. & Seppelt, K. (2004). Chem. Eur. J. 10, 6565-6574.]) and Br (Varga et al., 2010[Varga, R. A., Kulcsar, M. & Silvestru, A. (2010). Acta Cryst. E66, o771.]) as counter-ions. This latter compound is essentially isostructural with 3 but with a stoichiometric amount of Br.

[Figure 1]
Figure 1
The mol­ecular structure showing 30% displacement ellipsoids. Hydrogen bonds are shown as dashed lines.

The geometry around Se is T-shaped with an N1—Se—N2 angle of 161.38 (7)°. The Se—N bonds give rise to two five-membered chelate rings and the central ring (C1–C6) is essentially planar (r.m.s. deviation = 0.002 Å) with two other atoms approximately in this plane [Se1, 0.065 (2) Å and C7 0.059 (2) Å]. The N1—Se1—N2 axis is twisted by 14.4 (2)° about this plane. The Se—N bond lengths are 2.1836 (17) and 2.1861 (17) Å and the Se⋯Br/Cl distance is 3.559 (3) Å, which is shorter than Σrvdw (Se, X) 3.75/3.65 Å for Br/Cl, providing a second coordination sphere.

In the extended structure, the water mol­ecule and anions are linked by hydrogen bonds (Table 1[link]) into a staggered chain in the b-axis direction. The packing also features weak C—H⋯Br inter­actions. In addition there are C—H⋯π inter­actions, which link the cations into dimers (shown in Fig. 2[link]). The overall packing is shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring. X1 = Br1/Cl1; X2 = Br2/Cl2.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W2⋯X1i 0.82 (2) 2.50 (2) 3.315 (2) 177 (4)
O1W—H1W1⋯X2 0.82 (2) 2.44 (2) 3.256 (2) 177 (3)
C7—H7B⋯Br1ii 0.99 2.89 3.869 (2) 171
C7—H7ACgiii 0.99 2.94 3.908 (3) 165
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{3\over 2}}, y+{\script{3\over 2}}, z+1]; (iii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
Diagram of a pair of cations showing the C—H⋯π inter­actions linking them into dimeric units. Atomic displacement parameters are at the 30% probability level.
[Figure 3]
Figure 3
Packing diagram viewed along [100] showing O—H⋯Br and C—H⋯Br inter­actions generating a staggered chain in the [010] direction.

Synthesis and crystallization

To a stirred solution of 1 (1.25 g, 4.61 mmol) in dry Et2O (15 ml) at 273 K, n-BuLi (2.88 ml, 4.60 mmol) was added dropwise via syringe under an inert argon atmosphere. After 30 min, the colour of the reaction mixture changed from colourless to yellowish, and elemental Se powder (0.36 g, 4.61 mmol) was added under a full flow of argon. After 6 h stirring at room temperature, saturated NH4Cl (50 ml) was added and oxygen gas was bubbled for 20 min. The whole mixture was extracted with Et2O and the organic phase was washed with H2O, dried over Na2SO4 and concentrated by rotary evaporator. The reaction scheme is shown in Fig. 4[link]. The resulting solid was dried over vacuum to afford 3 (0.94 g, 75% yield) as a yellowish solid (m.p. = 427–430 K). Colourless prisms of 3 were obtained by slow diffusion of hexane into a CH2Cl2 solution at room temperature. The water mol­ecule of crystallization was presumably absorbed from the atmosphere. 1H NMR: δ (p.p.m.) 7.20 (s, 3H, ArCH2), 4.12 (s, 4H, –CH2), 2.91 (s, 12H, NCH3). 13C NMR: δ (p.p.m.) 132.57, 132.40, 128.42, 125.94, 64.04, 48.98. 77Se NMR: δ (p.p.m.) 1201. Analysis calculated (%) for C12H19Cl/BrSeN2: C 42.67; H 6.34; N 7.95. Found: C 42.52; H 6.34; N 8.26.

[Figure 4]
Figure 4
Reaction scheme.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The anions have refined site occupancies of 0.399 (2)/0.601 (2) for Cl1/Br1 and 0.491 (2)/0.509 (2) for Cl2/Br2.

