metal-organic compounds
catena-Poly[[diaquabis[1,4-bis(pyridin-4-yl)buta-1,3-diyne-κN]iron(II)]-μ-cyanido-κ2N:C-[dicyanido-κ2C-platinum(II)]-μ-cyanido-κ2C:N]
aInstitut de Ciencia Molecular (ICMol), Departament de Quimica Inorganica, Universitat de Valencia, Catedratico José Beltran Martinez, 2, 46980, Paterna, Valencia, Spain, and bNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine
*Correspondence e-mail: mlseredyuk@gmail.com
The molecular structure of the title compound, [FePt(CN)4(C14H8N2)2(H2O)2]n, consists of one-dimensional polymeric [–Fe–NC–Pt(CN)2–CN–]∞ chains. Two water molecules and two monodentate 1,4-bis(pyridin-4-yl)buta-1,3-diyne (bpb) ligand molecules complete the octahedral coordination sphere of the FeII atoms. The Fe—N(py) bond length (py is pyridine) is 2.2700 (15) Å, Fe—N(cyanide) is 2.1185 (16) Å and the Fe—O distance is 2.1275 (14) Å. The water molecules are hydrogen bonded to either bpb ligands or cyanide groups of the planar [Pt(CN)4]2− anion of adjacent polymeric chains. These O—H⋯N hydrogen bonds, in conjunction with offset and tilted π–π stacking interactions between bpb ligands and cyanide groups, extend the one-dimensional chains into a three-dimensional assembly.
CCDC reference: 1577444
Structure description
The title compound [Fe(bpb)2(H2O)2{Pt(CN)4}n (bpb = bis(pyridin-4-yl)butadiyne) results from ongoing research concerning the synthesis of FeII spin-crossover metal–organic frameworks containing polycyanometallates (Piñeiro-López et al., 2014, 2017). The title compound was obtained as a side product during the synthesis of Hofmann clathrate [Fe(bpb)2[Pt(CN)4]·guest (Piñeiro-López et al., 2014). The structure of the compound is similar to that of a one-dimensional with a bridging [Au(CN)2]−-anion and a bitopic pyrazole-based ligand, {FeL2(H2O)2[Au(CN)2]}n (L = bis(3,5-dimethyl-1H-pyrazolyl)selenide)(Seredyuk et al., 2007). Major structural differences are attributed to the linear [Au(CN)2]−-bridging units instead of [Pt(CN)4]2–-anions, and a bent ligand L.
The molecular structure of the title compound [Fe(bpb)2(H2O)2{Pt(CN)4}]n (bpb = bis(pyridin-4-yl)butadiyne) consists of one-dimensional polymeric [–Fe–NC–Pt(CN)2–CN–]∞ chains, repeating endlessly along [110] (Fig. 1). The FeII site has sixfold coordination with a distorted octahedral geometry, while the PtII ion is coordinated by four cyanide groups in an almost regular square-planar geometry. The metal ions reside on inversion centres. Two bitopic ligand molecules of bpb coordinate in a monodentate manner through a pyridine group together with two molecules of water and complete the octahedral coordination sphere of the FeII atoms. The Fe—N(py) bond length is 2.2700 (15) Å, Fe—N(cyanide) is 2.1185 (16) Å and the Fe—O distance is 2.1275 (14) Å. The second pyridine group of the ligand molecule and two cyano-groups of planar [Pt(CN)4]2–-anion form O—H⋯N hydrogen bonds (Table 1) with the water molecule belonging to adjacent polymeric chains. As a result of the hydrogen bonding, the dimensionality of the system is extended to a three-dimensional network (Fig. 2). A centroid-to-centroid distance of 3.6254 (10) Å between the pyridine rings of adjacent ligand molecules points to weak π–π stacking interactions.
