organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-Bromo-2-(1,4-di­bromo-4-methyl­cyclo­hex­yl)-6-methyl­heptan-4-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie des Substances Naturelles, "Unité Associé au CNRST (URAC16)", Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, Université Cadi Ayyad, 40000 Marrakech, Morocco, and bLaboratoire de Chimie de Coordination, 205 Route de Narbone, 31077 Toulouse, Cedex 04, France
*Correspondence e-mail: mazoir17@gmail.com

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 16 October 2017; accepted 2 November 2017; online 7 November 2017)

The title compound, C15H25Br3O, was synthesized in one step from a mixture of α-atlantone [2-methyl-6-(4-methyl­cyclo­hex-3-en-1-yl)hepta-2,5-dien-4-one] and γ-atlantone [2-methyl-6-(4-methyl­cyclo­hex-3-en-1-yl­idene)hept-2-en-4-one], which were isolated from an essential oil of the Atlas cedar (Cedrus Atlantica). The mol­ecule is built up from the bromo ethyl cyclo­hexane ring, which has a substituent bromo­methyl­hexa­none group. The cyclo­hexane ring adopts a chair conformation. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming zigzag chains parallel to [100].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

α-Atlantone and γ-atlantone are constituents (5–6%) of the essential oil of the Atlas cedar (Cedrus Atlantica) (Plattier & Teisseire,1974[Plattier, M. & Teisseire, P. (1974). Recherches, 19, 131-144.]; Mazoir et al., 2016[Mazoir, N., Dakir, M., Tebbaa, M., Loughzail, M. & Benharref, A. (2016). Tetrahedron Lett. 57, 278-280.]). The reactivity of these sesquiterpenes and their derivatives has been studied by our team (Loughzail et al., 2009[Loughzail, M., Mazoir, N., Maya, C. M., Berraho, M., Benharref, A. & Bouhmaida, N. (2009). Acta Cryst. E65, o4.]; Mazoir et al., 2009[Mazoir, N., El Ammari, L., Bouhmaida, N., Dahaoui, S., Benharref, A. & Berraho, M. (2009). Acta Cryst. E65, o1269-o1270.], 2016[Mazoir, N., Dakir, M., Tebbaa, M., Loughzail, M. & Benharref, A. (2016). Tetrahedron Lett. 57, 278-280.]) in order to prepare new products with biological properties. Indeed, these compounds have been tested for their potential anti­fungal activity against the phytopathogen Botrytis cinerea (Daoubi et al.,2004[Daoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest Manag. Sci. 60, 927-932.]).

Herein, we report on the synthesis and crystal structure of the title compound, 6-bromo-2-(1,4-di­bromo-4-methyl­cyclo­hex­yl)-6-methyl­heptan-4-one. The bromo ethyl cyclo­hexane ring has a bromo­methyl­hexa­none group as a substituent (Fig. 1[link]). The cyclo­hexane ring has a chair conformation as indicated by the total puckering amplitude QT = 0.486 (10) Å and spherical polar angle θ = 1.6 (12)° with φ = 105 (27)°.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the mol­ecule of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In the crystal, the mol­ecules are linked by C—H⋯O hydrogen bonds, forming zigzag chains parallel to [100] (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O1i 0.97 2.43 (1) 3.377 (12) 167
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
A partial view down [010] of the crystal packing of the title compound, showing the C—H⋯O hydrogen bonds as blue lines (see Table 1[link]).

Synthesis and crystallization

In a 100 ml reactor equipped with a magnetic stirrer, di­chloro­methane (40 ml) was added to 2 g (9 mmol) of a mixture of α- and γ-atlantone. 15 ml of 33% bromo­hydric acid in acetic acid were then added dropwise with stirring. The reaction mixture was stirred for 1 h, then the solvent was removed and the residue obtained was chromatographed on silica, eluting with petroleum ether, which allowed the isolation of the title compound (yield 1.5 g, 73%). The title compound was recrystallized from pentane at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. With the Flack parameter (Flack & Bernardinelli, 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]) close to 0.5, we can not determine the absolute structure. The synthesis leads to a racemic compound. Most likely, we have an inversion twin, with two enanti­omers present in the crystal.

