metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

catena-Poly[[di­aqua­bis­­[1,4-bis­­(pyridin-4-yl)buta-1,3-diyne-κN]iron(II)]-μ-cyanido-κ2N:C-[dicyan­ido-κ2C-platinum(II)]-μ-cyanido-κ2C:N]

CROSSMARK_Color_square_no_text.svg

aInstitut de Ciencia Molecular (ICMol), Departament de Quimica Inorganica, Universitat de Valencia, Catedratico José Beltran Martinez, 2, 46980, Paterna, Valencia, Spain, and bNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine
*Correspondence e-mail: mlseredyuk@gmail.com

Edited by M. Zeller, Purdue University, USA (Received 12 September 2017; accepted 1 October 2017; online 6 October 2017)

The mol­ecular structure of the title compound, [FePt(CN)4(C14H8N2)2(H2O)2]n, consists of one-dimensional polymeric [–Fe–NC–Pt(CN)2–CN–] chains. Two water mol­ecules and two monodentate 1,4-bis­(pyridin-4-yl)buta-1,3-diyne (bpb) ligand mol­ecules complete the octa­hedral coordination sphere of the FeII atoms. The Fe—N(py) bond length (py is pyridine) is 2.2700 (15) Å, Fe—N(cyanide) is 2.1185 (16) Å and the Fe—O distance is 2.1275 (14) Å. The water mol­ecules are hydrogen bonded to either bpb ligands or cyanide groups of the planar [Pt(CN)4]2− anion of adjacent polymeric chains. These O—H⋯N hydrogen bonds, in conjunction with offset and tilted ππ stacking inter­actions between bpb ligands and cyanide groups, extend the one-dimensional chains into a three-dimensional assembly.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound [Fe(bpb)2(H2O)2{Pt(CN)4}n (bpb = bis­(pyridin-4-yl)butadiyne) results from ongoing research concerning the synthesis of FeII spin-crossover metal–organic frameworks containing polycyano­metallates (Piñeiro-López et al., 2014[Piñeiro-López, L., Seredyuk, M., Muñoz, M. C. & Real, J. A. (2014). Chem. Commun. 50, 1833-1835.], 2017[Piñeiro-López, L., Valverde-Muñoz, F. J., Seredyuk, M., Muñoz, M. C., Haukka, M. & Real, J. A. (2017). Inorg. Chem. 56, 7038-7047.]). The title compound was obtained as a side product during the synthesis of Hofmann clathrate [Fe(bpb)2[Pt(CN)4]·guest (Piñeiro-López et al., 2014[Piñeiro-López, L., Seredyuk, M., Muñoz, M. C. & Real, J. A. (2014). Chem. Commun. 50, 1833-1835.]). The structure of the compound is similar to that of a one-dimensional linear polymer with a bridging [Au(CN)2-anion and a bitopic pyrazole-based ligand, {FeL2(H2O)2[Au(CN)2]}n (L = bis­(3,5-dimethyl-1H-pyrazol­yl)selenide)(Seredyuk et al., 2007[Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183-3194.]). Major structural differences are attributed to the linear [Au(CN)2]-bridging units instead of [Pt(CN)4]2–-anions, and a bent ligand L.

