organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Methyl-5,5-di­phenyl­imidazolidine-2,4-dione

CROSSMARK_Color_square_no_text.svg

aLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: gerrab_walid@yahoo.com

Edited by J. Simpson, University of Otago, New Zealand (Received 14 October 2017; accepted 21 October 2017; online 27 October 2017)

In the title mol­ecule, C16H14N2O2, the imidazolidine-2,4-dione ring carries two phenyl substituents at the 5-position inclined to the five-membered ring plane by 59.17 (6) and 53.21 (6)°. In the crystal, the mol­ecules form chains parallel to the a-axis direction through N—H⋯O hydrogen bonds. These chains are linked into a three-dimensional network of mol­ecules stacked along a through C—H⋯π(ring) interactions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Hydantoin, also known as imidazolidin-2,4-dione, is an important nucleus found in numerous natural products and in several clinically important medicines. One the best known examples of such a derivative is phenytoine (5,5-di­phenyl­imidazolidine-2,4-dion), a drug widely prescribed as an anti­convulsant agent and for the treatment of many other diseases including HIV (Weichet, 1974[Weichet, B. L. (1974). Czech Patent 151,744-747.]; Havera & Strycker, 1976[Havera, H. J. & Strycker, W. G. (1976). US Patent 3 904 909.]; Khodair et al., 1997[Khodair, A. I., el-Subbagh, H. I. & el-Emam, A. A. (1997). Boll. Chim. Farm. 136, 561-567.]; Thenmozhiyal et al., 2004[Thenmozhiyal, J. C., Wong, P. T. H. & Chui, W.-K. (2004). J. Med. Chem. 47, 1527-1535.]). As a continuation of our work in this area (Ramli et al., 2017a[Ramli, Y., Akrad, R., Guerrab, W., Taoufik, J., Ansar, M. & Mague, J. T. (2017a). IUCrData, 2, x170098.],b[Ramli, Y., Guerrab, W., Moussaif, A., Taoufik, J., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x171041.]; Akrad et al. 2017[Akrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). IUCrData, 2, x170033.]), the compound N-methyl-5,5-di­phenyl­imidazolidine-2,4-dion (Fig. 1[link]) was prepared and its crystal structure is reported here.

[Figure 1]
Figure 1
The title mol­ecule with the labelling scheme and 50% probability displacement ellipsoids.

The C1,N2,C3,N1,C2 imidazolidine-2,4-dione ring carries two phenyl substituents on C1. These are inclined to the five-membered ring plane by 59.17 (6)° (C5–C10) and 53.21 (6)° (C11–C16). In the crystal, mol­ecules forms chains parallel to the a-axis direction through N2—H2⋯O1 hydrogen bonds. These chains form a three-dimensional network of mol­ecules stacked along a through a series of C—H⋯π inter­actions, Table 1[link], Figs. 2[link] and 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C5–C10 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.928 (19) 1.922 (19) 2.8482 (13) 175.9 (16)
C4—H4ECg3ii 0.98 2.87 3.5883 (14) 131
C8—H8⋯Cg3iii 0.922 (19) 2.915 (19) 3.7061 (14) 144.7 (14)
C13—H15⋯Cg2iv 0.997 (19) 2.809 (19) 139.8 (14) 3.6255 (15)
Symmetry codes: (i) x+1, y, z; (ii) [x-{\script{3\over 2}}, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
C—H⋯π(ring) contacts in the title structure, shown as green dashed lines.
[Figure 3]
Figure 3
Packing of the title compound viewed along the b-axis direction, with N—H⋯O hydrogen drawn as blue dashed lines.

Synthesis and crystallization

To a solution of 5,5-di­phenyl­imidazolidine-2,4-dione (1 g, 3.96 mmol) was added one equivalent of methyl bromide (0.37 g) in absolute DMF and the solution was heated under reflux for 3 h in the presence of 1.3 equivalents of K2CO3. The reaction mixture was filtered while hot, and the solvent was distilled off under reduced pressure. The residue obtained was dried and recrystallized from ethanol solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C4 methyl group is rotationally disordered over two sets of sites of equal occupancy.

