organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-Methyl-1,4-bis­­[(pyridin-2-yl)meth­yl]quinoxaline-2,3(1H,4H)-dione

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences, Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco
*Correspondence e-mail: ayman.zouitini@gmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 14 November 2017; accepted 16 November 2017; online 21 November 2017)

The title compound, C21H18N4O2, crystallizes with one independent mol­ecule in the asymmetric unit. The 6-methyl­quinoxaline-2,3(1H,4H)-dione unit is essentially planar. The dihedral angles between the mean plane of the 6-methyl­quinoxaline-2,3(1H,4H)-dione ring and its pendant pyridin-2-yl rings are 85.1 (3) and 73.8 (4)°. The pyridin-2-yl rings are inclined pointing away from the 6-methyl­quinoxaline-2,3(1H,4H)-dione ring system. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions, forming a three-dimensional network structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quinoxalines and their derivatives are a varied class of nitro­gen-containing heterocyclic compounds, which display various pharmacological and biological activities, such as anti­cancer (Carta et al., 2006[Carta, A., Loriga, M., Piras, S., Paglietti, G., La Colla, P., Busonera, B., Collu, G. & Loddo, R. (2006). Med. Chem. 2, 113-122.]), anti­malarial (Guillon et al., 2004[Guillon, J., Grellier, P., Labaied, M., Sonnet, P., Léger, J. M., Déprez-Poulain, R., Forfar-Bares, I., Dallemagne, P., Lemaître, N., Péhourcq, F., Rochette, J., Sergheraert, C. & Jarry, C. (2004). J. Med. Chem. 47, 1997-2009.]), anti­viral (Fonseca et al., 2004[Fonseca, T., Gigante, B., Marques, M. M., Gilchrist, T. L. & De Clercq, E. (2004). Bioorg. Med. Chem. 12, 103-112.]), anti­bacterial (El-Sabbagh et al., 2009[El-Sabbagh, O. I., El-Sadek, M. E., Lashine, S. M., Yassin, S. H. & El-Nabtity, S. M. (2009). Med. Chem. Res. 18, 782-797.]), anti­microbial (Singh et al., 2010[Singh, D. P., Deivedi, S. K., Hashim, S. R. & Singhal, R. G. (2010). Pharmaceuticals 3, 2416-2425.]), anti-inflammatory (Wagle et al., 2008[Wagle, S., Adhikari, A. V. & Kumari, N. S. (2008). Indian J. Chem. 47, 439-448.]) and anti­protozoal (Hui et al., 2006[Hui, X., Desrivot, J., Bories, C., Loiseau, P. M., Franck, X., Hocquemiller, R. & Figadère, B. (2006). Bioorg. Med. Chem. Lett. 16, 815-820.]). In this work, we report the synthesis of a new quinoxaline derivative by the reaction of 2-picolyl chloride with 6-methyl-1,4-di­hydro­quinoxaline-2,3-dione in di­methyl­formamide in the presence of potassium carbonate and a catalytic qu­antity of tetra-n-butyl­ammonium bromide.

The title compound (Fig. 1[link]) crystallizes with one independent mol­ecule in the asymmetric unit. The 6-methyl­quinoxaline-2,3(1H,4H)-dione unit is essentially planar, the maximum r.m.s. deviation from the mean plane through the atoms N1/N2/C1–C8 is 0.047 (9) Å for N2. The dihedral angles between this plane and its pendant pyridin-2-yl rings N4/C16–C20 and N3/C10–C13 are 85.1 (3) and 73.8 (4)°, respectively. The two pyridin-2-yl rings are inclined by a dihedral angle of 75.2 (5)°, pointing away from the 6-methyl­quinoxaline-2,3(1H,4H)-dione ring system.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, shown with 30% probability displacement ellipsoids.

In the crystal, the mol­ecules are linked by weak C—H⋯O inter­molecular inter­actions involving O2 as the common acceptor (Table 1[link]), and form a three-dimensional network structure (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.52 3.270 (3) 138
C12—H12⋯O2ii 0.93 2.48 3.227 (4) 137
C15—H15A⋯O2i 0.97 2.37 3.297 (4) 160
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+2, -y+1, -z+1.
[Figure 2]
Figure 2
Packing diagram of the title compound viewed along the a axis. Dashed lines indicate weak C—H⋯O inter­actions linking the mol­ecules into a three-dimensional-network structure. H atoms not involved in these weak inter­molecular inter­actions are omitted for clarity.