Table 2
Experimental details

Crystal data
Chemical formula C12H19N2Se+·Cl0.44/Br0.56·H2O
Mr 348.45
Crystal system, space group Monoclinic, C2/c
Temperature (K) 123
a, b, c (Å) 14.7635 (7), 11.2385 (3), 19.4113 (10)
β (°) 115.087 (6)
V3) 2916.9 (3)
Z 8
Radiation type Cu Kα
μ (mm−1) 5.92
Crystal size (mm) 0.38 × 0.24 × 0.15
 
Data collection
Diffractometer Agilent Xcalibur, Ruby, Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Tmin, Tmax 0.289, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6566, 2917, 2780
Rint 0.022
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.075, 1.09
No. of reflections 2917
No. of parameters 169
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.67, −0.36
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2017/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2,6-[Bis(dimethylamino)methyl]phenylselenenyl chloride/bromide monohydrate top
Crystal data top
C12H19N2Se+·Cl0.44/Br0.56·H2OF(000) = 1408
Mr = 348.45Dx = 1.587 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 14.7635 (7) ÅCell parameters from 4254 reflections
b = 11.2385 (3) Åθ = 5.0–75.3°
c = 19.4113 (10) ŵ = 5.92 mm1
β = 115.087 (6)°T = 123 K
V = 2916.9 (3) Å3Prism, colouress
Z = 80.38 × 0.24 × 0.15 mm
Data collection top
Agilent Xcalibur, Ruby, Gemini
diffractometer
2780 reflections with I > 2σ(I)
Detector resolution: 10.5081 pixels mm-1Rint = 0.022
ω scansθmax = 75.4°, θmin = 5.0°
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2012). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1816
Tmin = 0.289, Tmax = 1.000k = 149
6566 measured reflectionsl = 2324
2917 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: mixed
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0475P)2 + 1.6414P]
where P = (Fo2 + 2Fc2)/3
2917 reflections(Δ/σ)max = 0.002
169 parametersΔρmax = 0.67 e Å3
3 restraintsΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.99 Å. Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and 1.2 for all other C-bound H atoms. The hydrogen atoms attached to water were refined isotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Se10.75366 (2)0.43673 (2)0.62278 (2)0.01726 (10)
Br10.5000000.48925 (4)0.7500000.02635 (17)0.601 (4)
Br21.0000000.52385 (4)0.7500000.0332 (2)0.509 (5)
Cl10.5000000.48925 (4)0.7500000.02635 (17)0.399 (4)
Cl21.0000000.52385 (4)0.7500000.0332 (2)0.491 (5)
N10.70609 (13)0.51175 (15)0.50884 (10)0.0188 (3)
N20.75927 (13)0.32516 (15)0.71661 (9)0.0193 (3)
O1W1.12342 (16)0.75325 (18)0.84692 (10)0.0373 (4)
H1W11.091 (2)0.696 (2)0.8234 (18)0.038 (9)*
H1W21.092 (3)0.811 (2)0.824 (2)0.053 (11)*
C10.65376 (14)0.32552 (16)0.56659 (11)0.0166 (4)
C20.62026 (14)0.32262 (17)0.48798 (11)0.0184 (4)
C30.54910 (16)0.23754 (18)0.44704 (12)0.0218 (4)
H3A0.5250430.2332010.3933010.026*
C40.51333 (16)0.15873 (18)0.48529 (13)0.0233 (4)
H4A0.4645770.1010730.4571830.028*
C50.54826 (15)0.16341 (17)0.56450 (12)0.0210 (4)