The mol­ecular structure of the title compound [Fe(bpb)2(H2O)2{Pt(CN)4}]n (bpb = bis­(pyridin-4-yl)butadiyne) consists of one-dimensional polymeric [–Fe–NC–Pt(CN)2–CN–] chains, repeating endlessly along [110] (Fig. 1[link]). The FeII site has sixfold coordination with a distorted octa­hedral geometry, while the PtII ion is coordinated by four cyanide groups in an almost regular square-planar geometry. The metal ions reside on inversion centres. Two bitopic ligand mol­ecules of bpb coordinate in a monodentate manner through a pyridine group together with two mol­ecules of water and complete the octa­hedral coordination sphere of the FeII atoms. The Fe—N(py) bond length is 2.2700 (15) Å, Fe—N(cyanide) is 2.1185 (16) Å and the Fe—O distance is 2.1275 (14) Å. The second pyridine group of the ligand mol­ecule and two cyano-groups of planar [Pt(CN)4]2–-anion form O—H⋯N hydrogen bonds (Table 1[link]) with the water mol­ecule belonging to adjacent polymeric chains. As a result of the hydrogen bonding, the dimensionality of the system is extended to a three-dimensional network (Fig. 2[link]). A centroid-to-centroid distance of 3.6254 (10) Å between the pyridine rings of adjacent ligand mol­ecules points to weak ππ stacking inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O—H2O⋯N4i 0.84 (3) 1.95 (3) 2.792 (2) 173 (3)
O—H1O⋯N3ii 0.83 (3) 1.93 (3) 2.754 (2) 176 (3)
Symmetry codes: (i) -x+2, -y, -z-1; (ii) -x, -y+1, -z.
[Figure 1]
Figure 1
A fragment of the structure of the title compound showing hydrogen bonds with adjacent polymeric chains (dashed lines). [Symmetry codes: (i) −x, 1 − y, −z; (ii) 2 − x, −y, −1 − z; (iii) −x, 1 − y, −z; (iv): −x, −y, −z.]
[Figure 2]
Figure 2
A fragment of the endless polymeric chain of the title compound with the atom-numbering scheme.

Synthesis and crystallization

Single crystals of the title compound were grown using the slow-diffusion technique. One side of a multi-arm-shaped vessel contained (NH4)2Fe(SO4)2·6H2O (20 mg, 51 mmol) dissolved in water (0.5 ml). The contiguous arm contained solid bpb (11 mg, 49 mmol) and naphthalene (50 mg), and the third arm contained K2Pt(CN)4·3H2O (22 mg, 51 mmol) in water (0.5 ml). The vessel was filled with a water/methanol (1:1) solution. Square-shaped light-red crystals suitable for single-crystal X-ray analysis were obtained in the middle arm after six weeks as a side product of the yellow-colored complex {Fe(pbp)[Pt(CN)4]}.2naphthalene (Piñeiro-López et al., 2014[Piñeiro-López, L., Seredyuk, M., Muñoz, M. C. & Real, J. A. (2014). Chem. Commun. 50, 1833-1835.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [FePt(CN)4(C14H8N2)2(H2O)2]
Mr 799.50
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 120
a, b, c (Å) 7.6572 (3), 9.0142 (4), 12.1781 (5)
α, β, γ (°) 106.975 (4), 102.042 (4), 102.408 (4)
V3) 751.31 (6)
Z 1
Radiation type Mo Kα
μ (mm−1) 5.18
Crystal size (mm) 0.20 × 0.20 × 0.10
 
Data collection
Diffractometer Agilent SuperNova Sapphire3 CCD
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.742, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14516, 4981, 4976
Rint 0.043
(sin θ/λ)max−1) 0.756
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.042, 1.02
No. of reflections 4981
No. of parameters 210
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.25, −1.16
Computer programs: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg et al., 1999[Brandenburg, K., Putz, H., or Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg et al., 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[[diaquabis[1,4-bis(pyridin-4-yl)buta-1,3-diyne-κN]iron(II)]-µ-cyanido-κ2N:C-[dicyanido-κ2C-platinum(II)]-µ-cyanido-κ2C:N] top
Crystal data top
[FePt(CN)4(C14H8N2)2(H2O)2]Z = 1
Mr = 799.50F(000) = 388
Triclinic, P1Dx = 1.767 Mg m3
a = 7.6572 (3) ÅMo Kα radiation, λ = 0.71069 Å
b = 9.0142 (4) ÅCell parameters from 10158 reflections
c = 12.1781 (5) Åθ = 3.2–32.4°
α = 106.975 (4)°µ = 5.18 mm1
β = 102.042 (4)°T = 120 K
γ = 102.408 (4)°Prismatic, red
V = 751.31 (6) Å30.20 × 0.20 × 0.10 mm
Data collection top
Agilent SuperNova Sapphire3 CCD
diffractometer
4976 reflections with I > 2σ(I)
ω and phi scansRint = 0.043
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
θmax = 32.5°, θmin = 3.2°
Tmin = 0.742, Tmax = 1.000h = 1111
14516 measured reflectionsk = 1313
4981 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: mixed
wR(F2) = 0.042H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0162P)2 + 0.1718P]
where P = (Fo2 + 2Fc2)/3
4981 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 1.25 e Å3
0 restraintsΔρmin = 1.16 e Å3
Special details top

