organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-1-(Pyridin-4-yl)propan-1-one O-tosyl oxime

CROSSMARK_Color_square_no_text.svg

aInstitute of Pharmaceutical Sciences, Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and bDepartment of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany
*Correspondence e-mail: pierre.koch@uni-tuebingen.de

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 2 November 2017; accepted 6 November 2017; online 17 November 2017)

The title compound, C15H16N2O3S, was obtained by the reaction of (E)-1-(pyridin-4-yl)propan-1-one oxime and para-toluene­sulfonic acid. The pyridine ring makes a dihedral angle of 54.70 (10)° with the benzene ring. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming a chain along the c-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) was synthesized by the reaction of (E)-1-(pyridin-4-yl)propan-1-one oxime and para-toluene­sulfonyl chloride. For the crystal structure of the starting material, see Eitel et al. (2016[Eitel, M., Schollmeyer, D. & Koch, P. (2016). IUCrData, 1, x160803.]). The pyridine ring makes dihedral angles of 54.70 (10) and 14.06 (17)° with the benzene ring and the oxime plane, respectively. The dihedral angle between the benzene ring and the oxime plane is 68.38 (17)°. The orientation of the benzene ring is stabilized by an intra­molecular C—H⋯O contact (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O13i 0.94 2.53 3.138 (3) 122
C3—H3⋯O13i 0.94 2.58 3.171 (3) 122
C20—H20⋯O14 0.94 2.56 2.929 (3) 104
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with the atom labelling and displacement ellipsoids drawn at the 50% probability level. The intra­molecular C—H⋯O contact is drawn with a dashed line.

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming a chain along the c-axis direction (Table 1[link], Fig. 2[link]).

[Figure 2]
Figure 2
Partial packing diagram viewed along the a axis. Intra­molecular C—H⋯O hydrogen bonds are shown with open dashed bonds. Inter­molecular hydrogen bonds are indicated by dashed lines.

Synthesis and crystallization

para-Toluene­sulfonyl chloride (6.76 g, 35.48 mmol) was added to a solution of (E)-4-propionyl­pyridine oxime (4.44 g, 29.56 mmol) in anhydrous pyridine (20 ml). After reaction for 21.5 h at 298 K, the solution was diluted with ice–water (100 ml) and stirred for a further 3 h. The resulting white solid was filtered off, washed with cold water and dried under vacuum (yield: 78%, 7.05 g). Crystals of the title compound suitable for X-ray determination were obtained by slow evaporation of a solution of the solid in methanol at 298 K.

1H NMR (400 MHz, DMSO-d6) δ 0.99 (t, 3J = 7.6 Hz, 3H), 2.41 (s, 3H), 2.81 (q, 3J = 7.6 Hz, 2H), 7.50 (d, 3J = 8.1 Hz, 2H), 7.56 (d, 3J = 5.8 Hz, 2H), 7.91 (d, 3J = 8.3 Hz, 2H), 8.67 (d, 3J = 5.8 Hz, 2H); 13C NMR (100 MHz, DMSO-d6) δ 10.6, 20.5, 21.1, 121.1, 128.5, 130.1, 131.6, 139.5, 145.7, 150.5, 167.5.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H16N2O3S
Mr 304.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 213
a, b, c (Å) 14.9385 (12), 10.6630 (7), 9.7701 (7)
β (°) 100.044 (6)
V3) 1532.4 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.98
Crystal size (mm) 0.16 × 0.09 × 0.04
 
Data collection
Diffractometer STOE IPDS 2T
Absorption correction Integration (X-RED32; Stoe & Cie, 2006[Stoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
No. of measured, independent and observed [I > 2σ(I)] reflections 10273, 2695, 1913
Rint 0.049
(sin θ/λ)max−1) 0.599
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 0.98
No. of reflections 2695
No. of parameters 192
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.36
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2006[Stoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]) and SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2006); cell refinement: X-AREA (Stoe & Cie, 2006); data reduction: X-RED32 (Stoe & Cie, 2006); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015).