Synthesis and crystallization

To a solution of 6-methyl-1,4-di­hydro­quinoxaline-2,3-dione (0.3 g, 1.73 mmol) in DMF (20 ml), were added potassium carbonate (0.47 g, 3.61 mmol) and tetra-n-butyl ammonium (BTBA; 0.1 mmol). After 10 min of stirring, 0.55 ml (5.25 mmol) of 2-picolyl chloride were added, then the mixture was allowed to stir at room temperature for 24 h. After filtration of the salts, the DMF was evaporated under reduced pressure and the residue obtained was dissolved in di­chloro­methane. The organic phase was then dried over Na2SO4 and then concentrated. The mixture obtained was chromatographed on a silica gel column [eluent: hexa­ne/ethyl­acetate (2/1)]. The compound formed white columnar crystals in 30% yield and was recrystallized from an ethanol–water (1/1) solvent mixture.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H18N4O2
Mr 358.39
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 12.465 (1), 9.1221 (6), 16.1585 (12)
β (°) 102.761 (8)
V3) 1792.0 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.71
Crystal size (mm) 0.24 × 0.12 × 0.08
 
Data collection
Diffractometer Rigaku Oxford Diffraction
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.])
Tmin, Tmax 0.812, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6708, 3385, 2343
Rint 0.024
(sin θ/λ)max−1) 0.613
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.222, 1.04
No. of reflections 3385
No. of parameters 245
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.55, −0.27
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

