organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-((E)-{[3-(1H-Imidazol-1-yl)prop­yl]imino}­meth­yl)-4-[(E)-(2-methyl­phen­yl)diazen­yl]phenol

CROSSMARK_Color_square_no_text.svg

aLCBAE, Equipe Chimie Moléculaire et Molécules Bioactives, Université Moulay Ismail, Faculté des Sciences, Meknès, Morocco, and bLaboratoire de Chimie des Matériaux et Biotechnologie des Produits Naturels, E.Ma.Me.P.S., Université Moulay Ismail, Faculté des Sciences, Meknès, Morocco
*Correspondence e-mail: kyamni@hotmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 5 October 2017; accepted 12 October 2017; online 20 October 2017)

In the title compound, C20H21N5O, an intra­molecular O—H⋯N hydrogen bond forms between the –OH substituent of the phenol ring and the adjacent imino­methyl N atom, enclosing an S6 ring. The dihedral angles between the imidazole ring and the methyl­phenyl and phenol rings are 86.93 (14) and 88.00 (13)°, respectively, while that between the methyl­phenyl and phenol rings is 2.18 (12)°.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In the title compound (Fig. 1[link]), an S6 ring motif is formed by an intra­molecular O1—H1⋯N3 hydrogen bond (Table 1[link]). The dihedral angles between the imidazole ring and the methyl­phenyl and phenol rings are 86.93 (14) and 88.00 (13)°, respectively. In contrast, the methyl­phenyl­diazenylphenol segment of the mol­ecule is almost planar, with a dihedral angle of 2.18 (12)° between the C1–C6 and C7–C12 benzene rings.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N3 0.82 1.80 2.534 (2) 148
[Figure 1]
Figure 1
The structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres with arbitrary radii.

Synthesis and crystallization

A diazo­nium salt solution was prepared by dissolving o-toluidine amine (1.23 g, 0.01 mol) in a mixture of water and concentrated hydro­chloric acid (8 and 3 ml, respectively). The resulting solution was cooled to 273 K, treated with aqueous (1.0 M) sodium nitrate (15 ml) dropwise and stirred for 15 min. Salicyl­aldehyde (2.2 g, 0.01 mol) was dissolved in 10% sodium hydroxide (50 ml). The diazo­nium solution was then added dropwise to initiate the coupling reaction. After the mixture had been stirred for 1 h at 273–278 K, the precipitate was filtered off. Crystals were obtained by recrystallization from ethanol. N-(3-Amino­prop­yl)imidazole (0.5 g, 4 mmol) was next added to an ethanol solution (30 ml) of 2-hy­droxy-5-(o-tolyl­diazen­yl)benzaldehyde (0.96 g, 4 mmol). The mixture was refluxed for 2 h and cooled to room temperature. The solvent was removed under vacuum. The final product obtained after extraction was recrystallized from a mixture of ethanol and diethyl ether, the solution being allowed to evaporate slowly at a constant ambient temperature to give coulourless good-quality crystals after 3 d.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H21N5O
Mr 347.42
Crystal system, space group Orthorhombic, P21212
Temperature (K) 293
a, b, c (Å) 9.7570 (3), 32.0691 (13), 5.8643 (2)
V3) 1834.93 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.25 × 0.15 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD detector
No. of measured, independent and observed [I > 2σ(I)] reflections 25352, 3590, 2978
Rint 0.026
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.04
No. of reflections 3590
No. of parameters 238
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.16
Absolute structure Flack x determined using 1099 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.4 (4)
Computer programs: APEX2 and SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