(E)-1-(Pyridin-4-yl)propan-1-one O-tosyl oxime top
Crystal data top
C15H16N2O3SF(000) = 640
Mr = 304.36Dx = 1.319 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 14.9385 (12) ÅCell parameters from 11862 reflections
b = 10.6630 (7) Åθ = 3.0–67.8°
c = 9.7701 (7) ŵ = 1.98 mm1
β = 100.044 (6)°T = 213 K
V = 1532.4 (2) Å3Plate, colourless
Z = 40.16 × 0.09 × 0.04 mm
Data collection top
STOE IPDS 2T
diffractometer
2695 independent reflections
Radiation source: Incoatec microSource Cu1913 reflections with I > 2σ(I)
X-ray mirror monochromatorRint = 0.049
Detector resolution: 6.67 pixels mm-1θmax = 67.5°, θmin = 3.0°
rotation method scansh = 1617
Absorption correction: integration
(X-RED32; Stoe & Cie, 2006)
k = 1211
l = 1111
10273 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.059P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
2695 reflectionsΔρmax = 0.16 e Å3
192 parametersΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.89270 (13)0.47865 (18)0.5899 (2)0.0378 (4)
C20.85364 (15)0.5811 (2)0.6446 (2)0.0508 (6)
H20.80090.61820.59450.061*
C30.89270 (16)0.6283 (2)0.7731 (2)0.0564 (6)
H30.86460.69730.80800.068*
N40.96781 (13)0.58192 (18)0.85057 (19)0.0532 (5)
C51.00375 (15)0.4829 (2)0.7992 (2)0.0523 (6)
H51.05590.44700.85270.063*
C60.96963 (14)0.4280 (2)0.6714 (2)0.0446 (5)
H60.99840.35760.64070.054*
C70.85434 (12)0.42844 (18)0.4487 (2)0.0370 (4)
C80.88195 (13)0.30317 (18)0.3995 (2)0.0427 (5)
H8A0.94450.28460.44420.051*
H8B0.88020.30620.29890.051*
C90.81924 (17)0.1994 (2)0.4332 (3)0.0588 (6)
H9A0.81920.19820.53250.088*
H9B0.84060.11920.40480.088*
H9C0.75800.21460.38390.088*
N100.79590 (11)0.50387 (16)0.37916 (16)0.0414 (4)
O110.75806 (9)0.44884 (12)0.24519 (13)0.0446 (4)
S120.69674 (4)0.55354 (5)0.15352 (5)0.04410 (17)
O130.74961 (11)0.66367 (15)0.14888 (17)0.0594 (4)
O140.66291 (11)0.48672 (16)0.02890 (14)0.0575 (4)
C150.60796 (14)0.58428 (18)0.2447 (2)0.0397 (5)
C160.61762 (15)0.67382 (19)0.3494 (2)0.0487 (6)
H160.67210.71910.37300.058*
C170.54569 (16)0.6953 (2)0.4183 (2)0.0533 (6)
H170.55230.75490.49020.064*
C180.46367 (15)0.6310 (2)0.3839 (2)0.0499 (5)
C190.45625 (16)0.5429 (2)0.2783 (2)0.0534 (6)
H190.40130.49880.25310.064*
C200.52712 (15)0.5181 (2)0.2093 (2)0.0491 (5)
H200.52090.45700.13900.059*
C210.38537 (18)0.6580 (3)0.4576 (3)0.0722 (8)
H21A0.40660.70770.54000.108*
H21B0.36020.57970.48430.108*
H21C0.33880.70410.39600.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0354 (10)0.0375 (11)0.0398 (10)0.0010 (8)0.0050 (8)0.0063 (8)
C20.0493 (12)0.0450 (13)0.0520 (13)0.0080 (9)0.0081 (10)0.0068 (10)
C30.0612 (14)0.0496 (14)0.0524 (13)0.0021 (11)0.0070 (11)0.0078 (10)
N40.0531 (11)0.0562 (12)0.0454 (10)0.0067 (9)0.0049 (9)0.0039 (9)
C50.0438 (11)0.0648 (16)0.0445 (12)0.0008 (11)0.0029 (10)0.0139 (11)
C60.0405 (11)0.0498 (13)0.0432 (11)0.0056 (9)0.0064 (9)0.0107 (9)
C70.0348 (10)0.0368 (11)0.0396 (10)0.0015 (8)0.0073 (8)0.0029 (8)
C80.0414 (11)0.0405 (12)0.0460 (12)0.0071 (8)0.0072 (9)0.0013 (9)
C90.0687 (15)0.0399 (13)0.0725 (16)0.0007 (11)0.0256 (13)0.0015 (11)
N100.0430 (9)0.0414 (10)0.0366 (9)0.0012 (7)0.0021 (7)0.0042 (7)
O110.0497 (8)0.0421 (8)0.0380 (7)0.0065 (6)0.0030 (6)0.0032 (6)
S120.0470 (3)0.0438 (3)0.0385 (3)0.0016 (2)0.0009 (2)0.0049 (2)
O130.0589 (10)0.0530 (10)0.0644 (10)0.0093 (7)0.0053 (8)0.0152 (8)
O140.0606 (9)0.0725 (11)0.0357 (8)0.0066 (8)0.0019 (7)0.0085 (7)
C150.0439 (10)0.0331 (11)0.0382 (10)0.0030 (8)0.0039 (8)0.0026 (8)