Table 2
Experimental details

Crystal data
Chemical formula C15H25Br3O
Mr 461.08
Crystal system, space group Orthorhombic, P212121
Temperature (K) 173
a, b, c (Å) 9.2060 (11), 9.6974 (12), 19.605 (3)
V3) 1750.2 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 6.91
Crystal size (mm) 0.37 × 0.25 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.])
Tmin, Tmax 0.245, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 8603, 2872, 2532
Rint 0.053
(sin θ/λ)max−1) 0.581
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.090, 1.08
No. of reflections 2872
No. of parameters 177
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.15, −0.55
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.52 (3)
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

6-Bromo-2-(1,4-dibromo-4-methylcyclohexyl)-6-methylheptan-4-one top
Crystal data top
C15H25Br3ODx = 1.750 Mg m3
Mr = 461.08Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 4050 reflections
a = 9.2060 (11) Åθ = 2.3–24.3°
b = 9.6974 (12) ŵ = 6.91 mm1
c = 19.605 (3) ÅT = 173 K
V = 1750.2 (4) Å3Fragment, colourless
Z = 40.37 × 0.25 × 0.07 mm
F(000) = 912
Data collection top
Bruker APEXII CCD
diffractometer
2872 independent reflections
Radiation source: fine-focus sealed tube2532 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
φ and ω scansθmax = 24.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1010
Tmin = 0.245, Tmax = 0.745k = 1111
8603 measured reflectionsl = 2222
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0404P)2 + 1.8613P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max < 0.001
S = 1.08Δρmax = 1.15 e Å3
2872 reflectionsΔρmin = 0.55 e Å3
177 parametersAbsolute structure: Refined as an inversion twin
0 restraintsAbsolute structure parameter: 0.52 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0606 (13)0.0653 (10)0.3905 (6)0.046 (3)
H1A0.03420.07620.37070.069*
H1B0.05150.05160.43880.069*
H1C0.11720.14660.38190.069*
C20.1345 (10)0.0577 (9)0.3591 (5)0.032 (2)
H20.22850.06540.38220.038*
C30.0507 (12)0.1918 (9)0.3770 (5)0.037 (3)
H3A0.04920.25080.33700.045*
H3B0.04900.16790.38760.045*
C40.1123 (10)0.2716 (9)0.4353 (5)0.024 (2)
C50.0179 (10)0.3905 (8)0.4577 (5)0.025 (2)
H5A0.07360.35310.47390.030*
H5B0.00350.44630.41790.030*
C60.0783 (9)0.4849 (7)0.5129 (5)0.027 (2)
C70.2130 (11)0.5610 (10)0.4895 (7)0.047 (3)
H7A0.29000.49620.48170.071*
H7B0.24210.62560.52400.071*
H7C0.19220.60960.44790.071*
C80.0986 (10)0.4182 (9)0.5837 (5)0.024 (2)
H8A0.00810.37930.59860.036*
H8B0.12970.48700.61580.036*
H8C0.17060.34680.58090.036*
