organic compounds
6-Bromo-2-(1,4-dibromo-4-methylcyclohexyl)-6-methylheptan-4-one
aLaboratoire de Chimie des Substances Naturelles, "Unité Associé au CNRST (URAC16)", Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, Université Cadi Ayyad, 40000 Marrakech, Morocco, and bLaboratoire de Chimie de Coordination, 205 Route de Narbone, 31077 Toulouse, Cedex 04, France
*Correspondence e-mail: mazoir17@gmail.com
The title compound, C15H25Br3O, was synthesized in one step from a mixture of α-atlantone [2-methyl-6-(4-methylcyclohex-3-en-1-yl)hepta-2,5-dien-4-one] and γ-atlantone [2-methyl-6-(4-methylcyclohex-3-en-1-ylidene)hept-2-en-4-one], which were isolated from an essential oil of the Atlas cedar (Cedrus Atlantica). The molecule is built up from the bromo ethyl cyclohexane ring, which has a substituent bromomethylhexanone group. The cyclohexane ring adopts a chair conformation. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming zigzag chains parallel to [100].
Keywords: crystal structure; α-atlantone and γ-atlantone; Atlas cedar (Cedrus Atlantica); C—H⋯O hydrogen bonding.
CCDC reference: 1583652
Structure description
α-Atlantone and γ-atlantone are constituents (5–6%) of the essential oil of the Atlas cedar (Cedrus Atlantica) (Plattier & Teisseire,1974; Mazoir et al., 2016). The reactivity of these sesquiterpenes and their derivatives has been studied by our team (Loughzail et al., 2009; Mazoir et al., 2009, 2016) in order to prepare new products with biological properties. Indeed, these compounds have been tested for their potential antifungal activity against the phytopathogen Botrytis cinerea (Daoubi et al.,2004).
Herein, we report on the synthesis and ). The cyclohexane ring has a chair conformation as indicated by the total puckering amplitude QT = 0.486 (10) Å and spherical polar angle θ = 1.6 (12)° with φ = 105 (27)°.
of the title compound, 6-bromo-2-(1,4-dibromo-4-methylcyclohexyl)-6-methylheptan-4-one. The bromo ethyl cyclohexane ring has a bromomethylhexanone group as a substituent (Fig. 1In the crystal, the molecules are linked by C—H⋯O hydrogen bonds, forming zigzag chains parallel to [100] (Table 1, Fig. 2).
Synthesis and crystallization
In a 100 ml reactor equipped with a magnetic stirrer, dichloromethane (40 ml) was added to 2 g (9 mmol) of a mixture of α- and γ-atlantone. 15 ml of 33% bromohydric acid in acetic acid were then added dropwise with stirring. The reaction mixture was stirred for 1 h, then the solvent was removed and the residue obtained was chromatographed on silica, eluting with petroleum ether, which allowed the isolation of the title compound (yield 1.5 g, 73%). The title compound was recrystallized from pentane at room temperature.
Refinement
Crystal data, data collection and structure . With the (Flack & Bernardinelli, 2000) close to 0.5, we can not determine the The synthesis leads to a Most likely, we have an with two enantiomers present in the crystal.
details are summarized in Table 2Structural data
CCDC reference: 1583652