C160.0495 (12)0.0333 (11)0.0575 (13)0.0011 (9)0.0071 (10)0.0068 (10)
C170.0588 (13)0.0425 (13)0.0554 (14)0.0104 (10)0.0013 (11)0.0113 (10)
C180.0519 (12)0.0478 (13)0.0483 (12)0.0140 (10)0.0040 (10)0.0084 (10)
C190.0456 (12)0.0599 (15)0.0522 (13)0.0089 (10)0.0017 (10)0.0020 (11)
C200.0541 (13)0.0480 (13)0.0419 (11)0.0076 (10)0.0012 (10)0.0076 (9)
C210.0684 (17)0.0771 (19)0.0743 (18)0.0219 (14)0.0213 (14)0.0099 (14)
Geometric parameters (Å, º) top
C1—C61.388 (3)N10—O111.4557 (19)
C1—C21.388 (3)O11—S121.6129 (13)
C1—C71.497 (3)S12—O131.4204 (16)
C2—C31.384 (3)S12—O141.4250 (15)
C2—H20.9400S12—C151.752 (2)
C3—N41.334 (3)C15—C161.388 (3)
C3—H30.9400C15—C201.389 (3)
N4—C51.323 (3)C16—C171.383 (3)
C5—C61.392 (3)C16—H160.9400
C5—H50.9400C17—C181.393 (3)
C6—H60.9400C17—H170.9400
C7—N101.290 (2)C18—C191.386 (3)
C7—C81.501 (3)C18—C211.504 (3)
C8—C91.522 (3)C19—C201.376 (3)
C8—H8A0.9800C19—H190.9400
C8—H8B0.9800C20—H200.9400
C9—H9A0.9700C21—H21A0.9700
C9—H9B0.9700C21—H21B0.9700
C9—H9C0.9700C21—H21C0.9700
C6—C1—C2116.52 (18)N10—O11—S12108.31 (11)
C6—C1—C7122.35 (19)O13—S12—O14120.16 (10)
C2—C1—C7121.12 (16)O13—S12—O11108.96 (9)
C3—C2—C1119.8 (2)O14—S12—O11102.17 (9)
C3—C2—H2120.1O13—S12—C15109.62 (10)
C1—C2—H2120.1O14—S12—C15109.92 (9)
N4—C3—C2124.0 (2)O11—S12—C15104.72 (8)
N4—C3—H3118.0C16—C15—C20120.4 (2)
C2—C3—H3118.0C16—C15—S12120.83 (16)
C5—N4—C3115.96 (19)C20—C15—S12118.73 (16)
N4—C5—C6124.5 (2)C17—C16—C15118.9 (2)
N4—C5—H5117.8C17—C16—H16120.6
C6—C5—H5117.8C15—C16—H16120.6
C1—C6—C5119.2 (2)C16—C17—C18121.8 (2)
C1—C6—H6120.4C16—C17—H17119.1
C5—C6—H6120.4C18—C17—H17119.1
N10—C7—C1112.18 (17)C19—C18—C17117.8 (2)
N10—C7—C8125.77 (18)C19—C18—C21121.2 (2)
C1—C7—C8122.04 (16)C17—C18—C21121.0 (2)
C7—C8—C9111.33 (18)C20—C19—C18121.8 (2)
C7—C8—H8A109.4C20—C19—H19119.1
C9—C8—H8A109.4C18—C19—H19119.1
C7—C8—H8B109.4C19—C20—C15119.4 (2)
C9—C8—H8B109.4C19—C20—H20120.3
H8A—C8—H8B108.0C15—C20—H20120.3
C8—C9—H9A109.5C18—C21—H21A109.5
C8—C9—H9B109.5C18—C21—H21B109.5
H9A—C9—H9B109.5H21A—C21—H21B109.5
C8—C9—H9C109.5C18—C21—H21C109.5
H9A—C9—H9C109.5H21A—C21—H21C109.5
H9B—C9—H9C109.5H21B—C21—H21C109.5
C7—N10—O11110.08 (16)
C6—C1—C2—C31.0 (3)N10—O11—S12—O14178.64 (12)
C7—C1—C2—C3177.5 (2)N10—O11—S12—C1564.00 (13)
C1—C2—C3—N40.5 (4)O13—S12—C15—C1629.48 (19)
C2—C3—N4—C51.7 (4)O14—S12—C15—C16163.63 (16)
C3—N4—C5—C61.5 (3)O11—S12—C15—C1687.28 (17)
C2—C1—C6—C51.3 (3)O13—S12—C15—C20149.92 (16)
C7—C1—C6—C5177.30 (19)O14—S12—C15—C2015.77 (19)
N4—C5—C6—C10.0 (3)O11—S12—C15—C2093.32 (16)
C6—C1—C7—N10166.03 (19)C20—C15—C16—C170.4 (3)
C2—C1—C7—N1012.5 (3)S12—C15—C16—C17179.80 (16)
C6—C1—C7—C814.8 (3)C15—C16—C17—C181.0 (3)
C2—C1—C7—C8166.7 (2)C16—C17—C18—C190.6 (3)
N10—C7—C8—C987.7 (3)C16—C17—C18—C21178.4 (2)
C1—C7—C8—C991.4 (2)C17—C18—C19—C200.4 (3)
C1—C7—N10—O11177.79 (15)C21—C18—C19—C20179.4 (2)
C8—C7—N10—O111.3 (3)C18—C19—C20—C151.0 (3)
C7—N10—O11—S12171.97 (13)C16—C15—C20—C190.6 (3)
N10—O11—S12—O1353.22 (14)S12—C15—C20—C19178.83 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O13i0.942.533.138 (3)122
C3—H3···O13i0.942.583.171 (3)122
C20—H20···O140.942.562.929 (3)104
Symmetry code: (i) x, y+3/2, z+1/2.
 

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEitel, M., Schollmeyer, D. & Koch, P. (2016). IUCrData, 1, x160803.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2006). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]