Table 2
Experimental details

Crystal data
Chemical formula C16H14N2O2
Mr 266.29
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 6.2328 (3), 15.7965 (7), 13.4448 (6)
β (°) 95.256 (1)
V3) 1318.16 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.73
Crystal size (mm) 0.27 × 0.17 × 0.11
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.84, 0.93
No. of measured, independent and observed [I > 2σ(I)] reflections 10021, 2636, 2455
Rint 0.029
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.07
No. of reflections 2636
No. of parameters 226
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.16
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-Methyl-5,5-diphenylimidazolidine-2,4-dione top
Crystal data top
C16H14N2O2F(000) = 560
Mr = 266.29Dx = 1.342 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 6.2328 (3) ÅCell parameters from 8452 reflections
b = 15.7965 (7) Åθ = 3.3–74.3°
c = 13.4448 (6) ŵ = 0.73 mm1
β = 95.256 (1)°T = 150 K
V = 1318.16 (10) Å3Block, colourless
Z = 40.27 × 0.17 × 0.11 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2636 independent reflections
Radiation source: INCOATEC IµS micro-focus source2455 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4167 pixels mm-1θmax = 74.3°, θmin = 4.3°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1815
Tmin = 0.84, Tmax = 0.93l = 1616
10021 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.4502P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2636 reflectionsΔρmax = 0.22 e Å3
226 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0076 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The methyl group is rotationally disordered over two approximately equal sites. These hydrogen atoms were included as riding contributions with an HFIX 123 instruction.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.13255 (13)0.20890 (6)0.18291 (6)0.0256 (2)
O20.66323 (15)0.11602 (7)0.00232 (7)0.0357 (3)
N10.35876 (15)0.15080 (7)0.07600 (7)0.0229 (2)
N20.67715 (16)0.19646 (6)0.14190 (7)0.0223 (2)
H20.826 (3)0.1992 (11)0.1523 (13)0.040 (4)*
C10.52715 (17)0.22587 (7)0.21171 (8)0.0191 (2)
C20.31218 (18)0.19529 (7)0.15712 (8)0.0202 (2)
C30.58171 (19)0.15088 (8)0.06526 (9)0.0237 (3)
C40.2018 (2)0.11254 (9)0.00207 (10)0.0327 (3)
H4A0.2774400.0839190.0491340.049*0.5
H4B0.1144170.0712920.0349620.049*0.5
H4C0.1080290.1567240.0292170.049*0.5
H4D0.0558170.1240370.0202070.049*0.5
H4E0.2188400.1366650.0638880.049*0.5
H4F0.2252290.0512330.0002910.049*0.5
C50.57456 (18)0.18436 (7)0.31480 (8)0.0204 (3)
C60.7833 (2)0.19301 (8)0.36193 (9)0.0243 (3)
H60.890 (3)0.2240 (10)0.3288 (12)0.036 (4)*
C70.8360 (2)0.15792 (8)0.45565 (9)0.0296 (3)
H70.987 (3)0.1627 (10)0.4875 (12)0.035 (4)*
C80.6822 (2)0.11504 (9)0.50429 (10)0.0318 (3)
H80.716 (3)0.0918 (11)0.5667 (14)0.044 (5)*
C90.4749 (2)0.10690 (9)0.45810 (10)0.0313 (3)
H90.361 (3)0.0771 (11)0.4909 (13)0.040 (4)*
C100.4207 (2)0.14135 (8)0.36395 (9)0.0258 (3)
H100.275 (3)0.1368 (10)0.3333 (12)0.034 (4)*
C110.52751 (18)0.32217 (7)0.22487 (8)0.0202 (2)
C120.6895 (2)0.37174 (8)0.19058 (9)0.0274 (3)
