metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

catena-Poly[[tri­methyl­tin(IV)]-μ-3,4-di­fluoro­benzene­seleninato-κ2O:O′]

CROSSMARK_Color_square_no_text.svg

aDepartment of Pharmacy, Shandong Medical College, Jinan 250000, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: zhangrf856@163.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 September 2017; accepted 9 October 2017; online 20 October 2017)

The title compound, [Sn(CH3)3(C6H3F2O2Se)]n, was prepared by treatment of 3,4-di­fluoro­benzene­seleninic acid and tri­methyl­tin chloride with sodium ethoxide in methanol. In the polymeric crystal structure, infinite chains, with the SnIV atom in a trigonal–bipyramidal C3O2 coordination environment involving methyl ligands and the bridging 3,4-di­fluoro­benzene­seleninate anion, are present. The chains extend parallel to [010] and are linked through slipped ππ inter­actions and weak C—H⋯O hydrogen bonds into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In recent years, organotin complexes have been attracting attention due to their significant number of industrial applications and their biological activities (Dubey & Roy, 2003[Dubey, S. K. & Roy, U. (2003). Appl. Organomet. Chem. 17, 3-8.]; Gielen, 2002[Gielen, M. (2002). Appl. Organomet. Chem. 16, 481-494.]). As part of our ongoing investigations in this field (Ma et al., 2011[Ma, C. L., Guo, M. J., Ru, J., Zhang, R. F. & Wang, Q. F. (2011). Inorg. Chim. Acta, 378, 213-217.]), we have synthesized the title compound and present its crystal structure here.

As can been seen from Fig. 1[link], the asymmetric unit of the title compound consists of one [(CH3)3Sn] moiety and a deprotonated 3,4-di­fluoro­benzene­seleninate anion that bridges adjacent SnIV atoms. The geometric index τ5 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) of Sn1 is 0.83, indicating a distorted trigonal–bipyramidal coordination environment whereby two O atoms from two 3,4-di­fluoro­benzene­seleninate anions occupy the axial positions [O2—Sn1—O1A(−x + [{1\over 2}], y − [{1\over 2}], −z + [{3\over 2}]) = 171.53 (11)°] and the methyl C atoms occupy the equatorial sites (C—Sn1—C angle sum is 359.9°). The OSeO units of the 3,4-di­fluoro­benzene­seleninate anion link adjacent [Me3Sn]+ moieties into a zigzag chain structure extending parallel to [010] (Fig. 2[link]). As a result of weak C—H⋯O hydrogen-bonding inter­actions (Table 1[link]) and slipped ππ inter­actions between the di­fluoro­benzene rings of adjacent chains (plane-to-plane distance = 3.538 Å), a three-dimensional network is established (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.93 2.59 3.370 (7) 142
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 1]
Figure 1
The coordination environment of the SnIV atom, showing displacement ellipsoids at the 30% probability level. [Symmetry code: (A) −x + [{1\over 2}], y − [{1\over 2}], −z + [{3\over 2}].]
[Figure 2]
Figure 2
View of the polymeric chain structure in the title compound running parallel to [010]. H atoms have been omitted for clarity.
[Figure 3]
Figure 3
A perspective view along [100], showing the crystal packing of the title compound.

Synthesis and crystallization

All reactions were carried out under a nitro­gen atmosphere using standard Schlenk techniques. The title compound was synthesized by dissolving 3,4-di­fluoro­benzene­seleninic acid (0.225 g, 1.0 mmol) and sodium ethoxide (0.068 g, 1.0 mmol) in methanol (30 ml) under stirring for 30 min. Tri­methyl­tin chloride (0.199 g, 1.0 mmol) was then added and the mixture stirred for a further 12 h at 323 K. The reaction mixture was filtered and the solvent gradually evaporated under vacuum until a colourless solid was obtained. The resulting product was recrystallized from diethyl ether to give transparent colourless crystals of the title compound (yield 80%, m.p. 413–415 K). Analysis calculated for C9H12O2F2SeSn: C 27.87, H 3.12%; found: C 27.67, H 3.38%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Sn(CH3)3(C6H3F2O2Se)]
Mr 387.84
Crystal system, space group Monoclinic, C2/c
Temperature (K) 298
a, b, c (Å) 18.0109 (15), 10.5246 (8), 14.0791 (11)
β (°) 95.443 (2)
V3) 2656.8 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 4.67
Crystal size (mm) 0.45 × 0.25 × 0.18
 