Synthesis and crystallization
Single crystals of the title compound were grown using the slow-diffusion technique. One side of a multi-arm-shaped vessel contained (NH4)2Fe(SO4)2·6H2O (20 mg, 51 mmol) dissolved in water (0.5 ml). The contiguous arm contained solid bpb (11 mg, 49 mmol) and naphthalene (50 mg), and the third arm contained K2Pt(CN)4·3H2O (22 mg, 51 mmol) in water (0.5 ml). The vessel was filled with a water/methanol (1:1) solution. Square-shaped light-red crystals suitable for single-crystal X-ray analysis were obtained in the middle arm after six weeks as a side product of the yellow-colored complex {Fe(pbp)[Pt(CN)4]}.2naphthalene (Piñeiro-López et al., 2014).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1577444
https://doi.org/10.1107/S2414314617014134/zl4019sup1.cif
contains datablocks I, Il. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617014134/zl4019Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617014134/zl4019Isup3.cdx
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg et al., 1999); software used to prepare material for publication: publCIF (Westrip, 2010).[FePt(CN)4(C14H8N2)2(H2O)2] | Z = 1 |
Mr = 799.50 | F(000) = 388 |
Triclinic, P1 | Dx = 1.767 Mg m−3 |
a = 7.6572 (3) Å | Mo Kα radiation, λ = 0.71069 Å |
b = 9.0142 (4) Å | Cell parameters from 10158 reflections |
c = 12.1781 (5) Å | θ = 3.2–32.4° |
α = 106.975 (4)° | µ = 5.18 mm−1 |
β = 102.042 (4)° | T = 120 K |
γ = 102.408 (4)° | Prismatic, red |
V = 751.31 (6) Å3 | 0.20 × 0.20 × 0.10 mm |
Agilent SuperNova Sapphire3 CCD diffractometer | 4976 reflections with I > 2σ(I) |
ω and phi scans | Rint = 0.043 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | θmax = 32.5°, θmin = 3.2° |
Tmin = 0.742, Tmax = 1.000 | h = −11→11 |
14516 measured reflections | k = −13→13 |
4981 independent reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.018 | Hydrogen site location: mixed |
wR(F2) = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0162P)2 + 0.1718P] where P = (Fo2 + 2Fc2)/3 |
4981 reflections | (Δ/σ)max = 0.001 |
210 parameters | Δρmax = 1.25 e Å−3 |
0 restraints | Δρmin = −1.16 e Å−3 |
Experimental. CrysAlisPro (Agilent Technologies, 2011). Version 1.171.36.21 (release 14-08-2012 CrysAlis171 .NET) (compiled Sep 14 2012,17:21:16) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. H atoms attached to carbon atoms were positioned geometrically and constrained to ride on their parent atoms, with carbon hydrogen bond distances of 0.93. Uiso(H) values were set to 1.2 times Ueq(C). Water H atoms were freely refined with isotropic displacment parameters. |
x | y | z | Uiso*/Ueq | ||