C1'0.1698 (9)0.0440 (8)0.2835 (5)0.024 (2)
C7'0.2495 (9)0.0911 (8)0.2673 (6)0.025 (2)
H7'10.33210.09920.29780.030*
H7'20.18460.16740.27700.030*
C6'0.3031 (10)0.1052 (8)0.1948 (5)0.023 (2)
H6'10.22000.12160.16550.028*
H6'20.36500.18590.19220.028*
C5'0.3866 (9)0.0173 (9)0.1670 (5)0.028 (2)
C3'0.3048 (11)0.1524 (9)0.1821 (6)0.033 (3)
H3'10.36760.22960.17100.040*
H3'20.22040.15770.15250.040*
C2'0.2560 (10)0.1661 (8)0.2548 (6)0.032 (3)
H2'10.19660.24830.25860.039*
H2'20.34120.17980.28310.039*
C150.4196 (11)0.0017 (9)0.0926 (5)0.030 (2)
H15A0.48140.07690.08590.045*
H15B0.46790.08310.07630.045*
H15C0.33070.01110.06780.045*
O10.2291 (8)0.2476 (7)0.4609 (5)0.050 (2)
Br10.02173 (9)0.03945 (9)0.23253 (5)0.0297 (2)
Br20.57752 (10)0.02694 (9)0.21677 (6)0.0367 (3)
Br30.07495 (12)0.62940 (9)0.52607 (6)0.0417 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.052 (7)0.051 (6)0.036 (7)0.014 (5)0.007 (6)0.002 (5)
C20.025 (5)0.032 (5)0.039 (7)0.009 (4)0.005 (4)0.011 (5)
C30.038 (7)0.042 (5)0.031 (7)0.016 (5)0.004 (5)0.012 (5)
C40.026 (6)0.025 (4)0.019 (6)0.001 (4)0.003 (4)0.001 (4)
C50.022 (5)0.026 (4)0.026 (6)0.003 (4)0.004 (4)0.002 (4)
C60.021 (4)0.016 (4)0.043 (7)0.000 (4)0.001 (4)0.006 (4)
C70.031 (6)0.033 (5)0.078 (10)0.007 (4)0.008 (6)0.004 (6)
C80.027 (5)0.028 (4)0.018 (6)0.003 (4)0.006 (4)0.007 (4)
C1'0.021 (4)0.023 (4)0.028 (6)0.002 (4)0.003 (4)0.004 (5)
C7'0.023 (5)0.020 (4)0.032 (7)0.002 (3)0.002 (5)0.001 (4)
C6'0.026 (6)0.021 (4)0.022 (6)0.001 (4)0.001 (4)0.005 (4)
C5'0.020 (5)0.028 (5)0.035 (7)0.001 (4)0.002 (4)0.000 (4)
C3'0.026 (6)0.023 (5)0.050 (8)0.006 (4)0.001 (5)0.007 (5)
C2'0.027 (5)0.016 (4)0.053 (9)0.004 (4)0.007 (5)0.004 (4)
C150.034 (5)0.032 (5)0.024 (6)0.002 (4)0.005 (5)0.005 (4)
O10.041 (5)0.043 (4)0.065 (7)0.023 (4)0.027 (4)0.022 (4)
Br10.0244 (5)0.0343 (4)0.0305 (6)0.0016 (4)0.0050 (4)0.0067 (5)
Br20.0239 (5)0.0375 (5)0.0488 (8)0.0001 (4)0.0044 (5)0.0034 (5)
Br30.0411 (6)0.0266 (4)0.0575 (8)0.0071 (4)0.0018 (6)0.0087 (5)
Geometric parameters (Å, º) top
C1—C21.505 (14)C8—H8B0.9600
C1—H1A0.9600C8—H8C0.9600
C1—H1B0.9600C1'—C2'1.532 (12)
C1—H1C0.9600C1'—C7'1.535 (11)
C2—C1'1.523 (14)C1'—Br12.027 (9)
C2—C31.552 (12)C7'—C6'1.511 (14)
C2—H20.9800C7'—H7'10.9700
C3—C41.492 (13)C7'—H7'20.9700
C3—H3A0.9700C6'—C5'1.517 (12)
C3—H3B0.9700C6'—H6'10.9700
C4—O11.209 (11)C6'—H6'20.9700
C4—C51.509 (12)C5'—C151.498 (14)
C5—C61.522 (12)C5'—C3'1.540 (12)
C5—H5A0.9700C5'—Br22.012 (9)
C5—H5B0.9700C3'—C2'1.501 (15)
C6—C71.515 (13)C3'—H3'10.9700
C6—C81.544 (13)C3'—H3'20.9700
C6—Br32.005 (8)C2'—H2'10.9700