Data collection
Diffractometer Bruker APEXIII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.228, 0.487
No. of measured, independent and observed [I > 2σ(I)] reflections 7837, 3199, 2336
Rint 0.048
(sin θ/λ)max−1) 0.665
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.093, 1.04
No. of reflections 3199
No. of parameters 139
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.98, −0.82
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[[trimethyltin(IV)]-µ-3,4-difluorobenzeneseleninato-κ2O:O'] top
Crystal data top
[Sn(CH3)3(C6H3F2O2Se)]F(000) = 1472
Mr = 387.84Dx = 1.939 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.0109 (15) ÅCell parameters from 3059 reflections
b = 10.5246 (8) Åθ = 2.6–27.9°
c = 14.0791 (11) ŵ = 4.67 mm1
β = 95.443 (2)°T = 298 K
V = 2656.8 (4) Å3Block, colorless
Z = 80.45 × 0.25 × 0.18 mm
Data collection top
Bruker APEXIII CCD area detector
diffractometer
2336 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
phi and ω scansθmax = 28.2°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 2323
Tmin = 0.228, Tmax = 0.487k = 1310
7837 measured reflectionsl = 1817
3199 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0403P)2 + 2.010P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.017
3199 reflectionsΔρmax = 0.98 e Å3
139 parametersΔρmin = 0.82 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.27668 (2)0.51508 (3)0.69692 (2)0.03983 (12)
Se10.19978 (3)0.81568 (4)0.60742 (3)0.03991 (14)
F10.1054 (2)0.6237 (5)0.4668 (4)0.1246 (16)
F20.0018 (3)0.6159 (7)0.3566 (4)0.171 (3)
O10.1875 (2)0.8348 (3)0.7241 (2)0.0519 (8)
O20.25046 (18)0.6830 (3)0.6011 (2)0.0447 (8)
C10.0180 (4)0.6642 (7)0.4431 (5)0.082 (2)
C20.0887 (3)0.7068 (6)0.4718 (4)0.0660 (15)
H20.12650.70410.43130.079*
C30.1010 (3)0.7533 (5)0.5628 (3)0.0479 (11)
C40.0444 (3)0.7563 (7)0.6227 (4)0.0735 (17)
H40.05440.78720.68450.088*
C50.0279 (4)0.7138 (8)0.5922 (6)0.105 (3)
H50.06650.71630.63150.126*
C60.0376 (3)0.6687 (7)0.5012 (6)0.085 (2)
C70.1736 (3)0.5143 (5)0.7559 (4)0.0643 (16)
H7A0.14380.58420.73040.096*
H7B0.18200.52240.82400.096*
H7C0.14810.43590.74010.096*
C80.3657 (4)0.6155 (6)0.7734 (5)0.088 (2)
H8A0.36730.59470.83990.132*
H8B0.35790.70520.76520.132*
H8C0.41200.59200.74960.132*
C90.2920 (3)0.4116 (5)0.5720 (4)0.0658 (15)
H9A0.28470.32280.58340.099*
H9B0.34160.42530.55470.099*
H9C0.25650.43970.52110.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0463 (2)0.03474 (18)0.03778 (19)0.00020 (13)0.00044 (13)0.00274 (13)
Se10.0516 (3)0.0288 (2)0.0381 (3)0.00090 (18)0.0022 (2)0.00034 (18)
F10.053 (2)0.167 (4)0.147 (4)0.030 (3)0.023 (2)0.000 (4)
F20.113 (4)0.271 (8)0.125 (4)0.044 (4)0.014 (3)0.087 (5)
O10.074 (2)0.0423 (18)0.0393 (18)0.0108 (16)0.0059 (16)0.0103 (15)
O20.0548 (19)0.0376 (17)0.0414 (18)0.0073 (14)0.0029 (15)0.0071 (14)
C10.075 (4)0.092 (5)0.072 (4)0.010 (4)0.027 (4)0.021 (4)