Experimental. CrysAlisPro (Agilent Technologies, 2011). Version 1.171.36.21 (release 14-08-2012 CrysAlis171 .NET) (compiled Sep 14 2012,17:21:16) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms attached to carbon atoms were positioned geometrically and constrained to ride on their parent atoms, with carbon hydrogen bond distances of 0.93. Uiso(H) values were set to 1.2 times Ueq(C). Water H atoms were freely refined with isotropic displacment parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt0.00000.00000.00000.00881 (3)
Fe0.50000.50000.00000.00981 (6)
O0.33280 (19)0.50060 (16)0.16295 (12)0.0145 (2)
N10.6289 (2)0.32518 (18)0.10666 (13)0.0124 (3)
N20.2964 (2)0.29769 (19)0.00226 (15)0.0152 (3)
N30.1740 (3)0.2499 (2)0.14476 (16)0.0240 (4)
N41.4798 (3)0.4687 (2)0.66180 (15)0.0215 (3)
C10.7935 (3)0.3832 (2)0.12515 (16)0.0137 (3)
H10.85000.49480.09400.016*
C20.8827 (3)0.2854 (2)0.18806 (16)0.0148 (3)
H20.99580.33100.19910.018*
C30.8008 (3)0.1176 (2)0.23471 (15)0.0142 (3)
C40.6312 (3)0.0555 (2)0.21480 (16)0.0157 (3)
H40.57300.05570.24350.019*
C50.5516 (3)0.1633 (2)0.15140 (16)0.0148 (3)
H50.43830.12110.13920.018*
C60.8927 (3)0.0153 (2)0.29969 (16)0.0169 (3)
C70.9788 (3)0.0622 (2)0.35286 (17)0.0183 (4)
C81.0789 (3)0.1493 (2)0.41274 (17)0.0189 (4)
C91.1658 (3)0.2256 (3)0.46534 (18)0.0202 (4)
C101.2732 (3)0.3111 (2)0.52906 (16)0.0170 (3)
C111.4542 (3)0.2291 (3)0.52251 (17)0.0209 (4)
H111.50880.12070.47360.025*
C121.5506 (3)0.3122 (3)0.59017 (17)0.0234 (4)
H121.67070.25670.58570.028*
C131.3085 (3)0.5469 (2)0.66547 (18)0.0218 (4)
H131.25910.65610.71350.026*
C141.1998 (3)0.4747 (2)0.60171 (18)0.0209 (4)
H141.08080.53390.60730.025*
C150.1904 (3)0.1867 (2)0.00073 (16)0.0124 (3)
C160.1121 (3)0.1558 (2)0.09247 (16)0.0140 (3)
H1O0.280 (4)0.572 (3)0.158 (2)0.027 (7)*
H2O0.390 (4)0.499 (3)0.215 (2)0.032 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt0.00875 (5)0.00567 (4)0.01247 (4)0.00113 (3)0.00495 (3)0.00329 (3)
Fe0.00918 (16)0.00634 (14)0.01392 (15)0.00104 (12)0.00582 (12)0.00276 (12)
O0.0158 (6)0.0138 (6)0.0161 (6)0.0074 (5)0.0074 (5)0.0043 (5)
N10.0133 (7)0.0104 (7)0.0136 (6)0.0033 (6)0.0054 (5)0.0034 (5)
N20.0147 (7)0.0102 (7)0.0222 (7)0.0033 (6)0.0093 (6)0.0052 (6)