Pt | 0.0000 | 0.0000 | 0.0000 | 0.00881 (3) | |
Fe | 0.5000 | 0.5000 | 0.0000 | 0.00981 (6) | |
O | 0.33280 (19) | 0.50060 (16) | −0.16295 (12) | 0.0145 (2) | |
N1 | 0.6289 (2) | 0.32518 (18) | −0.10666 (13) | 0.0124 (3) | |
N2 | 0.2964 (2) | 0.29769 (19) | −0.00226 (15) | 0.0152 (3) | |
N3 | −0.1740 (3) | 0.2499 (2) | 0.14476 (16) | 0.0240 (4) | |
N4 | 1.4798 (3) | −0.4687 (2) | −0.66180 (15) | 0.0215 (3) | |
C1 | 0.7935 (3) | 0.3832 (2) | −0.12515 (16) | 0.0137 (3) | |
H1 | 0.8500 | 0.4948 | −0.0940 | 0.016* | |
C2 | 0.8827 (3) | 0.2854 (2) | −0.18806 (16) | 0.0148 (3) | |
H2 | 0.9958 | 0.3310 | −0.1991 | 0.018* | |
C3 | 0.8008 (3) | 0.1176 (2) | −0.23471 (15) | 0.0142 (3) | |
C4 | 0.6312 (3) | 0.0555 (2) | −0.21480 (16) | 0.0157 (3) | |
H4 | 0.5730 | −0.0557 | −0.2435 | 0.019* | |
C5 | 0.5516 (3) | 0.1633 (2) | −0.15140 (16) | 0.0148 (3) | |
H5 | 0.4383 | 0.1211 | −0.1392 | 0.018* | |
C6 | 0.8927 (3) | 0.0153 (2) | −0.29969 (16) | 0.0169 (3) | |
C7 | 0.9788 (3) | −0.0622 (2) | −0.35286 (17) | 0.0183 (4) | |
C8 | 1.0789 (3) | −0.1493 (2) | −0.41274 (17) | 0.0189 (4) | |
C9 | 1.1658 (3) | −0.2256 (3) | −0.46534 (18) | 0.0202 (4) | |
C10 | 1.2732 (3) | −0.3111 (2) | −0.52906 (16) | 0.0170 (3) | |
C11 | 1.4542 (3) | −0.2291 (3) | −0.52251 (17) | 0.0209 (4) | |
H11 | 1.5088 | −0.1207 | −0.4736 | 0.025* | |
C12 | 1.5506 (3) | −0.3122 (3) | −0.59017 (17) | 0.0234 (4) | |
H12 | 1.6707 | −0.2567 | −0.5857 | 0.028* | |
C13 | 1.3085 (3) | −0.5469 (2) | −0.66547 (18) | 0.0218 (4) | |
H13 | 1.2591 | −0.6561 | −0.7135 | 0.026* | |
C14 | 1.1998 (3) | −0.4747 (2) | −0.60171 (18) | 0.0209 (4) | |
H14 | 1.0808 | −0.5339 | −0.6073 | 0.025* | |
C15 | 0.1904 (3) | 0.1867 (2) | −0.00073 (16) | 0.0124 (3) | |
C16 | −0.1121 (3) | 0.1558 (2) | 0.09247 (16) | 0.0140 (3) | |
H1O | 0.280 (4) | 0.572 (3) | −0.158 (2) | 0.027 (7)* | |
H2O | 0.390 (4) | 0.499 (3) | −0.215 (2) | 0.032 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt | 0.00875 (5) | 0.00567 (4) | 0.01247 (4) | 0.00113 (3) | 0.00495 (3) | 0.00329 (3) |
Fe | 0.00918 (16) | 0.00634 (14) | 0.01392 (15) | 0.00104 (12) | 0.00582 (12) | 0.00276 (12) |
O | 0.0158 (6) | 0.0138 (6) | 0.0161 (6) | 0.0074 (5) | 0.0074 (5) | 0.0043 (5) |
N1 | 0.0133 (7) | 0.0104 (7) | 0.0136 (6) | 0.0033 (6) | 0.0054 (5) | 0.0034 (5) |
N2 | 0.0147 (7) | 0.0102 (7) | 0.0222 (7) | 0.0033 (6) | 0.0093 (6) | 0.0052 (6) |
N3 | 0.0276 (10) | 0.0241 (9) | 0.0242 (8) | 0.0155 (8) | 0.0101 (7) | 0.0069 (7) |
N4 | 0.0253 (9) | 0.0269 (9) | 0.0163 (7) | 0.0152 (8) | 0.0091 (7) | 0.0057 (6) |
C1 | 0.0132 (8) | 0.0112 (7) | 0.0161 (7) | 0.0036 (6) | 0.0047 (6) | 0.0035 (6) |