https://doi.org/10.1107/S2414314617015966/ff4021sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617015966/ff4021Isup2.hkl
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).C15H25Br3O | Dx = 1.750 Mg m−3 |
Mr = 461.08 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 4050 reflections |
a = 9.2060 (11) Å | θ = 2.3–24.3° |
b = 9.6974 (12) Å | µ = 6.91 mm−1 |
c = 19.605 (3) Å | T = 173 K |
V = 1750.2 (4) Å3 | Fragment, colourless |
Z = 4 | 0.37 × 0.25 × 0.07 mm |
F(000) = 912 |
Bruker APEXII CCD diffractometer | 2872 independent reflections |
Radiation source: fine-focus sealed tube | 2532 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
φ and ω scans | θmax = 24.4°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | h = −10→10 |
Tmin = 0.245, Tmax = 0.745 | k = −11→11 |
8603 measured reflections | l = −22→22 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.042 | w = 1/[σ2(Fo2) + (0.0404P)2 + 1.8613P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.090 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 1.15 e Å−3 |
2872 reflections | Δρmin = −0.55 e Å−3 |
177 parameters | Absolute structure: Refined as an inversion twin |
0 restraints | Absolute structure parameter: 0.52 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin |
x | y | z | Uiso*/Ueq | ||
C1 | 0.0606 (13) | −0.0653 (10) | 0.3905 (6) | 0.046 (3) | |
H1A | −0.0342 | −0.0762 | 0.3707 | 0.069* | |
H1B | 0.0515 | −0.0516 | 0.4388 | 0.069* | |
H1C | 0.1172 | −0.1466 | 0.3819 | 0.069* | |
C2 | 0.1345 (10) | 0.0577 (9) | 0.3591 (5) | 0.032 (2) | |
H2 | 0.2285 | 0.0654 | 0.3822 | 0.038* | |
C3 | 0.0507 (12) | 0.1918 (9) | 0.3770 (5) | 0.037 (3) | |
H3A | 0.0492 | 0.2508 | 0.3370 | 0.045* | |
H3B | −0.0490 | 0.1679 | 0.3876 | 0.045* | |
C4 | 0.1123 (10) | 0.2716 (9) | 0.4353 (5) | 0.024 (2) | |
C5 | 0.0179 (10) | 0.3905 (8) | 0.4577 (5) | 0.025 (2) | |
H5A | −0.0736 | 0.3531 | 0.4739 | 0.030* | |
H5B | −0.0035 | 0.4463 | 0.4179 | 0.030* | |
C6 | 0.0783 (9) | 0.4849 (7) | 0.5129 (5) | 0.027 (2) | |
C7 | 0.2130 (11) | 0.5610 (10) | 0.4895 (7) | 0.047 (3) | |
H7A | 0.2900 | 0.4962 | 0.4817 | 0.071* | |
H7B | 0.2421 | 0.6256 | 0.5240 | 0.071* | |
H7C | 0.1922 | 0.6096 | 0.4479 | 0.071* | |
C8 | 0.0986 (10) | 0.4182 (9) | 0.5837 (5) | 0.024 (2) | |
H8A | 0.0081 | 0.3793 | 0.5986 | 0.036* | |
H8B | 0.1297 | 0.4870 | 0.6158 | 0.036* | |
H8C | 0.1706 | 0.3468 | 0.5809 | 0.036* | |
C1' | 0.1698 (9) | 0.0440 (8) | 0.2835 (5) | 0.024 (2) | |
C7' | 0.2495 (9) | −0.0911 (8) | 0.2673 (6) | 0.025 (2) | |
H7'1 | 0.3321 | −0.0992 | 0.2978 | 0.030* | |
H7'2 | 0.1846 | −0.1674 | 0.2770 | 0.030* | |
C6' | 0.3031 (10) | −0.1052 (8) | 0.1948 (5) | 0.023 (2) | |
H6'1 | 0.2200 | −0.1216 | 0.1655 | 0.028* | |
H6'2 | 0.3650 | −0.1859 | 0.1922 | 0.028* | |
C5' | 0.3866 (9) | 0.0173 (9) | 0.1670 (5) | 0.028 (2) | |
C3' | 0.3048 (11) | 0.1524 (9) | 0.1821 (6) | 0.033 (3) | |
H3'1 | 0.3676 | 0.2296 | 0.1710 | 0.040* | |
H3'2 | 0.2204 | 0.1577 | 0.1525 | 0.040* | |
C2' | 0.2560 (10) | 0.1661 (8) | 0.2548 (6) | 0.032 (3) | |
H2'1 | 0.1966 | 0.2483 | 0.2586 | 0.039* | |