N30.0276 (10)0.0241 (9)0.0242 (8)0.0155 (8)0.0101 (7)0.0069 (7)
N40.0253 (9)0.0269 (9)0.0163 (7)0.0152 (8)0.0091 (7)0.0057 (6)
C10.0132 (8)0.0112 (7)0.0161 (7)0.0036 (6)0.0047 (6)0.0035 (6)
C20.0131 (8)0.0153 (8)0.0162 (7)0.0051 (7)0.0057 (6)0.0045 (6)
C30.0162 (8)0.0157 (8)0.0113 (7)0.0072 (7)0.0037 (6)0.0041 (6)
C40.0178 (9)0.0112 (8)0.0166 (8)0.0040 (7)0.0067 (7)0.0016 (6)
C50.0140 (8)0.0121 (8)0.0177 (8)0.0032 (7)0.0074 (7)0.0030 (6)
C60.0187 (9)0.0155 (8)0.0158 (8)0.0061 (7)0.0051 (7)0.0039 (6)
C70.0213 (10)0.0179 (9)0.0169 (8)0.0079 (8)0.0079 (7)0.0046 (7)
C80.0219 (10)0.0188 (9)0.0181 (8)0.0082 (8)0.0084 (7)0.0059 (7)
C90.0236 (10)0.0211 (9)0.0187 (8)0.0094 (8)0.0089 (8)0.0072 (7)
C100.0222 (10)0.0190 (9)0.0137 (7)0.0107 (8)0.0082 (7)0.0062 (6)
C110.0217 (10)0.0210 (9)0.0159 (8)0.0065 (8)0.0055 (7)0.0004 (7)
C120.0183 (10)0.0331 (11)0.0168 (8)0.0094 (9)0.0063 (7)0.0039 (8)
C130.0317 (11)0.0174 (9)0.0204 (9)0.0116 (8)0.0133 (8)0.0055 (7)
C140.0266 (10)0.0183 (9)0.0241 (9)0.0096 (8)0.0152 (8)0.0087 (7)
C150.0132 (8)0.0104 (7)0.0148 (7)0.0047 (6)0.0061 (6)0.0037 (6)
C160.0139 (8)0.0120 (8)0.0165 (8)0.0037 (7)0.0059 (6)0.0045 (6)
Geometric parameters (Å, º) top
Pt—C15i1.9790 (17)C2—C31.395 (3)
Pt—C151.9790 (17)C2—H20.9300
Pt—C161.9940 (18)C3—C41.398 (2)
Pt—C16i1.9941 (18)C3—C61.434 (2)
Fe—N2ii2.1185 (16)C4—C51.387 (2)
Fe—N22.1186 (16)C4—H40.9300
Fe—Oii2.1275 (14)C5—H50.9300
Fe—O2.1275 (14)C6—C71.206 (3)
Fe—N12.2700 (15)C7—C81.376 (3)
Fe—N1ii2.2700 (15)C8—C91.202 (3)
O—H1O0.83 (3)C9—C101.435 (3)
O—H2O0.84 (3)C10—C141.395 (3)
N1—C51.344 (2)C10—C111.397 (3)
N1—C11.348 (2)C11—C121.384 (3)
N2—C151.153 (3)C11—H110.9300
N3—C161.154 (2)C12—H120.9300
N4—C131.334 (3)C13—C141.388 (3)
N4—C121.341 (3)C13—H130.9300
C1—C21.383 (2)C14—H140.9300
C1—H10.9300
C15i—Pt—C15180.0C1—C2—H2120.4
C15i—Pt—C1691.15 (7)C3—C2—H2120.4
C15—Pt—C1688.85 (7)C2—C3—C4118.07 (16)
C15i—Pt—C16i88.85 (7)C2—C3—C6119.49 (16)
C15—Pt—C16i91.15 (7)C4—C3—C6122.43 (17)
C16—Pt—C16i180.0C5—C4—C3118.65 (16)
N2ii—Fe—N2180.0C5—C4—H4120.7
N2ii—Fe—Oii92.14 (6)C3—C4—H4120.7
N2—Fe—Oii87.86 (6)N1—C5—C4123.74 (16)
N2ii—Fe—O87.86 (6)N1—C5—H5118.1
N2—Fe—O92.14 (6)C4—C5—H5118.1
Oii—Fe—O180.0C7—C6—C3175.9 (2)
N2ii—Fe—N191.29 (6)C6—C7—C8179.3 (2)