2-((E)-{[3-(1H-Imidazol-1-yl)propyl]imino}methyl)-4-[(E)-(2-methylphenyl)diazenyl]phenol top
Crystal data top
C20H21N5ODx = 1.258 Mg m3
Mr = 347.42Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212Cell parameters from 245 reflections
a = 9.7570 (3) Åθ = 0.2–52°
b = 32.0691 (13) ŵ = 0.08 mm1
c = 5.8643 (2) ÅT = 293 K
V = 1834.93 (11) Å3Prism, colourless
Z = 40.25 × 0.15 × 0.12 mm
F(000) = 736
Data collection top
Bruker APEXII CCD detector
diffractometer
2978 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 26.0°, θmin = 1.3°
ω and φ scansh = 1211
25352 measured reflectionsk = 3939
3590 independent reflectionsl = 77
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0669P)2 + 0.0698P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.037(Δ/σ)max < 0.001
wR(F2) = 0.105Δρmax = 0.18 e Å3
S = 1.04Δρmin = 0.16 e Å3
3590 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
238 parametersExtinction coefficient: 0.011 (3)
0 restraintsAbsolute structure: Flack x determined using 1099 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.4 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C120.3769 (2)0.07393 (7)0.3773 (4)0.0467 (5)
H120.41410.06410.24150.056*
O10.41943 (18)0.15905 (5)0.7861 (3)0.0678 (5)
H10.48410.16850.71340.102*
C110.4278 (2)0.11065 (6)0.4741 (4)0.0418 (5)
C130.5404 (2)0.13322 (7)0.3685 (4)0.0469 (5)
H130.57870.12330.23390.056*
N10.26508 (19)0.00103 (6)0.2286 (3)0.0531 (5)
N30.58696 (18)0.16637 (5)0.4584 (3)0.0494 (5)
C80.2161 (2)0.06705 (7)0.6845 (4)0.0555 (6)
H80.14500.05250.75390.067*
N20.2132 (2)0.01415 (6)0.4030 (3)0.0541 (5)
C60.2023 (2)0.03952 (7)0.1584 (4)0.0489 (5)
C140.7004 (2)0.18966 (7)0.3569 (4)0.0503 (6)
H14A0.66530.21380.27610.060*
H14B0.74870.17220.24840.060*
C90.2645 (2)0.10291 (7)0.7834 (4)0.0563 (6)
H90.22600.11250.91860.068*
C70.2719 (2)0.05208 (7)0.4815 (4)0.0471 (5)
C10.2536 (2)0.05815 (7)0.0377 (4)0.0507 (6)
C50.0958 (3)0.05797 (8)0.2794 (5)0.0662 (7)
H50.06290.04540.41150.079*
N40.99745 (18)0.22455 (5)0.3059 (3)0.0441 (4)
C100.3715 (2)0.12496 (6)0.6814 (4)0.0478 (5)
C171.1092 (2)0.20035 (7)0.3481 (4)0.0542 (6)
H171.13440.18850.48660.065*
C200.3712 (3)0.03963 (9)0.1689 (5)0.0686 (7)
H20A0.36430.00980.16690.103*
H20B0.36840.04940.32360.103*
H20C0.45620.04800.09980.103*
C30.0873 (3)0.11327 (8)0.0100 (6)0.0672 (7)
H30.04850.13800.04150.081*
C160.8941 (2)0.23810 (7)0.4694 (4)0.0552 (6)
H16A0.84100.26050.40220.066*
H16B0.93970.24910.60340.066*
C191.1760 (3)0.19709 (8)0.1467 (5)0.0622 (7)
H191.25660.18220.12480.075*
C181.0022 (3)0.23486 (8)0.0844 (4)0.0596 (6)
H180.93740.25160.01230.072*
C150.7975 (2)0.20352 (7)0.5421 (4)0.0538 (6)
H15A0.85120.17970.59140.065*
H15B0.74430.21310.67180.065*
N51.1094 (2)0.21854 (8)0.0191 (4)0.0712 (6)
C40.0388 (3)0.09479 (8)0.2045 (6)0.0714 (8)
H40.03250.10710.28570.086*
C20.1933 (3)0.09525 (7)0.1093 (5)0.0618 (7)
H20.22540.10820.24080.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C120.0489 (11)0.0477 (11)0.0437 (11)0.0006 (10)0.0008 (10)0.0074 (10)
O10.0660 (11)0.0584 (10)0.0792 (12)0.0179 (8)0.0269 (10)0.0315 (9)
C110.0404 (11)0.0399 (10)0.0451 (11)0.0019 (8)0.0003 (9)0.0026 (9)
C130.0470 (12)0.0482 (11)0.0456 (11)0.0012 (10)0.0048 (10)0.0057 (10)
N10.0543 (11)0.0472 (10)0.0579 (11)0.0060 (9)0.0022 (9)0.0101 (9)
N30.0454 (10)0.0446 (10)0.0581 (11)0.0036 (8)0.0082 (9)0.0046 (8)
C80.0496 (12)0.0528 (13)0.0641 (15)0.0096 (11)0.0106 (13)0.0070 (11)
N20.0536 (10)0.0492 (11)0.0595 (12)0.0063 (9)0.0010 (10)0.0111 (9)