C20.057 (3)0.082 (4)0.057 (3)0.006 (3)0.001 (3)0.014 (3)
C30.049 (3)0.042 (3)0.050 (3)0.005 (2)0.009 (2)0.000 (2)
C40.057 (3)0.105 (5)0.058 (4)0.000 (4)0.004 (3)0.005 (4)
C50.077 (5)0.138 (7)0.093 (6)0.006 (5)0.023 (4)0.002 (6)
C60.042 (4)0.097 (5)0.115 (6)0.013 (3)0.009 (4)0.014 (5)
C70.064 (4)0.060 (3)0.072 (4)0.009 (3)0.022 (3)0.015 (3)
C80.094 (5)0.060 (4)0.099 (5)0.020 (3)0.046 (4)0.015 (4)
C90.099 (5)0.049 (3)0.050 (3)0.014 (3)0.013 (3)0.002 (3)
Geometric parameters (Å, º) top
Sn1—C72.104 (5)C3—C41.383 (7)
Sn1—C92.108 (5)C4—C51.404 (9)
Sn1—C82.125 (6)C4—H40.9300
Sn1—O22.247 (3)C5—C61.363 (10)
Sn1—O1i2.262 (3)C5—H50.9300
Se1—O21.675 (3)C7—H7A0.9600
Se1—O11.690 (3)C7—H7B0.9600
Se1—C31.944 (5)C7—H7C0.9600
F1—C61.355 (7)C8—H8A0.9600
F2—C11.326 (7)C8—H8B0.9600
O1—Sn1ii2.262 (3)C8—H8C0.9600
C1—C61.352 (10)C9—H9A0.9600
C1—C21.374 (8)C9—H9B0.9600
C2—C31.370 (7)C9—H9C0.9600
C2—H20.9300
C7—Sn1—C9121.1 (2)C5—C4—H4119.3
C7—Sn1—C8116.9 (3)C6—C5—C4115.6 (7)
C9—Sn1—C8121.8 (3)C6—C5—H5122.2
C7—Sn1—O295.57 (16)C4—C5—H5122.2
C9—Sn1—O286.66 (16)C1—C6—F1117.8 (7)
C8—Sn1—O291.06 (19)C1—C6—C5123.0 (6)
C7—Sn1—O1i91.36 (17)F1—C6—C5119.3 (7)
C9—Sn1—O1i85.58 (16)Sn1—C7—H7A109.5
C8—Sn1—O1i90.13 (19)Sn1—C7—H7B109.5
O2—Sn1—O1i171.53 (11)H7A—C7—H7B109.5
O2—Se1—O1105.85 (16)Sn1—C7—H7C109.5
O2—Se1—C3100.84 (18)H7A—C7—H7C109.5
O1—Se1—C398.87 (19)H7B—C7—H7C109.5
Se1—O1—Sn1ii121.34 (16)Sn1—C8—H8A109.5
Se1—O2—Sn1135.08 (17)Sn1—C8—H8B109.5
F2—C1—C6117.2 (6)H8A—C8—H8B109.5
F2—C1—C2120.8 (7)Sn1—C8—H8C109.5
C6—C1—C2122.0 (6)H8A—C8—H8C109.5
C3—C2—C1117.1 (6)H8B—C8—H8C109.5
C3—C2—H2121.5Sn1—C9—H9A109.5
C1—C2—H2121.5Sn1—C9—H9B109.5
C2—C3—C4121.0 (5)H9A—C9—H9B109.5
C2—C3—Se1119.0 (4)Sn1—C9—H9C109.5
C4—C3—Se1120.0 (4)H9A—C9—H9C109.5
C3—C4—C5121.4 (6)H9B—C9—H9C109.5
C3—C4—H4119.3
O2—Se1—O1—Sn1ii123.4 (2)Se1—C3—C4—C5179.0 (6)
C3—Se1—O1—Sn1ii132.6 (2)C3—C4—C5—C60.8 (11)
O1—Se1—O2—Sn118.4 (3)F2—C1—C6—F10.0 (11)
C3—Se1—O2—Sn184.1 (3)C2—C1—C6—F1179.6 (7)
F2—C1—C2—C3179.0 (7)F2—C1—C6—C5178.7 (8)
C6—C1—C2—C30.6 (10)C2—C1—C6—C50.9 (12)
C1—C2—C3—C40.3 (9)C4—C5—C6—C10.2 (12)
C1—C2—C3—Se1179.7 (5)C4—C5—C6—F1178.8 (7)
C2—C3—C4—C51.0 (10)
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2iii0.932.593.370 (7)142
Symmetry code: (iii) x+1/2, y+3/2, z+1.
 

Funding information

Funding for this research was provided by: National Nature Science Foundation of China (grant No. 21371087).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDubey, S. K. & Roy, U. (2003). Appl. Organomet. Chem. 17, 3–8.  Web of Science CrossRef CAS Google Scholar
First citationGielen, M. (2002). Appl. Organomet. Chem. 16, 481–494.  Web of Science CrossRef CAS Google Scholar
First citationMa, C. L., Guo, M. J., Ru, J., Zhang, R. F. & Wang, Q. F. (2011). Inorg. Chim. Acta, 378, 213–217.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]