H5A0.5237230.1089180.5899650.025*
C60.61907 (15)0.24827 (17)0.60566 (12)0.0174 (4)
C70.66883 (15)0.40967 (19)0.45535 (11)0.0207 (4)
H7A0.7250580.3711250.4489370.025*
H7B0.6197570.4376870.4049530.025*
C80.62515 (17)0.5973 (2)0.49817 (13)0.0259 (4)
H8A0.6012740.6331820.4474810.039*
H8B0.6507050.6598320.5369030.039*
H8C0.5698140.5557420.5030410.039*
C90.79051 (16)0.57326 (19)0.50219 (13)0.0239 (4)
H9A0.7680460.6068510.4510020.036*
H9B0.8446990.5163660.5112820.036*
H9C0.8147570.6373670.5398860.036*
C100.65818 (16)0.27041 (18)0.68983 (12)0.0212 (4)
H10A0.6125710.3245230.7002790.025*
H10B0.6623830.1945090.7169070.025*
C110.83732 (17)0.2335 (2)0.73130 (13)0.0259 (4)
H11A0.8418750.1832120.7738820.039*
H11B0.9018810.2723610.7439940.039*
H11C0.8198920.1843540.6857550.039*
C120.78343 (18)0.3997 (2)0.78520 (12)0.0265 (4)
H12A0.7856060.3496230.8272070.040*
H12B0.7319800.4610280.7742460.040*
H12C0.8486670.4376800.7994710.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.01777 (14)0.01528 (13)0.01697 (13)0.00190 (7)0.00566 (9)0.00137 (7)
Br10.0248 (2)0.0202 (2)0.0300 (2)0.0000.00769 (17)0.000
Br20.0205 (3)0.0250 (3)0.0441 (3)0.0000.0038 (2)0.000
Cl10.0248 (2)0.0202 (2)0.0300 (2)0.0000.00769 (17)0.000
Cl20.0205 (3)0.0250 (3)0.0441 (3)0.0000.0038 (2)0.000
N10.0184 (8)0.0187 (8)0.0194 (8)0.0009 (6)0.0080 (6)0.0018 (6)
N20.0236 (8)0.0171 (7)0.0156 (7)0.0002 (7)0.0069 (6)0.0005 (6)
O1W0.0454 (11)0.0365 (10)0.0249 (8)0.0029 (8)0.0100 (8)0.0004 (7)
C10.0145 (8)0.0120 (7)0.0197 (9)0.0010 (7)0.0039 (7)0.0019 (7)
C20.0175 (9)0.0161 (8)0.0193 (9)0.0040 (7)0.0056 (7)0.0011 (7)
C30.0197 (9)0.0204 (9)0.0196 (9)0.0028 (8)0.0027 (8)0.0026 (7)
C40.0197 (9)0.0166 (9)0.0280 (10)0.0001 (7)0.0047 (8)0.0044 (8)
C50.0212 (9)0.0143 (8)0.0271 (10)0.0010 (7)0.0100 (8)0.0011 (7)
C60.0173 (9)0.0141 (8)0.0202 (9)0.0033 (7)0.0075 (8)0.0002 (7)
C70.0218 (9)0.0205 (9)0.0175 (9)0.0021 (8)0.0061 (7)0.0003 (7)
C80.0274 (10)0.0197 (9)0.0338 (11)0.0069 (9)0.0160 (9)0.0066 (8)
C90.0213 (10)0.0251 (10)0.0276 (10)0.0031 (8)0.0126 (8)0.0035 (8)
C100.0246 (10)0.0194 (9)0.0197 (9)0.0010 (8)0.0096 (8)0.0001 (7)
C110.0268 (11)0.0256 (10)0.0225 (10)0.0060 (9)0.0078 (9)0.0022 (8)
C120.0340 (11)0.0263 (10)0.0185 (9)0.0039 (9)0.0104 (8)0.0058 (8)
Geometric parameters (Å, º) top
Se1—C11.8875 (19)C5—C61.390 (3)
Se1—N22.1836 (17)C5—H5A0.9500
Se1—N12.1861 (17)C6—C101.505 (3)
N1—C91.478 (3)C7—H7A0.9900
N1—C81.479 (3)C7—H7B0.9900
N1—C71.487 (3)C8—H8A0.9800
N2—C111.480 (3)C8—H8B0.9800
N2—C121.483 (3)C8—H8C0.9800
N2—C101.489 (3)C9—H9A0.9800
O1W—H1W10.818 (18)C9—H9B0.9800
O1W—H1W20.819 (18)C9—H9C0.9800
C1—C61.386 (3)C10—H10A0.9900
C1—C21.391 (3)C10—H10B0.9900
C2—C31.393 (3)C11—H11A0.9800
C2—C71.503 (3)C11—H11B0.9800
C3—C41.395 (3)C11—H11C0.9800
C3—H3A0.9500C12—H12A0.9800
C4—C51.400 (3)C12—H12B0.9800
C4—H4A0.9500C12—H12C0.9800
C1—Se1—N281.13 (8)N1—C7—H7A110.1
C1—Se1—N180.42 (8)C2—C7—H7A110.1
N2—Se1—N1161.38 (7)N1—C7—H7B110.1