H120.257 (3)0.3252 (10)0.3030 (12)0.032 (4)*
C130.6913 (2)0.45887 (9)0.20707 (11)0.0349 (3)
H130.254 (3)0.4735 (11)0.3275 (12)0.039 (4)*
C140.5318 (2)0.49661 (8)0.25678 (10)0.0328 (3)
H140.537 (3)0.5566 (13)0.2694 (13)0.047 (5)*
C150.3708 (2)0.44727 (8)0.29156 (10)0.0295 (3)
H150.809 (3)0.4931 (12)0.1821 (14)0.050 (5)*
C160.3694 (2)0.36034 (8)0.27661 (9)0.0246 (3)
H160.807 (3)0.3452 (11)0.1544 (12)0.038 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0165 (4)0.0345 (5)0.0258 (4)0.0012 (3)0.0014 (3)0.0014 (3)
O20.0294 (5)0.0497 (6)0.0285 (5)0.0012 (4)0.0061 (4)0.0156 (4)
N10.0190 (5)0.0295 (5)0.0197 (5)0.0030 (4)0.0007 (4)0.0035 (4)
N20.0165 (5)0.0309 (5)0.0194 (5)0.0003 (4)0.0016 (4)0.0044 (4)
C10.0156 (5)0.0240 (6)0.0177 (5)0.0000 (4)0.0011 (4)0.0006 (4)
C20.0187 (5)0.0232 (6)0.0182 (5)0.0010 (4)0.0000 (4)0.0017 (4)
C30.0215 (6)0.0285 (6)0.0211 (6)0.0002 (4)0.0021 (4)0.0020 (4)
C40.0284 (7)0.0433 (8)0.0251 (6)0.0095 (5)0.0042 (5)0.0069 (5)
C50.0222 (6)0.0203 (5)0.0183 (5)0.0025 (4)0.0010 (4)0.0014 (4)
C60.0234 (6)0.0270 (6)0.0221 (6)0.0009 (5)0.0006 (4)0.0008 (4)
C70.0319 (7)0.0320 (7)0.0234 (6)0.0041 (5)0.0055 (5)0.0025 (5)
C80.0446 (8)0.0304 (7)0.0193 (6)0.0048 (5)0.0019 (5)0.0022 (5)
C90.0378 (7)0.0320 (7)0.0247 (6)0.0010 (5)0.0064 (5)0.0042 (5)
C100.0243 (6)0.0293 (6)0.0236 (6)0.0001 (5)0.0013 (5)0.0017 (5)
C110.0206 (5)0.0237 (6)0.0157 (5)0.0004 (4)0.0020 (4)0.0008 (4)
C120.0279 (6)0.0286 (7)0.0259 (6)0.0033 (5)0.0044 (5)0.0020 (5)
C130.0405 (8)0.0284 (7)0.0364 (7)0.0084 (6)0.0059 (6)0.0040 (5)
C140.0448 (8)0.0219 (7)0.0308 (7)0.0005 (5)0.0015 (6)0.0008 (5)
C150.0343 (7)0.0279 (7)0.0257 (6)0.0056 (5)0.0003 (5)0.0025 (5)
C160.0251 (6)0.0269 (6)0.0216 (6)0.0003 (5)0.0012 (4)0.0004 (4)
Geometric parameters (Å, º) top
O1—C21.2211 (14)C6—H60.969 (17)
O2—C31.2130 (15)C7—C81.386 (2)
N1—C21.3513 (15)C7—H70.999 (17)
N1—C31.4102 (15)C8—C91.387 (2)
N1—C41.4603 (15)C8—H80.922 (19)
N2—C31.3497 (15)C9—C101.3908 (18)
N2—C11.4600 (14)C9—H90.987 (17)
N2—H20.928 (19)C10—H100.965 (16)
C1—C111.5314 (16)C11—C121.3894 (16)
C1—C51.5374 (15)C11—C161.3944 (16)
C1—C21.5450 (15)C12—C131.3940 (19)
C4—H4A0.9800C12—H161.007 (17)
C4—H4B0.9800C13—C141.383 (2)
C4—H4C0.9800C13—H150.997 (19)
C4—H4D0.9800C14—C151.386 (2)
C4—H4E0.9800C14—H140.96 (2)
C4—H4F0.9800C15—C161.3878 (18)
C5—C101.3905 (17)C15—H130.999 (16)
C5—C61.4004 (16)C16—H120.987 (16)
C6—C71.3883 (17)
C2—N1—C3111.64 (9)H4E—C4—H4F109.5
C2—N1—C4125.77 (10)C10—C5—C6119.02 (11)
C3—N1—C4122.41 (10)C10—C5—C1123.56 (10)
C3—N2—C1113.40 (9)C6—C5—C1117.39 (10)
C3—N2—H2120.4 (10)C7—C6—C5120.30 (12)
C1—N2—H2125.4 (10)C7—C6—H6120.2 (10)
N2—C1—C11113.33 (9)C5—C6—H6119.5 (10)
N2—C1—C5111.24 (9)C8—C7—C6120.47 (12)
C11—C1—C5108.75 (9)C8—C7—H7119.9 (9)
N2—C1—C2100.01 (9)C6—C7—H7119.6 (9)
C11—C1—C2110.95 (9)C7—C8—C9119.36 (12)
C5—C1—C2112.43 (9)C7—C8—H8120.9 (11)
O1—C2—N1126.24 (10)C9—C8—H8119.8 (11)
O1—C2—C1126.01 (10)C8—C9—C10120.64 (12)
N1—C2—C1107.75 (9)C8—C9—H9121.3 (10)
O2—C3—N2128.93 (11)C10—C9—H9118.0 (10)
O2—C3—N1124.09 (11)C5—C10—C9120.22 (12)
N2—C3—N1106.97 (10)C5—C10—H10119.7 (9)
N1—C4—H4A109.5C9—C10—H10120.0 (9)