C2 | 0.0131 (8) | 0.0153 (8) | 0.0162 (7) | 0.0051 (7) | 0.0057 (6) | 0.0045 (6) |
C3 | 0.0162 (8) | 0.0157 (8) | 0.0113 (7) | 0.0072 (7) | 0.0037 (6) | 0.0041 (6) |
C4 | 0.0178 (9) | 0.0112 (8) | 0.0166 (8) | 0.0040 (7) | 0.0067 (7) | 0.0016 (6) |
C5 | 0.0140 (8) | 0.0121 (8) | 0.0177 (8) | 0.0032 (7) | 0.0074 (7) | 0.0030 (6) |
C6 | 0.0187 (9) | 0.0155 (8) | 0.0158 (8) | 0.0061 (7) | 0.0051 (7) | 0.0039 (6) |
C7 | 0.0213 (10) | 0.0179 (9) | 0.0169 (8) | 0.0079 (8) | 0.0079 (7) | 0.0046 (7) |
C8 | 0.0219 (10) | 0.0188 (9) | 0.0181 (8) | 0.0082 (8) | 0.0084 (7) | 0.0059 (7) |
C9 | 0.0236 (10) | 0.0211 (9) | 0.0187 (8) | 0.0094 (8) | 0.0089 (8) | 0.0072 (7) |
C10 | 0.0222 (10) | 0.0190 (9) | 0.0137 (7) | 0.0107 (8) | 0.0082 (7) | 0.0062 (6) |
C11 | 0.0217 (10) | 0.0210 (9) | 0.0159 (8) | 0.0065 (8) | 0.0055 (7) | 0.0004 (7) |
C12 | 0.0183 (10) | 0.0331 (11) | 0.0168 (8) | 0.0094 (9) | 0.0063 (7) | 0.0039 (8) |
C13 | 0.0317 (11) | 0.0174 (9) | 0.0204 (9) | 0.0116 (8) | 0.0133 (8) | 0.0055 (7) |
C14 | 0.0266 (10) | 0.0183 (9) | 0.0241 (9) | 0.0096 (8) | 0.0152 (8) | 0.0087 (7) |
C15 | 0.0132 (8) | 0.0104 (7) | 0.0148 (7) | 0.0047 (6) | 0.0061 (6) | 0.0037 (6) |
C16 | 0.0139 (8) | 0.0120 (8) | 0.0165 (8) | 0.0037 (7) | 0.0059 (6) | 0.0045 (6) |
Pt—C15i | 1.9790 (17) | C2—C3 | 1.395 (3) |
Pt—C15 | 1.9790 (17) | C2—H2 | 0.9300 |
Pt—C16 | 1.9940 (18) | C3—C4 | 1.398 (2) |
Pt—C16i | 1.9941 (18) | C3—C6 | 1.434 (2) |
Fe—N2ii | 2.1185 (16) | C4—C5 | 1.387 (2) |
Fe—N2 | 2.1186 (16) | C4—H4 | 0.9300 |
Fe—Oii | 2.1275 (14) | C5—H5 | 0.9300 |
Fe—O | 2.1275 (14) | C6—C7 | 1.206 (3) |
Fe—N1 | 2.2700 (15) | C7—C8 | 1.376 (3) |
Fe—N1ii | 2.2700 (15) | C8—C9 | 1.202 (3) |
O—H1O | 0.83 (3) | C9—C10 | 1.435 (3) |
O—H2O | 0.84 (3) | C10—C14 | 1.395 (3) |
N1—C5 | 1.344 (2) | C10—C11 | 1.397 (3) |
N1—C1 | 1.348 (2) | C11—C12 | 1.384 (3) |
N2—C15 | 1.153 (3) | C11—H11 | 0.9300 |
N3—C16 | 1.154 (2) | C12—H12 | 0.9300 |
N4—C13 | 1.334 (3) | C13—C14 | 1.388 (3) |
N4—C12 | 1.341 (3) | C13—H13 | 0.9300 |
C1—C2 | 1.383 (2) | C14—H14 | 0.9300 |
C1—H1 | 0.9300 | ||
C15i—Pt—C15 | 180.0 | C1—C2—H2 | 120.4 |
C15i—Pt—C16 | 91.15 (7) | C3—C2—H2 | 120.4 |
C15—Pt—C16 | 88.85 (7) | C2—C3—C4 | 118.07 (16) |
C15i—Pt—C16i | 88.85 (7) | C2—C3—C6 | 119.49 (16) |
C15—Pt—C16i | 91.15 (7) | C4—C3—C6 | 122.43 (17) |
C16—Pt—C16i | 180.0 | C5—C4—C3 | 118.65 (16) |
N2ii—Fe—N2 | 180.0 | C5—C4—H4 | 120.7 |
N2ii—Fe—Oii | 92.14 (6) | C3—C4—H4 | 120.7 |
N2—Fe—Oii | 87.86 (6) | N1—C5—C4 | 123.74 (16) |
N2ii—Fe—O | 87.86 (6) | N1—C5—H5 | 118.1 |
N2—Fe—O | 92.14 (6) | C4—C5—H5 | 118.1 |
Oii—Fe—O | 180.0 | C7—C6—C3 | 175.9 (2) |
N2ii—Fe—N1 | 91.29 (6) | C6—C7—C8 | 179.3 (2) |