N2—Fe—N188.71 (6)C9—C8—C7179.8 (3)
Oii—Fe—N190.25 (5)C8—C9—C10177.7 (2)
O—Fe—N189.75 (5)C14—C10—C11118.15 (17)
N2ii—Fe—N1ii88.71 (6)C14—C10—C9121.82 (18)
N2—Fe—N1ii91.29 (6)C11—C10—C9119.99 (18)
Oii—Fe—N1ii89.75 (5)C12—C11—C10118.77 (19)
O—Fe—N1ii90.25 (5)C12—C11—H11120.6
N1—Fe—N1ii180.0C10—C11—H11120.6
Fe—O—H1O117.1 (18)N4—C12—C11123.4 (2)
Fe—O—H2O112.8 (19)N4—C12—H12118.3
H1O—O—H2O109 (3)C11—C12—H12118.3
C5—N1—C1116.97 (15)N4—C13—C14123.71 (19)
C5—N1—Fe123.42 (11)N4—C13—H13118.1
C1—N1—Fe119.59 (11)C14—C13—H13118.1
C15—N2—Fe177.61 (18)C13—C14—C10118.53 (19)
C13—N4—C12117.42 (17)C13—C14—H14120.7
N1—C1—C2123.43 (16)C10—C14—H14120.7
N1—C1—H1118.3N2—C15—Pt177.63 (18)
C2—C1—H1118.3N3—C16—Pt177.73 (17)
C1—C2—C3119.12 (16)
C5—N1—C1—C20.8 (3)C3—C4—C5—N10.6 (3)
Fe—N1—C1—C2179.39 (13)C14—C10—C11—C121.5 (3)
N1—C1—C2—C30.5 (3)C9—C10—C11—C12176.41 (19)
C1—C2—C3—C40.4 (3)C13—N4—C12—C111.1 (3)
C1—C2—C3—C6179.78 (17)C10—C11—C12—N40.4 (3)
C2—C3—C4—C50.9 (3)C12—N4—C13—C141.4 (3)
C6—C3—C4—C5179.76 (17)N4—C13—C14—C100.3 (3)
C1—N1—C5—C40.3 (3)C11—C10—C14—C131.2 (3)
Fe—N1—C5—C4178.80 (14)C9—C10—C14—C13176.68 (19)
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H2O···N4iii0.84 (3)1.95 (3)2.792 (2)173 (3)
O—H1O···N3iv0.83 (3)1.93 (3)2.754 (2)176 (3)
Symmetry codes: (iii) x+2, y, z1; (iv) x, y+1, z.
 

Funding information

The research reported here was supported by the Spanish Ministerio de Economía y Competitividad (MINECO) and FEDER funds (CTQ2013–46275-P) and Generalitat Valenciana (PROMETEO/2012/049). LPL thanks the Generalitat Valenciana for a predoctoral fellowship in the frame of the project PROMETEO/2012/049. MS thanks the EU for a Marie Curie fellowship (IIF-253254).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBrandenburg, K., Putz, H., or Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationPiñeiro-López, L., Seredyuk, M., Muñoz, M. C. & Real, J. A. (2014). Chem. Commun. 50, 1833–1835.  Google Scholar
First citationPiñeiro-López, L., Valverde-Muñoz, F. J., Seredyuk, M., Muñoz, M. C., Haukka, M. & Real, J. A. (2017). Inorg. Chem. 56, 7038–7047.  Web of Science PubMed Google Scholar
First citationSeredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]