H2'2 | 0.3412 | 0.1798 | 0.2831 | 0.039* | |
C15 | 0.4196 (11) | 0.0017 (9) | 0.0926 (5) | 0.030 (2) | |
H15A | 0.4814 | −0.0769 | 0.0859 | 0.045* | |
H15B | 0.4679 | 0.0831 | 0.0763 | 0.045* | |
H15C | 0.3307 | −0.0111 | 0.0678 | 0.045* | |
O1 | 0.2291 (8) | 0.2476 (7) | 0.4609 (5) | 0.050 (2) | |
Br1 | −0.02173 (9) | 0.03945 (9) | 0.23253 (5) | 0.0297 (2) | |
Br2 | 0.57752 (10) | 0.02694 (9) | 0.21677 (6) | 0.0367 (3) | |
Br3 | −0.07495 (12) | 0.62940 (9) | 0.52607 (6) | 0.0417 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.052 (7) | 0.051 (6) | 0.036 (7) | 0.014 (5) | 0.007 (6) | 0.002 (5) |
C2 | 0.025 (5) | 0.032 (5) | 0.039 (7) | 0.009 (4) | −0.005 (4) | −0.011 (5) |
C3 | 0.038 (7) | 0.042 (5) | 0.031 (7) | 0.016 (5) | −0.004 (5) | −0.012 (5) |
C4 | 0.026 (6) | 0.025 (4) | 0.019 (6) | 0.001 (4) | 0.003 (4) | 0.001 (4) |
C5 | 0.022 (5) | 0.026 (4) | 0.026 (6) | 0.003 (4) | 0.004 (4) | 0.002 (4) |
C6 | 0.021 (4) | 0.016 (4) | 0.043 (7) | 0.000 (4) | −0.001 (4) | −0.006 (4) |
C7 | 0.031 (6) | 0.033 (5) | 0.078 (10) | −0.007 (4) | 0.008 (6) | −0.004 (6) |
C8 | 0.027 (5) | 0.028 (4) | 0.018 (6) | 0.003 (4) | −0.006 (4) | 0.007 (4) |
C1' | 0.021 (4) | 0.023 (4) | 0.028 (6) | 0.002 (4) | −0.003 (4) | −0.004 (5) |
C7' | 0.023 (5) | 0.020 (4) | 0.032 (7) | −0.002 (3) | 0.002 (5) | 0.001 (4) |
C6' | 0.026 (6) | 0.021 (4) | 0.022 (6) | 0.001 (4) | 0.001 (4) | −0.005 (4) |
C5' | 0.020 (5) | 0.028 (5) | 0.035 (7) | −0.001 (4) | −0.002 (4) | 0.000 (4) |
C3' | 0.026 (6) | 0.023 (5) | 0.050 (8) | 0.006 (4) | 0.001 (5) | 0.007 (5) |
C2' | 0.027 (5) | 0.016 (4) | 0.053 (9) | 0.004 (4) | −0.007 (5) | −0.004 (4) |
C15 | 0.034 (5) | 0.032 (5) | 0.024 (6) | −0.002 (4) | 0.005 (5) | 0.005 (4) |
O1 | 0.041 (5) | 0.043 (4) | 0.065 (7) | 0.023 (4) | −0.027 (4) | −0.022 (4) |
Br1 | 0.0244 (5) | 0.0343 (4) | 0.0305 (6) | 0.0016 (4) | −0.0050 (4) | −0.0067 (5) |
Br2 | 0.0239 (5) | 0.0375 (5) | 0.0488 (8) | −0.0001 (4) | −0.0044 (5) | −0.0034 (5) |
Br3 | 0.0411 (6) | 0.0266 (4) | 0.0575 (8) | 0.0071 (4) | 0.0018 (6) | −0.0087 (5) |
C1—C2 | 1.505 (14) | C8—H8B | 0.9600 |
C1—H1A | 0.9600 | C8—H8C | 0.9600 |
C1—H1B | 0.9600 | C1'—C2' | 1.532 (12) |
C1—H1C | 0.9600 | C1'—C7' | 1.535 (11) |
C2—C1' | 1.523 (14) | C1'—Br1 | 2.027 (9) |
C2—C3 | 1.552 (12) | C7'—C6' | 1.511 (14) |
C2—H2 | 0.9800 | C7'—H7'1 | 0.9700 |
C3—C4 | 1.492 (13) | C7'—H7'2 | 0.9700 |
C3—H3A | 0.9700 | C6'—C5' | 1.517 (12) |
C3—H3B | 0.9700 | C6'—H6'1 | 0.9700 |
C4—O1 | 1.209 (11) | C6'—H6'2 | 0.9700 |
C4—C5 | 1.509 (12) | C5'—C15 | 1.498 (14) |
C5—C6 | 1.522 (12) | C5'—C3' | 1.540 (12) |
C5—H5A | 0.9700 | C5'—Br2 | 2.012 (9) |
C5—H5B | 0.9700 | C3'—C2' | 1.501 (15) |
C6—C7 | 1.515 (13) | C3'—H3'1 | 0.9700 |
C6—C8 | 1.544 (13) | C3'—H3'2 | 0.9700 |
C6—Br3 | 2.005 (8) | C2'—H2'1 | 0.9700 |
C7—H7A | 0.9600 | C2'—H2'2 | 0.9700 |
C7—H7B | 0.9600 | C15—H15A | 0.9600 |
C7—H7C | 0.9600 | C15—H15B | 0.9600 |
C8—H8A | 0.9600 | C15—H15C | 0.9600 |
C2—C1—H1A | 109.5 | H8B—C8—H8C | 109.5 |
C2—C1—H1B | 109.5 | C2—C1'—C2' | 113.6 (8) |