N1—C4—H4B109.5C12—C11—C16119.35 (11)
H4A—C4—H4B109.5C12—C11—C1120.99 (10)
N1—C4—H4C109.5C16—C11—C1119.57 (10)
H4A—C4—H4C109.5C11—C12—C13119.94 (12)
H4B—C4—H4C109.5C11—C12—H16120.6 (10)
N1—C4—H4D109.5C13—C12—H16119.5 (10)
H4A—C4—H4D141.1C14—C13—C12120.47 (12)
H4B—C4—H4D56.3C14—C13—H15121.0 (11)
H4C—C4—H4D56.3C12—C13—H15118.6 (11)
N1—C4—H4E109.5C13—C14—C15119.71 (12)
H4A—C4—H4E56.3C13—C14—H14119.7 (11)
H4B—C4—H4E141.1C15—C14—H14120.6 (11)
H4C—C4—H4E56.3C14—C15—C16120.18 (12)
H4D—C4—H4E109.5C14—C15—H13120.7 (10)
N1—C4—H4F109.5C16—C15—H13119.1 (10)
H4A—C4—H4F56.3C15—C16—C11120.32 (12)
H4B—C4—H4F56.3C15—C16—H12120.0 (9)
H4C—C4—H4F141.1C11—C16—H12119.7 (9)
H4D—C4—H4F109.5
C3—N2—C1—C11122.82 (11)C2—C1—C5—C6166.81 (10)
C3—N2—C1—C5114.28 (11)C10—C5—C6—C71.00 (17)
C3—N2—C1—C24.69 (12)C1—C5—C6—C7179.22 (11)
C3—N1—C2—O1176.95 (11)C5—C6—C7—C80.96 (19)
C4—N1—C2—O11.9 (2)C6—C7—C8—C90.5 (2)
C3—N1—C2—C13.13 (13)C7—C8—C9—C100.1 (2)
C4—N1—C2—C1178.20 (11)C6—C5—C10—C90.59 (18)
N2—C1—C2—O1175.55 (11)C1—C5—C10—C9178.69 (11)
C11—C1—C2—O155.66 (15)C8—C9—C10—C50.1 (2)
C5—C1—C2—O166.36 (15)N2—C1—C11—C1213.45 (15)
N2—C1—C2—N14.54 (11)C5—C1—C11—C12110.82 (11)
C11—C1—C2—N1124.42 (10)C2—C1—C11—C12125.02 (11)
C5—C1—C2—N1113.55 (10)N2—C1—C11—C16169.94 (10)
C1—N2—C3—O2177.48 (13)C5—C1—C11—C1665.79 (13)
C1—N2—C3—N13.15 (14)C2—C1—C11—C1658.36 (13)
C2—N1—C3—O2179.23 (12)C16—C11—C12—C130.74 (18)
C4—N1—C3—O24.0 (2)C1—C11—C12—C13177.36 (11)
C2—N1—C3—N20.17 (14)C11—C12—C13—C140.5 (2)
C4—N1—C3—N2175.43 (11)C12—C13—C14—C150.8 (2)
N2—C1—C5—C10126.29 (12)C13—C14—C15—C160.0 (2)
C11—C1—C5—C10108.21 (12)C14—C15—C16—C111.23 (19)
C2—C1—C5—C1015.06 (15)C12—C11—C16—C151.58 (17)
N2—C1—C5—C655.57 (13)C1—C11—C16—C15178.25 (11)
C11—C1—C5—C669.93 (12)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C5–C10 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.928 (19)1.922 (19)2.8482 (13)175.9 (16)
C4—H4E···Cg3ii0.982.873.5883 (14)131
C8—H8···Cg3iii0.922 (19)2.915 (19)3.7061 (14)144.7 (14)
C13—H15···Cg2iv0.997 (19)2.809 (19)139.8 (14)3.6255 (15)
Symmetry codes: (i) x+1, y, z; (ii) x3/2, y1/2, z3/2; (iii) x1/2, y1/2, z1/2; (iv) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAkrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). IUCrData, 2, x170033.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHavera, H. J. & Strycker, W. G. (1976). US Patent 3 904 909.  Google Scholar
First citationKhodair, A. I., el-Subbagh, H. I. & el-Emam, A. A. (1997). Boll. Chim. Farm. 136, 561–567.  CAS PubMed Google Scholar
First citationRamli, Y., Akrad, R., Guerrab, W., Taoufik, J., Ansar, M. & Mague, J. T. (2017a). IUCrData, 2, x170098.  Google Scholar
First citationRamli, Y., Guerrab, W., Moussaif, A., Taoufik, J., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x171041.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThenmozhiyal, J. C., Wong, P. T. H. & Chui, W.-K. (2004). J. Med. Chem. 47, 1527–1535.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWeichet, B. L. (1974). Czech Patent 151,744–747.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]