N2—Fe—N1 | 88.71 (6) | C9—C8—C7 | 179.8 (3) |
Oii—Fe—N1 | 90.25 (5) | C8—C9—C10 | 177.7 (2) |
O—Fe—N1 | 89.75 (5) | C14—C10—C11 | 118.15 (17) |
N2ii—Fe—N1ii | 88.71 (6) | C14—C10—C9 | 121.82 (18) |
N2—Fe—N1ii | 91.29 (6) | C11—C10—C9 | 119.99 (18) |
Oii—Fe—N1ii | 89.75 (5) | C12—C11—C10 | 118.77 (19) |
O—Fe—N1ii | 90.25 (5) | C12—C11—H11 | 120.6 |
N1—Fe—N1ii | 180.0 | C10—C11—H11 | 120.6 |
Fe—O—H1O | 117.1 (18) | N4—C12—C11 | 123.4 (2) |
Fe—O—H2O | 112.8 (19) | N4—C12—H12 | 118.3 |
H1O—O—H2O | 109 (3) | C11—C12—H12 | 118.3 |
C5—N1—C1 | 116.97 (15) | N4—C13—C14 | 123.71 (19) |
C5—N1—Fe | 123.42 (11) | N4—C13—H13 | 118.1 |
C1—N1—Fe | 119.59 (11) | C14—C13—H13 | 118.1 |
C15—N2—Fe | 177.61 (18) | C13—C14—C10 | 118.53 (19) |
C13—N4—C12 | 117.42 (17) | C13—C14—H14 | 120.7 |
N1—C1—C2 | 123.43 (16) | C10—C14—H14 | 120.7 |
N1—C1—H1 | 118.3 | N2—C15—Pt | 177.63 (18) |
C2—C1—H1 | 118.3 | N3—C16—Pt | 177.73 (17) |
C1—C2—C3 | 119.12 (16) | ||
C5—N1—C1—C2 | 0.8 (3) | C3—C4—C5—N1 | −0.6 (3) |
Fe—N1—C1—C2 | 179.39 (13) | C14—C10—C11—C12 | 1.5 (3) |
N1—C1—C2—C3 | −0.5 (3) | C9—C10—C11—C12 | −176.41 (19) |
C1—C2—C3—C4 | −0.4 (3) | C13—N4—C12—C11 | −1.1 (3) |
C1—C2—C3—C6 | −179.78 (17) | C10—C11—C12—N4 | −0.4 (3) |
C2—C3—C4—C5 | 0.9 (3) | C12—N4—C13—C14 | 1.4 (3) |
C6—C3—C4—C5 | −179.76 (17) | N4—C13—C14—C10 | −0.3 (3) |
C1—N1—C5—C4 | −0.3 (3) | C11—C10—C14—C13 | −1.2 (3) |
Fe—N1—C5—C4 | −178.80 (14) | C9—C10—C14—C13 | 176.68 (19) |
Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O—H2O···N4iii | 0.84 (3) | 1.95 (3) | 2.792 (2) | 173 (3) |
O—H1O···N3iv | 0.83 (3) | 1.93 (3) | 2.754 (2) | 176 (3) |
Symmetry codes: (iii) −x+2, −y, −z−1; (iv) −x, −y+1, −z. |
Funding information
The research reported here was supported by the Spanish Ministerio de Economía y Competitividad (MINECO) and FEDER funds (CTQ2013–46275-P) and Generalitat Valenciana (PROMETEO/2012/049). LPL thanks the Generalitat Valenciana for a predoctoral fellowship in the frame of the project PROMETEO/2012/049. MS thanks the EU for a Marie Curie fellowship (IIF-253254).
References
Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Brandenburg, K., Putz, H., or Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Piñeiro-López, L., Seredyuk, M., Muñoz, M. C. & Real, J. A. (2014). Chem. Commun. 50, 1833–1835. Google Scholar
Piñeiro-López, L., Valverde-Muñoz, F. J., Seredyuk, M., Muñoz, M. C., Haukka, M. & Real, J. A. (2017). Inorg. Chem. 56, 7038–7047. Web of Science PubMed Google Scholar
Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194. Web of Science CSD CrossRef PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.