H1A—C1—H1B | 109.5 | C2—C1'—C7' | 112.2 (8) |
C2—C1—H1C | 109.5 | C2'—C1'—C7' | 109.6 (7) |
H1A—C1—H1C | 109.5 | C2—C1'—Br1 | 107.2 (6) |
H1B—C1—H1C | 109.5 | C2'—C1'—Br1 | 106.7 (6) |
C1—C2—C1' | 115.2 (8) | C7'—C1'—Br1 | 107.2 (6) |
C1—C2—C3 | 110.3 (8) | C6'—C7'—C1' | 115.3 (8) |
C1'—C2—C3 | 113.6 (8) | C6'—C7'—H7'1 | 108.5 |
C1—C2—H2 | 105.7 | C1'—C7'—H7'1 | 108.5 |
C1'—C2—H2 | 105.7 | C6'—C7'—H7'2 | 108.5 |
C3—C2—H2 | 105.7 | C1'—C7'—H7'2 | 108.5 |
C4—C3—C2 | 114.8 (8) | H7'1—C7'—H7'2 | 107.5 |
C4—C3—H3A | 108.6 | C7'—C6'—C5' | 115.7 (7) |
C2—C3—H3A | 108.6 | C7'—C6'—H6'1 | 108.4 |
C4—C3—H3B | 108.6 | C5'—C6'—H6'1 | 108.4 |
C2—C3—H3B | 108.6 | C7'—C6'—H6'2 | 108.4 |
H3A—C3—H3B | 107.5 | C5'—C6'—H6'2 | 108.4 |
O1—C4—C3 | 123.8 (8) | H6'1—C6'—H6'2 | 107.4 |
O1—C4—C5 | 122.6 (9) | C15—C5'—C6' | 112.0 (8) |
C3—C4—C5 | 113.6 (8) | C15—C5'—C3' | 111.8 (8) |
C4—C5—C6 | 117.1 (8) | C6'—C5'—C3' | 110.5 (7) |
C4—C5—H5A | 108.0 | C15—C5'—Br2 | 107.5 (6) |
C6—C5—H5A | 108.0 | C6'—C5'—Br2 | 107.8 (6) |
C4—C5—H5B | 108.0 | C3'—C5'—Br2 | 107.1 (6) |
C6—C5—H5B | 108.0 | C2'—C3'—C5' | 113.8 (8) |
H5A—C5—H5B | 107.3 | C2'—C3'—H3'1 | 108.8 |
C7—C6—C5 | 112.2 (9) | C5'—C3'—H3'1 | 108.8 |
C7—C6—C8 | 112.2 (8) | C2'—C3'—H3'2 | 108.8 |
C5—C6—C8 | 115.6 (7) | C5'—C3'—H3'2 | 108.8 |
C7—C6—Br3 | 105.9 (5) | H3'1—C3'—H3'2 | 107.7 |
C5—C6—Br3 | 104.8 (6) | C3'—C2'—C1' | 115.8 (8) |
C8—C6—Br3 | 105.2 (6) | C3'—C2'—H2'1 | 108.3 |
C6—C7—H7A | 109.5 | C1'—C2'—H2'1 | 108.3 |
C6—C7—H7B | 109.5 | C3'—C2'—H2'2 | 108.3 |
H7A—C7—H7B | 109.5 | C1'—C2'—H2'2 | 108.3 |
C6—C7—H7C | 109.5 | H2'1—C2'—H2'2 | 107.4 |
H7A—C7—H7C | 109.5 | C5'—C15—H15A | 109.5 |
H7B—C7—H7C | 109.5 | C5'—C15—H15B | 109.5 |
C6—C8—H8A | 109.5 | H15A—C15—H15B | 109.5 |
C6—C8—H8B | 109.5 | C5'—C15—H15C | 109.5 |
H8A—C8—H8B | 109.5 | H15A—C15—H15C | 109.5 |
C6—C8—H8C | 109.5 | H15B—C15—H15C | 109.5 |
H8A—C8—H8C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5A···O1i | 0.97 | 2.43 (1) | 3.377 (12) | 167 |
Symmetry code: (i) x−1/2, −y+1/2, −z+1. |
Acknowledgements
The authors thank the Laboratoire de Chimie de Coordination, UPR-CNRS 8241 Toulouse for the X-ray measurements.
References
Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Daoubi, M., Durán-Patrón, R., Hmamouchi, M., Hernández-Galán, R., Benharref, A. & Collado, I. G. (2004). Pest Manag. Sci. 60, 927–932. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148. Web of Science CrossRef CAS IUCr Journals Google Scholar
Loughzail, M., Mazoir, N., Maya, C. M., Berraho, M., Benharref, A. & Bouhmaida, N. (2009). Acta Cryst. E65, o4. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mazoir, N., Dakir, M., Tebbaa, M., Loughzail, M. & Benharref, A. (2016). Tetrahedron Lett. 57, 278–280. Web of Science CrossRef CAS Google Scholar
Mazoir, N., El Ammari, L., Bouhmaida, N., Dahaoui, S., Benharref, A. & Berraho, M. (2009). Acta Cryst. E65, o1269–o1270. Web of Science CSD CrossRef IUCr Journals Google Scholar
Plattier, M. & Teisseire, P. (1974). Recherches, 19, 131–144. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.