C9—N1—C8110.17 (17)C2—C7—H7B110.1
C9—N1—C7112.08 (17)H7A—C7—H7B108.4
C8—N1—C7111.48 (17)N1—C8—H8A109.5
C9—N1—Se1110.34 (13)N1—C8—H8B109.5
C8—N1—Se1106.65 (13)H8A—C8—H8B109.5
C7—N1—Se1105.89 (12)N1—C8—H8C109.5
C11—N2—C12110.41 (17)H8A—C8—H8C109.5
C11—N2—C10111.28 (17)H8B—C8—H8C109.5
C12—N2—C10111.76 (17)N1—C9—H9A109.5
C11—N2—Se1108.14 (13)N1—C9—H9B109.5
C12—N2—Se1109.52 (13)H9A—C9—H9B109.5
C10—N2—Se1105.55 (12)N1—C9—H9C109.5
H1W1—O1W—H1W2105 (3)H9A—C9—H9C109.5
C6—C1—C2122.94 (18)H9B—C9—H9C109.5
C6—C1—Se1118.56 (15)N2—C10—C6108.28 (16)
C2—C1—Se1118.48 (15)N2—C10—H10A110.0
C1—C2—C3118.25 (19)C6—C10—H10A110.0
C1—C2—C7115.85 (17)N2—C10—H10B110.0
C3—C2—C7125.84 (19)C6—C10—H10B110.0
C2—C3—C4119.73 (19)H10A—C10—H10B108.4
C2—C3—H3A120.1N2—C11—H11A109.5
C4—C3—H3A120.1N2—C11—H11B109.5
C3—C4—C5120.94 (19)H11A—C11—H11B109.5
C3—C4—H4A119.5N2—C11—H11C109.5
C5—C4—H4A119.5H11A—C11—H11C109.5
C6—C5—C4119.61 (19)H11B—C11—H11C109.5
C6—C5—H5A120.2N2—C12—H12A109.5
C4—C5—H5A120.2N2—C12—H12B109.5
C1—C6—C5118.53 (19)H12A—C12—H12B109.5
C1—C6—C10115.46 (17)N2—C12—H12C109.5
C5—C6—C10125.89 (19)H12A—C12—H12C109.5
N1—C7—C2108.02 (16)H12B—C12—H12C109.5
N2—Se1—C1—C611.53 (15)C2—C1—C6—C10175.68 (17)
N1—Se1—C1—C6165.94 (16)Se1—C1—C6—C106.2 (2)
N2—Se1—C1—C2166.72 (16)C4—C5—C6—C10.6 (3)
N1—Se1—C1—C215.81 (14)C4—C5—C6—C10175.25 (19)
C6—C1—C2—C30.4 (3)C9—N1—C7—C2154.58 (17)
Se1—C1—C2—C3177.74 (15)C8—N1—C7—C281.4 (2)
C6—C1—C2—C7177.69 (18)Se1—N1—C7—C234.21 (17)
Se1—C1—C2—C70.5 (2)C1—C2—C7—N125.4 (2)
C1—C2—C3—C40.3 (3)C3—C2—C7—N1157.57 (19)
C7—C2—C3—C4177.24 (19)C11—N2—C10—C682.82 (19)
C2—C3—C4—C50.3 (3)C12—N2—C10—C6153.24 (17)
C3—C4—C5—C60.5 (3)Se1—N2—C10—C634.26 (17)
C2—C1—C6—C50.6 (3)C1—C6—C10—N228.9 (2)
Se1—C1—C6—C5177.58 (14)C5—C6—C10—N2155.18 (19)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1W—H1W2···X1i0.82 (2)2.50 (2)3.315 (2)177 (4)
O1W—H1W1···X20.82 (2)2.44 (2)3.256 (2)177 (3)
C7—H7B···Br1ii0.992.893.869 (2)171
C7—H7A···Cgiii0.992.943.908 (3)165
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+3/2, y+3/2, z+1; (iii) x+3/2, y+1/2, z+1.
 

Funding information

RJB is grateful for the NSF award 1205608, Partnership for Reduced Dimensional Materials for partial funding of this research as well as the Howard University Nanoscience Facility access to liquid nitro­gen. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer. HBS is grateful to Department of Science and Technology, New Delhi, for a J. C. Bose Fellowship.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationFujihara, H., Mima, H. & Furukawa, N. (1995). J. Am. Chem. Soc. 117, 10153–10154.  CSD CrossRef CAS Web of Science Google Scholar
First citationPoleschner, H. & Seppelt, K. (2004). Chem. Eur. J. 10, 6565–6574.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVarga, R. A., Kulcsar, M. & Silvestru, A. (2010). Acta Cryst. E66, o771.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]