C60.0450 (11)0.0439 (11)0.0577 (14)0.0012 (10)0.0072 (11)0.0080 (10)
C140.0494 (12)0.0492 (12)0.0524 (13)0.0049 (10)0.0098 (11)0.0001 (10)
C90.0542 (14)0.0571 (14)0.0577 (14)0.0081 (11)0.0152 (12)0.0164 (11)
C70.0454 (11)0.0441 (11)0.0517 (12)0.0043 (10)0.0044 (11)0.0041 (10)
C10.0504 (12)0.0459 (11)0.0557 (13)0.0054 (10)0.0091 (11)0.0050 (10)
C50.0625 (14)0.0585 (14)0.0775 (18)0.0102 (12)0.0078 (15)0.0180 (13)
N40.0449 (9)0.0440 (9)0.0435 (9)0.0058 (8)0.0065 (9)0.0005 (8)
C100.0427 (11)0.0439 (12)0.0568 (13)0.0009 (9)0.0031 (11)0.0103 (10)
C170.0508 (12)0.0512 (12)0.0606 (14)0.0055 (11)0.0064 (12)0.0033 (11)
C200.0768 (17)0.0621 (15)0.0668 (16)0.0011 (13)0.0108 (15)0.0055 (13)
C30.0579 (14)0.0482 (13)0.096 (2)0.0028 (12)0.0175 (16)0.0191 (14)
C160.0547 (13)0.0569 (14)0.0539 (13)0.0120 (11)0.0166 (12)0.0108 (11)
C190.0528 (13)0.0512 (13)0.0827 (19)0.0042 (11)0.0115 (14)0.0136 (13)
C180.0678 (15)0.0632 (15)0.0480 (13)0.0051 (13)0.0092 (13)0.0098 (11)
C150.0531 (12)0.0587 (14)0.0496 (13)0.0088 (11)0.0104 (11)0.0029 (11)
N50.0828 (15)0.0772 (14)0.0535 (12)0.0035 (13)0.0235 (13)0.0049 (11)
C40.0605 (15)0.0572 (15)0.097 (2)0.0141 (12)0.0049 (15)0.0138 (15)
C20.0670 (15)0.0505 (13)0.0679 (17)0.0053 (12)0.0091 (14)0.0165 (12)
Geometric parameters (Å, º) top
C12—C71.383 (3)C5—C41.377 (3)
C12—C111.398 (3)C5—H50.9300
C12—H120.9300N4—C181.341 (3)
O1—C101.338 (3)N4—C171.361 (3)
O1—H10.8200N4—C161.458 (3)
C11—C101.410 (3)C17—C191.353 (4)
C11—C131.454 (3)C17—H170.9300
C13—N31.271 (3)C20—H20A0.9600
C13—H130.9300C20—H20B0.9600
N1—N21.240 (3)C20—H20C0.9600
N1—C61.439 (3)C3—C41.370 (4)
N3—C141.462 (3)C3—C21.376 (4)
C8—C91.372 (3)C3—H30.9300
C8—C71.395 (3)C16—C151.517 (3)
C8—H80.9300C16—H16A0.9700
N2—C71.421 (3)C16—H16B0.9700
C6—C11.389 (3)C19—N51.357 (4)
C6—C51.390 (3)C19—H190.9300
C14—C151.508 (3)C18—N51.317 (3)
C14—H14A0.9700C18—H180.9300
C14—H14B0.9700C15—H15A0.9700
C9—C101.396 (3)C15—H15B0.9700
C9—H90.9300C4—H40.9300
C1—C21.392 (3)C2—H20.9300
C1—C201.504 (4)
C7—C12—C11120.7 (2)O1—C10—C9118.6 (2)
C7—C12—H12119.7O1—C10—C11121.68 (19)
C11—C12—H12119.7C9—C10—C11119.74 (19)
C10—O1—H1109.5C19—C17—N4105.7 (2)
C12—C11—C10119.04 (19)C19—C17—H17127.1
C12—C11—C13120.97 (19)N4—C17—H17127.1
C10—C11—C13119.95 (19)C1—C20—H20A109.5
N3—C13—C11120.7 (2)C1—C20—H20B109.5
N3—C13—H13119.7H20A—C20—H20B109.5
C11—C13—H13119.7C1—C20—H20C109.5
N2—N1—C6113.5 (2)H20A—C20—H20C109.5
C13—N3—C14121.94 (19)H20B—C20—H20C109.5
C9—C8—C7121.0 (2)C4—C3—C2120.1 (2)
C9—C8—H8119.5C4—C3—H3120.0
C7—C8—H8119.5C2—C3—H3120.0
N1—N2—C7115.98 (19)N4—C16—C15113.40 (19)
C1—C6—C5120.6 (2)N4—C16—H16A108.9
C1—C6—N1116.9 (2)C15—C16—H16A108.9
C5—C6—N1122.5 (2)N4—C16—H16B108.9
N3—C14—C15109.41 (19)C15—C16—H16B108.9
N3—C14—H14A109.8H16A—C16—H16B107.7
C15—C14—H14A109.8C17—C19—N5110.8 (2)
N3—C14—H14B109.8C17—C19—H19124.6
C15—C14—H14B109.8N5—C19—H19124.6
H14A—C14—H14B108.2N5—C18—N4112.1 (3)
C8—C9—C10120.1 (2)N5—C18—H18124.0
C8—C9—H9120.0N4—C18—H18124.0
C10—C9—H9120.0C14—C15—C16113.8 (2)
C12—C7—C8119.5 (2)C14—C15—H15A108.8
C12—C7—N2126.1 (2)C16—C15—H15A108.8
C8—C7—N2114.4 (2)C14—C15—H15B108.8
C6—C1—C2117.7 (2)C16—C15—H15B108.8
C6—C1—C20121.9 (2)H15A—C15—H15B107.7
C2—C1—C20120.4 (2)C18—N5—C19104.6 (2)
C4—C5—C6120.2 (3)C3—C4—C5119.8 (3)
C4—C5—H5119.9C3—C4—H4120.1
C6—C5—H5119.9C5—C4—H4120.1
C18—N4—C17106.8 (2)C3—C2—C1121.6 (2)
C18—N4—C16126.0 (2)C3—C2—H2119.2
C17—N4—C16127.2 (2)C1—C2—H2119.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N30.821.802.534 (2)148
 

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]