6-Methyl-1,4-bis[(pyridin-2-yl)methyl]quinoxaline-2,3(1H,4H)-dione top
Crystal data top
C21H18N4O2F(000) = 752
Mr = 358.39Dx = 1.328 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 12.465 (1) ÅCell parameters from 1702 reflections
b = 9.1221 (6) Åθ = 5.1–71.0°
c = 16.1585 (12) ŵ = 0.71 mm1
β = 102.761 (8)°T = 293 K
V = 1792.0 (2) Å3Irregular, colourless
Z = 40.24 × 0.12 × 0.08 mm
Data collection top
Rigaku Oxford Diffraction
diffractometer
3385 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source2343 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 16.0416 pixels mm-1θmax = 70.9°, θmin = 4.1°
ω scansh = 1315
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
k = 1011
Tmin = 0.812, Tmax = 1.000l = 1419
6708 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.222 w = 1/[σ2(Fo2) + (0.1138P)2 + 0.4268P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3385 reflectionsΔρmax = 0.55 e Å3
245 parametersΔρmin = 0.27 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8255 (2)0.3490 (3)0.50506 (15)0.0993 (8)
O20.8436 (2)0.3550 (2)0.67356 (13)0.0869 (7)
N10.69219 (19)0.5224 (2)0.48599 (12)0.0622 (6)
N20.71149 (19)0.5301 (2)0.66018 (12)0.0587 (5)
N30.7006 (2)0.7502 (4)0.32323 (19)0.0977 (10)
N40.6070 (2)0.3429 (3)0.75468 (15)0.0735 (7)
C10.7651 (3)0.4307 (3)0.53355 (17)0.0684 (7)
C20.7758 (2)0.4345 (3)0.62905 (16)0.0651 (7)
C30.6315 (2)0.6168 (3)0.60794 (15)0.0571 (6)
C40.5606 (2)0.7055 (3)0.64092 (18)0.0655 (7)
H40.56510.70530.69920.079*
C50.4840 (3)0.7934 (3)0.5902 (2)0.0754 (8)
C60.4768 (3)0.7916 (4)0.5030 (2)0.0806 (9)
H60.42540.85090.46780.097*
C70.5444 (3)0.7038 (3)0.46837 (19)0.0714 (7)
H70.53810.70360.40990.086*
C80.6224 (2)0.6148 (3)0.51950 (15)0.0569 (6)
C90.6875 (3)0.5222 (4)0.39327 (16)0.0733 (8)
H9A0.61160.53340.36280.088*
H9B0.71400.42880.37730.088*
C100.7552 (2)0.6432 (3)0.36818 (15)0.0646 (7)
C110.8688 (3)0.6415 (4)0.39011 (18)0.0744 (8)
H110.90550.56340.42100.089*
C120.9270 (3)0.7554 (4)0.3662 (2)0.0839 (9)
H121.00350.75610.38070.101*
C130.8704 (4)0.8672 (4)0.3209 (2)0.0929 (11)
H130.90720.94680.30420.111*
C140.7602 (4)0.8601 (5)0.3008 (3)0.1098 (14)
H140.72230.93660.26920.132*
C150.7345 (3)0.5450 (3)0.75291 (15)0.0682 (7)
H15A0.72370.64670.76670.082*
H15B0.81130.52150.77540.082*
C160.6652 (2)0.4500 (3)0.79695 (15)0.0610 (6)
C170.6703 (4)0.4774 (4)0.8817 (2)0.0992 (12)
H170.71200.55490.90920.119*
C180.6127 (5)0.3880 (5)0.9246 (2)0.1218 (17)
H180.61460.40420.98170.146*
C190.5526 (4)0.2752 (4)0.8825 (2)0.0964 (11)
H190.51370.21240.91050.116*
C200.5507 (3)0.2562 (4)0.7984 (2)0.0829 (9)
H200.50870.18010.76970.100*
C210.4082 (4)0.8904 (5)0.6247 (3)0.1095 (13)
H21A0.33480.85170.60960.164*
H21B0.40930.98710.60150.164*
H21C0.43160.89490.68540.164*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.148 (2)0.0856 (16)0.0754 (14)0.0314 (15)0.0491 (15)0.0046 (12)
O20.1128 (17)0.0827 (14)0.0710 (12)0.0252 (13)0.0325 (12)0.0268 (11)
N10.0869 (15)0.0562 (12)0.0472 (10)0.0095 (11)0.0224 (10)0.0025 (9)
N20.0799 (14)0.0523 (11)0.0475 (10)0.0044 (10)0.0217 (10)0.0033 (9)
N30.0859 (17)0.126 (3)0.0859 (18)0.0139 (17)0.0299 (14)0.0515 (19)
N40.0863 (16)0.0746 (15)0.0609 (13)0.0066 (13)0.0190 (11)0.0073 (11)
C10.100 (2)0.0546 (14)0.0576 (15)0.0019 (14)0.0328 (14)0.0030 (12)
C20.0897 (19)0.0544 (14)0.0564 (14)0.0003 (13)0.0271 (13)0.0106 (12)
C30.0750 (15)0.0437 (12)0.0555 (13)0.0110 (11)0.0206 (11)0.0023 (10)
C40.0854 (18)0.0519 (13)0.0642 (14)0.0088 (13)0.0278 (13)0.0060 (11)
C50.0818 (19)0.0556 (15)0.094 (2)0.0023 (14)0.0310 (16)0.0004 (14)
C60.083 (2)0.0715 (18)0.085 (2)0.0046 (15)0.0127 (16)0.0179 (16)
C70.0818 (18)0.0708 (17)0.0616 (15)0.0064 (14)0.0158 (13)0.0120 (13)
C80.0720 (15)0.0480 (12)0.0527 (12)0.0090 (11)0.0181 (11)0.0047 (10)
C90.098 (2)0.0771 (18)0.0480 (13)0.0137 (16)0.0227 (13)0.0046 (12)
C100.0836 (18)0.0712 (16)0.0422 (11)0.0015 (14)0.0211 (11)0.0014 (11)
C110.089 (2)0.0762 (18)0.0627 (15)0.0094 (15)0.0267 (14)0.0027 (14)
C120.084 (2)0.103 (3)0.0718 (18)0.0079 (19)0.0329 (15)0.0017 (18)
C130.112 (3)0.096 (2)0.084 (2)0.007 (2)0.050 (2)0.0154 (19)
C140.117 (3)0.115 (3)0.110 (3)0.026 (2)0.053 (2)0.062 (3)