C7—H7A0.9600C2'—H2'20.9700
C7—H7B0.9600C15—H15A0.9600
C7—H7C0.9600C15—H15B0.9600
C8—H8A0.9600C15—H15C0.9600
C2—C1—H1A109.5H8B—C8—H8C109.5
C2—C1—H1B109.5C2—C1'—C2'113.6 (8)
H1A—C1—H1B109.5C2—C1'—C7'112.2 (8)
C2—C1—H1C109.5C2'—C1'—C7'109.6 (7)
H1A—C1—H1C109.5C2—C1'—Br1107.2 (6)
H1B—C1—H1C109.5C2'—C1'—Br1106.7 (6)
C1—C2—C1'115.2 (8)C7'—C1'—Br1107.2 (6)
C1—C2—C3110.3 (8)C6'—C7'—C1'115.3 (8)
C1'—C2—C3113.6 (8)C6'—C7'—H7'1108.5
C1—C2—H2105.7C1'—C7'—H7'1108.5
C1'—C2—H2105.7C6'—C7'—H7'2108.5
C3—C2—H2105.7C1'—C7'—H7'2108.5
C4—C3—C2114.8 (8)H7'1—C7'—H7'2107.5
C4—C3—H3A108.6C7'—C6'—C5'115.7 (7)
C2—C3—H3A108.6C7'—C6'—H6'1108.4
C4—C3—H3B108.6C5'—C6'—H6'1108.4
C2—C3—H3B108.6C7'—C6'—H6'2108.4
H3A—C3—H3B107.5C5'—C6'—H6'2108.4
O1—C4—C3123.8 (8)H6'1—C6'—H6'2107.4
O1—C4—C5122.6 (9)C15—C5'—C6'112.0 (8)
C3—C4—C5113.6 (8)C15—C5'—C3'111.8 (8)
C4—C5—C6117.1 (8)C6'—C5'—C3'110.5 (7)
C4—C5—H5A108.0C15—C5'—Br2107.5 (6)
C6—C5—H5A108.0C6'—C5'—Br2107.8 (6)
C4—C5—H5B108.0C3'—C5'—Br2107.1 (6)
C6—C5—H5B108.0C2'—C3'—C5'113.8 (8)
H5A—C5—H5B107.3C2'—C3'—H3'1108.8
C7—C6—C5112.2 (9)C5'—C3'—H3'1108.8
C7—C6—C8112.2 (8)C2'—C3'—H3'2108.8
C5—C6—C8115.6 (7)C5'—C3'—H3'2108.8
C7—C6—Br3105.9 (5)H3'1—C3'—H3'2107.7
C5—C6—Br3104.8 (6)C3'—C2'—C1'115.8 (8)
C8—C6—Br3105.2 (6)C3'—C2'—H2'1108.3
C6—C7—H7A109.5C1'—C2'—H2'1108.3
C6—C7—H7B109.5C3'—C2'—H2'2108.3
H7A—C7—H7B109.5C1'—C2'—H2'2108.3
C6—C7—H7C109.5H2'1—C2'—H2'2107.4
H7A—C7—H7C109.5C5'—C15—H15A109.5
H7B—C7—H7C109.5C5'—C15—H15B109.5
C6—C8—H8A109.5H15A—C15—H15B109.5
C6—C8—H8B109.5C5'—C15—H15C109.5
H8A—C8—H8B109.5H15A—C15—H15C109.5
C6—C8—H8C109.5H15B—C15—H15C109.5
H8A—C8—H8C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O1i0.972.43 (1)3.377 (12)167
Symmetry code: (i) x1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank the Laboratoire de Chimie de Coordination, UPR-CNRS 8241 Toulouse for the X-ray measurements.

References

First citationBruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLoughzail, M., Mazoir, N., Maya, C. M., Berraho, M., Benharref, A. & Bouhmaida, N. (2009). Acta Cryst. E65, o4.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMazoir, N., Dakir, M., Tebbaa, M., Loughzail, M. & Benharref, A. (2016). Tetrahedron Lett. 57, 278–280.  Web of Science CrossRef CAS Google Scholar
First citationMazoir, N., El Ammari, L., Bouhmaida, N., Dahaoui, S., Benharref, A. & Berraho, M. (2009). Acta Cryst. E65, o1269–o1270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPlattier, M. & Teisseire, P. (1974). Recherches, 19, 131–144.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]