C150.0877 (19)0.0697 (17)0.0488 (13)0.0069 (14)0.0187 (12)0.0000 (12)
C160.0809 (17)0.0537 (13)0.0502 (12)0.0060 (12)0.0183 (12)0.0062 (10)
C170.159 (4)0.086 (2)0.0586 (16)0.022 (2)0.038 (2)0.0048 (16)
C180.203 (5)0.110 (3)0.067 (2)0.026 (3)0.063 (3)0.006 (2)
C190.121 (3)0.091 (2)0.088 (2)0.004 (2)0.045 (2)0.034 (2)
C200.088 (2)0.0734 (19)0.087 (2)0.0045 (16)0.0181 (16)0.0169 (16)
C210.131 (3)0.087 (2)0.118 (3)0.021 (2)0.042 (3)0.009 (2)
Geometric parameters (Å, º) top
O1—C11.219 (3)C9—H9B0.9700
O2—C21.220 (3)C9—C101.499 (4)
N1—C11.345 (4)C10—C111.381 (4)
N1—C81.404 (3)C11—H110.9300
N1—C91.486 (3)C11—C121.371 (4)
N2—C21.355 (3)C12—H120.9300
N2—C31.400 (3)C12—C131.359 (5)
N2—C151.468 (3)C13—H130.9300
N3—C101.314 (4)C13—C141.342 (6)
N3—C141.343 (5)C14—H140.9300
N4—C161.315 (4)C15—H15A0.9700
N4—C201.354 (4)C15—H15B0.9700
C1—C21.520 (3)C15—C161.509 (4)
C3—C41.389 (4)C16—C171.380 (4)
C3—C81.408 (3)C17—H170.9300
C4—H40.9300C17—C181.371 (5)
C4—C51.371 (4)C18—H180.9300
C5—C61.392 (5)C18—C191.363 (6)
C5—C211.490 (5)C19—H190.9300
C6—H60.9300C19—C201.365 (5)
C6—C71.369 (5)C20—H200.9300
C7—H70.9300C21—H21A0.9600
C7—C81.389 (4)C21—H21B0.9600
C9—H9A0.9700C21—H21C0.9600
C1—N1—C8123.5 (2)C11—C10—C9121.9 (3)
C1—N1—C9116.5 (2)C10—C11—H11120.1
C8—N1—C9120.0 (2)C12—C11—C10119.7 (3)
C2—N2—C3122.7 (2)C12—C11—H11120.1
C2—N2—C15116.1 (2)C11—C12—H12120.8
C3—N2—C15121.1 (2)C13—C12—C11118.4 (3)
C10—N3—C14117.0 (3)C13—C12—H12120.8
C16—N4—C20116.9 (3)C12—C13—H13120.8
O1—C1—N1124.1 (2)C14—C13—C12118.4 (3)
O1—C1—C2118.3 (3)C14—C13—H13120.8
N1—C1—C2117.6 (2)N3—C14—H14117.7
O2—C2—N2123.6 (2)C13—C14—N3124.6 (3)
O2—C2—C1118.6 (3)C13—C14—H14117.7
N2—C2—C1117.7 (2)N2—C15—H15A108.5
N2—C3—C8119.5 (2)N2—C15—H15B108.5
C4—C3—N2121.8 (2)N2—C15—C16115.1 (2)
C4—C3—C8118.7 (2)H15A—C15—H15B107.5
C3—C4—H4119.0C16—C15—H15A108.5
C5—C4—C3122.0 (3)C16—C15—H15B108.5
C5—C4—H4119.0N4—C16—C15119.3 (2)
C4—C5—C6118.6 (3)N4—C16—C17123.3 (3)
C4—C5—C21122.6 (3)C17—C16—C15117.3 (3)
C6—C5—C21118.8 (3)C16—C17—H17120.7
C5—C6—H6119.6C18—C17—C16118.6 (4)
C7—C6—C5120.9 (3)C18—C17—H17120.7
C7—C6—H6119.6C17—C18—H18120.4
C6—C7—H7119.6C19—C18—C17119.2 (3)
C6—C7—C8120.8 (3)C19—C18—H18120.4
C8—C7—H7119.6C18—C19—H19120.7
N1—C8—C3118.7 (2)C18—C19—C20118.6 (3)
C7—C8—N1122.2 (2)C20—C19—H19120.7
C7—C8—C3119.0 (3)N4—C20—C19123.3 (3)
N1—C9—H9A109.2N4—C20—H20118.4
N1—C9—H9B109.2C19—C20—H20118.4
N1—C9—C10111.9 (2)C5—C21—H21A109.5
H9A—C9—H9B107.9C5—C21—H21B109.5
C10—C9—H9A109.2C5—C21—H21C109.5
C10—C9—H9B109.2H21A—C21—H21B109.5
N3—C10—C9116.3 (3)H21A—C21—H21C109.5
N3—C10—C11121.8 (3)H21B—C21—H21C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.523.270 (3)138
C12—H12···O2ii0.932.483.227 (4)137
C15—H15A···O2i0.972.373.297 (4)160
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+2, y+1, z+1.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationCarta, A., Loriga, M., Piras, S., Paglietti, G., La Colla, P., Busonera, B., Collu, G. & Loddo, R. (2006). Med. Chem. 2, 113–122.  CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEl-Sabbagh, O. I., El-Sadek, M. E., Lashine, S. M., Yassin, S. H. & El-Nabtity, S. M. (2009). Med. Chem. Res. 18, 782–797.  CAS Google Scholar
First citationFonseca, T., Gigante, B., Marques, M. M., Gilchrist, T. L. & De Clercq, E. (2004). Bioorg. Med. Chem. 12, 103–112.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGuillon, J., Grellier, P., Labaied, M., Sonnet, P., Léger, J. M., Déprez-Poulain, R., Forfar-Bares, I., Dallemagne, P., Lemaître, N., Péhourcq, F., Rochette, J., Sergheraert, C. & Jarry, C. (2004). J. Med. Chem. 47, 1997–2009.  CSD CrossRef PubMed CAS Google Scholar
First citationHui, X., Desrivot, J., Bories, C., Loiseau, P. M., Franck, X., Hocquemiller, R. & Figadère, B. (2006). Bioorg. Med. Chem. Lett. 16, 815–820.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, D. P., Deivedi, S. K., Hashim, S. R. & Singhal, R. G. (2010). Pharmaceuticals 3, 2416–2425.  CrossRef CAS PubMed Google Scholar
First citationWagle, S., Adhikari, A. V. & Kumari, N. S. (2008). Indian J. Chem. 47, 439–448.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]